平行线分线段成比例

合集下载

平行线分线段成比例定理

平行线分线段成比例定理

3、如图梯形ABCD中点E、F分别在 AB、CD上EF∥AD假设EF作上下平 行移动
一、平行线分线段成比例定理: 三条平行线截两条直线所得的线段对应成比例. 关键要能熟练地找出对应线段
小结
二、要熟悉该定理的几种基本图形
A
B
C
D
E
F
A
B
C
D
E
F
A
B
C
D
E
F
A
B
C
D
E
F
A
B
C
D
E
F
a
(平行线分线段成 比例定理)。
三 练习

证明:因为
(平行线分线段成 比例定理)。
因为
已知:如图, , 求证: 。
E
B
A
D
C
F
(平行线分线段 成比例定理)。
设AB=X则BC=8—X
即:
(平行线分线段成 比例定理)。
Excellent handout training template
平行线分线段成比例定理
l1
l2
l3
平行线分线段成比例定理: 三条平行线截两条直线所得的线段对应成比例 如图
已知l1∥l2∥l3 求证


定理的证明过A点作AN ∥ DF交l2于M交l3于N 点连接 BN 、CM如图1-2
∵l1∥l2∥l3 ∴AM =DE MN=EF 在△ACN中有
.
∵BM∥CN ∴S△BCN= S△BMN ∴
亦即
平行线分线段成比例定理: 三条平行线截两条直线所得的线段对应成比例
“对应”是数学的基本概念 图1-1中 在l1∥l2∥l3的条件下可分别推出如下结论之一: 1简称“上比下”等于“上比下” 2简称“上比全”等于“上比全” 3 简称“下比下”等于“下比下” 把这个定理运用于三角形中就得到它的重要推论

4.平行线分线段成比例.详解

4.平行线分线段成比例.详解

相交的平行直线a、b、c.分别度量l1,l2被直线a、b、 A1 B1 AB 与 c截得的线段AB,BC,A1B1,B1C1的长度. B1C1 BC 相等吗?任意平移直线c,再度量AB,BC,A1B1,B1C1 AB AB 与 1 1 还相等吗? 的长度, B1C1 BC
AB BC
=
A1 B1 B1C1
AD AE DB EC
如图,过点A作直线MN,使MN∥DE.
∵ DE∥BC , ∴ MN∥DE∥BC. 因此AB,AC被一组平行线MN,DE,BC 所截, 则由平行线分线段成比例可知, AD AE AD AE AB AC DB EC DB EC DB EC , . 同时还可以得到 AD AE AB AC
由于 AD DB
1 1 , AB BE EF FC BC . 2 3
因此 AD DB BE EF FC .
由于a∥d∥b∥e∥f∥c, 因此 A1D1=D1B1 =B1E1 =E1F1 = F1C1.
A1 B1 2 A1 D1 2 . 从而 B1C1 3 B1 E1 3B D NhomakorabeaA
4
E F
2
C
图1 12
8
解 因为 DE // BC, 所以 AD AE 4 2 1 . AB AC 6 3 AD CF 因为 DF // AC , 所以 . AB CB
2
2 CF 16 16 8 由12式得 , 即CF .所以 BF 8 . 3 8 3 3 3
观察 下图是一架梯子的示意图.由生活常识可以知
道:AA1,BB1,CC1,DD1互相平行,且若AB=BC, 则A1B1=B1C1.由此可以猜测:若两条直线被一组平 行线所截,如果在其中一条直线上截得的线段相等, 那么在另一条直线上截得的线段也相等.这个猜测是 真的吗?

平行线分线段成比例

平行线分线段成比例

平行线分线段成比例一、知识要点1.平行线分线段成比例定理:三条平行线截两条直线所得对应线段成比例.2.推论:平行于三角形一边的直线截其它两边(或其延长线)所得对应线段的比相等.二、知识要点及典型例题精讲【知识要点1】——平行线分线段成比例定理若1l ∥2l ∥3l ,则;;AB DE AB DE BC EF BC EF AC DF AC DF===. 例1 如图,已知直线a ∥b ∥c ,直线m ,n 与a ,b ,c 分别交于A 、C 、E 、B 、D 、F ,AC=4,CE=6,BD=3,则BF 等于 .【知识要点2】——平行线分线段成比例定理推论如果BC ∥DE ,则AD AE AB AC =;AD AE BD CE =;BD CE AB AC=. 例2 如图,在ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC,若AD:AB=3:4 ,AE=6,则AC= .【随堂练习三】一、判断题1.三条平行线截两条直线,所得的线段成比例( )2.一条直线交△ABC 的边AB 于点D ,交AC 边于点E ,如果AB =9,BD =5,AC =3.5,AE =2,那么DE ∥BC .( )3.如图1,321////l l l ,则BFAE DF CE BD AC ==( ) 4.如图2,在△ABC 中,DE ∥BC ,则BCDE EC AE DB AD ==( ) 二、选择题图1 图21.如图3,在△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,下列不能成立的比例式一定是( )A .EC AE DB AD = B .AE AC AD AB = C .DB EC AB AC = D .BCDE DB AD = 2.如图4,E 是□ABCD 的边CD 上一点,CD CE 31=,AD =12,那么CF 的长为( ) A .4 B .6 C .3 D .123.如图5,□ABCD ,E 在CD 延长线上,AB =10,DE =5,EF =6,则BF 的长为( )A .3B .6C .12D .164.如图6,在ABC 中,AB=3AD, DE//BC, EF//AB, 若AB=9, DE=2, 则线段FC 的长度是( )A. 6B. 5C. 4D. 3图65.如图7,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD=4,DB=2,则AE ︰EC 的值为( ) A. 0.5 B. 2 C.32 D. 23 三、填空题 1.如图8, 则 =________, =________;2.如图9,321////l l l ,AM =2,MB =3,CD =4.5,则ND =________,CN =________.3.如图10,D 、E 分别为AB 的三等分点,DF ∥EG ∥BC ,若BC =12,则DF = . EG =________;4.如图11,△ABC 中,DE ∥BC ,若AE ∶EC =2∶3,DB -AD =3,则AD =________; DB =________.21//l l DE AD AC AB 图7 E D C B A 图3 B AC F DE 图4 图5 图11 图10 图9 图8四、解答题1.如图, 已知△ABC 中AB=AC ,AD ⊥BC ,M 是AD 的中点,CM 交AB 于P ,DN ∥CP 交AB 于N , 若AB=6cm ,求AP 的值.2.如图:P 是四边形OACB 对角线的任意一点,且PM ∥CB ,PN ∥CA ,求证:OA :AN=OB :MB3.如图,△ABC 中,AF ∶FD =1∶5,BD =DC ,求:AE ∶EC .4.如图,在△ABC 中,EF ∥CD ,DE ∥BC ,求证:AF ·BD = AD ·FD5.已知直线l 截△ABC 三边所在的直线分别于E 、F 、D 三点,且AD=BE.求证:EF :FD=CA :CB.OP NMC B A。

2.平行线分线段成比例定

2.平行线分线段成比例定

D
(E )
l1 l2
C
F
l3
BC BF (3) AC DF
基本图形:“A”字形
a A B C
b D E
AB AE (1) BC EF AB AE (2) AC AF BC EF (3) AC AF
l
1
l
2
F
l
3
A D E
B
C
平行于三角形一边的直线与其 他两边相交,截得的对应线段 成比例
推论2:
A B C B1 C1
推论2:
A A1 B C B1 C1 l1
l2 l3
推论2:
A
B
C
B1 C1
推论2: A B C B1 C1
推论2:
A
B C
B1
C1
推论2:(中位线) 经过三角形一边的中点与另一边平行的直线 必平分第三边. A
在△ACC1中, B AB=BC,
BB1∥CC1, ∴AB1=B1C.
数学符号语言
AD AE = AB AC
DE // BC
A
D E
B
C
思考:
平行于三角形一边的直线 截其他两边的延长线,所 得的对应线段成比例。成 立吗? B 推论的数学符号语言:
∵ DE∥BC AD AE ∴ —— = —— AB AC
E A
D
C
二、判断题 1、若AB∥CD∥EF, AC=CE, 则 BD=DF=AC=CE.
(
×
)
A
B
C
E
D
F
2、如图,若 AC=CE,BD=DF, 则AB∥CD∥EF, (
×
A
)

平行线分线段成比例定理

平行线分线段成比例定理
17 2
5
17
2 1
)
)
(3) S△AGE=( 2
4
课堂小结
作业 4
已知AD // ED // BC,AD=15,BC=21,2AE = EB,求EF的长
A D E
H
F
解法(一)
作AG // CD交EF于H AD // EF // BC AD=15, BC=21
B
G
C
AD = HF = GC =15 ,BG = 6 EH AE = BG AB 2AE = EB
A
3k 3m 2m
E
D
2k
G
4m 2a
F
a
B
C
应用1—求线段长度(比值)
如图,△ABC中,D是AB上的点,E是AC上的点,延长ED与射线 CB交于点F.若AE∶EC=1∶2,AD∶BD=3∶2. 求:FB∶FC的值.
A
3k 3m
E
6m
H
2m
D
2k
F
a
B
3a
C
应用1—求线段长度(比值)
如图,△ABC中,D是AB上的点,E是AC上的点,延长ED与射线 CB交于点F.若AE∶EC=1∶2,AD∶BD=3∶2. 求:FB∶FC的值.
A
y
D
x
x
E C
B
5
应用4 — 建立函数关系式
2. 已知:如图,BC = 4, AC = 2 3 ∠C=60°,P为BC上 一点,DP//AB,设BP = x,S△APD= y.
(1)求y关于x的函数关系式; (2)若S△APD =
2 S△APB,求:BP的长. 3
A
D
H
B

平行线分线段成比例结论

平行线分线段成比例结论

平行线分线段成比例结论
平行线分线段成比例的结论可以用以下两个定理来描述:
1. 三角形法则:如果在两条平行线上有两个相交线段,那么这两条线段被平行线切分的部分成比例。

具体表述为:如果AB和CD是两条平行线,并且有两个交叉
线段EF和GH,那么EF/GH = AB/CD。

2. 价恩斯定理:两条平行线被一组相交线段切割所形成的任意两条线段之间的比值,等于这两条线段所在平行线之间的比值。

具体表述为:如果AB和CD是两条平行线,其中EF和GH
是这两条平行线上的两个交叉线段,那么EF/GH = AB/CD。

这些定理指出,在平行线上切割的线段之间存在比例关系,这使得我们可以通过已知线段的比例来推导未知线段的长度。

平行线分线段成比例

平行线分线段成比例
L2 L3
L5
L4
L1
L2 L3
L5
L4
L1
L2 L3
L5
L4
L1
L2 L3
L5
E A B
L4 D
L1
L2
C
L3Biblioteka 二、讲授新知A D
E C
E A B D
3、平行于三角形一边的直线 截其他两边(或两边的延长 线),所得的对应线段成比例。
B
推论的数学符号语言:
∵ DE∥BC
AD AE ∴ —— = —— (推论) AB AC
AD AE 4 2 AB AC 6 3
D
B F
E
C
∵DF//AC
AD CF AB CB
2 CF 16 , 即CF 3 8 3
16 8 BF 8 - 3 3
DE∥BC,分别交AB、AC于点D、E, 4、已知: A AD AE DE 求证: = = . AB AC BC E AD DE D 分析: 只要证明 AB = BC , 过D作AC的平行线 B F C 以转移AD:AB,
DF DE ?, AC EF AB DE ?, AC DF BC EF 2、平行线分线段成比例定理: ? , AC DF 三条平行线截两条直线,所
得的对应线段的比相等。
m Bm m m Cm
A
n n E l 2 n n n F l3
D
l1
L4 L5
A B C
D E F
L1
L2 L3
L4 L5
C
例题解析
1、已知:DE∥BC,AB=15,BD=4,AC= 9, 求:AE的长?
A
B D

平行线分线段成比例定理

平行线分线段成比例定理

左 左 = 右 右
L5 L4 A D B E C
L5
L4 D
L1
L2
E A
L1
L2
B C 数学符号语言 L3 数学符号语言 ∵ DE∥BC ∵ DE∥BC
L3
AD AE AB AC
AD AE AB AC
平行于三角形一边的直线截其他两边(或两边的 延长线),所得的对应线段的比相等.
例1 如图: l1∥l2∥l3 ,
A1 A 要把表示对应角顶点的 字母写在对应的位置上。 注意 B1 C
B
C1
当 ∠A =∠A1,∠B =∠B1, ∠C =∠C1, AB : A1B1 = BC : B1C1 = CD : C1D1 = k 时, 则△ABC 与△A1B1C1 相似,
记作△ABC ∽ △A1B1C1。
平行线分线段成比例定理:
(1)若AB=3 , DE=2, EF=4,求 BC. 解: l ∥l ∥l A
一般把所求线段 BC EF AB DE 写成比例第一项.
即:
BC EF BCDE 4 AB
1
2
3
B C
D E
F
l1 l2 l3
3
2
BC=6
(2)若AC=8,DE=2,EF=3,求AB.
AB DE DE AB 2 16 AB AC DF DE EF 8 2 3 5
过点E作EF∥AB,EF交BC于点F. ∵DE∥BC,EF∥AB,
AD AE BF AE , . AB AC BC AC DE . BC
E
C
∵四边形DEFB是平行四边形, DE AE AD AE , ∴DE=BF,
BC AC AB AC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
平行于三角形一边的直线 截其他两边(或两边的延长
D
E
线),所得的对应线段成
比例。
B
C
推论的数学符号语言: E D
∵ DE∥BC
A
∴ —AD— = —AE— (推论)
AB AC
B
C
练习一:
A
1、判断题:
如图:DE∥BC, 下列各式是否正确
A: —AA—DB = —AAEC— ( )B: —ABDD—= —AC—EE ( ) D
E
C:—AA—CD = —AA—BE ( ) D: —AA—ED = —AA—CB ( )B
C
2、填空题:
ED
如图:DE∥BC,
已知:
—AACE—

—2 5
求:
—AADB—

—2 —5 —
A B
C
例题2
已知:DE//BC, AB=15,AC=9, BD=4 . 求:AE=?
解: ∵ DE∥BC
∴ —AB— = —AC— (推论)
推论
L4 L5
A
D
L1
B
E
L2
C
F
L3
三条平行线截两条直线,所得的对应线段成比例.
定理的符号语言 L4 L5
L1//L2//L3
A
D
L1
B
E
AB
DE
=
C
L2 F
L3
BC EF
(平行线分线段成比例定理)
L4 L5
A
D
L1
B
E
L2
C
F
L3
L4 L5 L1 L2 L3
L5L4 L1 L2 L3
L5 L4 L1 L2 L3
BD CE
即 —15—=—9—
B
4 CE ∴ CE = 1—52
D
∴ AE= AC+CE=9+ 1—2 =11—2
5
5
A
C E
练习二: (A组)
1、如图: 已知 DE∥BC, AB = 14, AC = 18 , D
AE = 10,
求:AD的长。
B
(B组)
A
2、如图: 已知AB⊥BD,
ED⊥BD,垂足分别为 B B、D。
L5
L4
L1
L2
L3
L5
L4
E
D
L1
A
L2
B
C
L3
数学符号语言
DE // BC E D
A
AD AE
AB =AC B
C
L5 L4
L5 L4
A
L1
ED
L1
DE
L2
A
L2
B
C L3 B
C
L3
数学符号语言 ∵ DE∥BC

AD AB
=
AE AC
数学符号语言
∵ DE∥BC

AD AB
=
AE AC
推论:
求证:—AECC— = —BDCC—
E C
C
D
E
达标检测题: (A组)
DE
1、如图: 已知 DE∥BC,
A
AB = 5, AC = 7 ,
AD= 2, 求:AE的长。
B
C
C
(B组)
2、已知 ∠A =∠E=60°A
B
CB = 4,—BA—EB =
—2
3
E
求:BD的长。 D
小结:
1、本节主要学习了平行线 分线段成比例定理的推论 及它的数学符号语言; 2、本节的难点是平行线分 线段成比例定理的简单应用。
L5 L4 L1 L2
L3
L5 L4
A
L1
D
E
L2
B
C
L3
数学符号语言
DE // BC
D
AD AB
=AACE
B
A
E
C
L4 L5
A
D
L1
B
E
L2
C
F
L3
L4 L5 L1 L2 L3
L5L4 L1 L2 L3
L5 L4 L1 L2 L3
L5 L4 L1 L2
L3Leabharlann L5 L4 L1 L2L3
作业:
数学课本221页: A组 2、3题
再见
相关文档
最新文档