6.2平行线分线段成比例定理
平行线分线段成比例定理

3、如图梯形ABCD中点E、F分别在 AB、CD上EF∥AD假设EF作上下平 行移动
一、平行线分线段成比例定理: 三条平行线截两条直线所得的线段对应成比例. 关键要能熟练地找出对应线段
小结
二、要熟悉该定理的几种基本图形
A
B
C
D
E
F
A
B
C
D
E
F
A
B
C
D
E
F
A
B
C
D
E
F
A
B
C
D
E
F
a
(平行线分线段成 比例定理)。
三 练习
!
证明:因为
(平行线分线段成 比例定理)。
因为
已知:如图, , 求证: 。
E
B
A
D
C
F
(平行线分线段 成比例定理)。
设AB=X则BC=8—X
即:
(平行线分线段成 比例定理)。
Excellent handout training template
平行线分线段成比例定理
l1
l2
l3
平行线分线段成比例定理: 三条平行线截两条直线所得的线段对应成比例 如图
已知l1∥l2∥l3 求证
或
或
定理的证明过A点作AN ∥ DF交l2于M交l3于N 点连接 BN 、CM如图1-2
∵l1∥l2∥l3 ∴AM =DE MN=EF 在△ACN中有
.
∵BM∥CN ∴S△BCN= S△BMN ∴
亦即
平行线分线段成比例定理: 三条平行线截两条直线所得的线段对应成比例
“对应”是数学的基本概念 图1-1中 在l1∥l2∥l3的条件下可分别推出如下结论之一: 1简称“上比下”等于“上比下” 2简称“上比全”等于“上比全” 3 简称“下比下”等于“下比下” 把这个定理运用于三角形中就得到它的重要推论
平行线分线段成比例定理数学教案

平行线分线段成比例定理数学教案
标题:平行线分线段成比例定理
一、教学目标:
1. 学生能理解并掌握平行线分线段成比例定理。
2. 学生能运用该定理解决实际问题。
3. 提高学生的空间想象能力和逻辑思维能力。
二、教学内容:
平行线分线段成比例定理:如果一条直线截两条平行线,所得的对应线段成比例。
三、教学步骤:
1. 导入新课
通过复习以前学过的关于平行线的知识,引导学生进入新课的学习。
2. 讲解新课
(1) 介绍平行线分线段成比例定理,并解释其含义。
(2) 利用教具或多媒体进行演示,帮助学生理解这个定理。
(3) 引导学生自己画图,尝试证明这个定理。
3. 巩固练习
设计一些习题让学生做,以此来检验他们是否真正理解了这个定理。
4. 拓展应用
引导学生将这个定理应用到实际生活中,或者解决其他数学问题。
四、教学反思:
在教学过程中,教师应关注学生的学习状态,适时调整教学策略,以达到最佳的教学效果。
同时,教师也应鼓励学生积极思考,培养他们的创新精神和实践能力。
五、作业布置:
设计一些与本节课内容相关的习题作为家庭作业,以便学生巩固所学知识。
六、教学评估:
通过课堂观察、作业批改以及测试等方式,对学生的学习情况进行评估,及时反馈学习效果,为下一步的教学提供参考。
平行线分线段成比例定理

D
E
C B B F C F C AB AC AC BC AB AC BC = = = = AD AE AE BF AD AE DE
推论2.平行于三角形一边, 推论 平行于三角形一边,并且和其他两边 平行于三角形一边 或两边延长线) (或两边延长线)相交的直线所截得的三 角形的三边与原三角形的三边对应成比例. 角形的三边与原三角形的三边对应成比例
DB EC
AD AE = AB AC
……
平行线分三角形两边成比例定理: 平行线分三角形两边成比例定理: 平行于三角形一边的直线截其他两边, 平行于三角形一边的直线截其他两边, 所得的对应线段成比例. 所得的对应线段成比例.
A D E
B
C
思 考: 平行于三角形一边 E 的直线截其他两边 A 的延长线,所得的 的延长线, B 对应线段成比例. 对应线段成比例. C D
l1 AP = P B = BP = P P = P C. 1 1 2 2 3 3 ' l1 ' ' DP1' = P' E = EP2 = P2P3' = P3' F 1 l2 ' ' 因为 DE = 2DP EF = 3DP1' 1 l2 ' ' AB DE l3 DE 2DP1 2 = = = ∴ ' BC EF l3 EF 3DP1 3
EF n = DE m源自l1 l2EF + DE n + m = DE m
l3
即
DF m+ n = DE m
∴
DE m = DF m + n
AB BC AC = = 已知:如图, 求证: 。 已知:如图,1 // l2 // l3 , 求证: l DE EF DF 证明: 证明:因为 l1 // l2 // l3 AB DE (平行线分线段成 A D = 比例定理)。 BC EF 比例定理)。 AB BC B E = DE EF F C BC EF (平行线分线段成 因为 = 比例定理)。 AC DF 比例定理)。 BC AC = EF DF 上 下 全
平行线分线段成比例定理证明过程

平行线分线段成比例定理是初中数学中的重要概念之一,也是几何学中的基础知识。
在我们探讨这个定理的证明过程之前,首先让我们了解一下平行线分线段成比例定理的概念。
一、平行线分线段成比例定理的概念平行线分线段成比例定理是指:如果一条直线被两条平行线截断,那么它们所截取的线段成比例。
形式化表示就是:设直线l被两条平行线m和n截断,截线段分别为AB和CD,那么有AD/DB=AC/CB。
二、证明过程接下来,我们来探讨平行线分线段成比例定理的证明过程。
1. 利用证明过程所需的前提条件我们需要利用欧几里得几何学的基本公设和定理来证明这个定理。
其中,我们需要用到的包括平行线的性质、相似三角形的性质等。
2. 构造辅助线在证明过程中,我们通常会构造一些辅助线来帮助我们证明定理。
我们可以根据已知条件,构造出一些三角形或平行四边形来辅助证明。
3. 利用相似三角形性质在证明中,我们需要利用到相似三角形的性质。
我们可以利用相似三角形的对应边成比例的性质来帮助我们证明线段的成比例关系。
4. 利用平行线的性质平行线具有许多特殊的性质,其中之一就是平行线与被它们截取的直线所成的各对应角相等。
我们可以利用这一性质来帮助我们证明定理。
5. 运用数学归纳法在证明过程中,我们可能需要通过数学归纳法来确保定理对于所有情况都成立。
6. 总结通过以上的证明过程,我们可以得出平行线分线段成比例定理的证明结果。
三、个人观点和理解从证明过程中,我们可以看到,数学证明不仅需要逻辑思维,还需要创造性地构造辅助线、利用相似三角形等方法来解决问题。
平行线分线段成比例定理的证明过程,让我深刻体会到数学的美妙之处,也让我更加深入地理解了相关概念和定理。
总结通过本文对平行线分线段成比例定理的证明过程的探讨,我们不仅了解了这一定理的基本概念,还深入探讨了其证明的具体步骤和相关思想。
通过这样的学习和探讨,我们不仅可以掌握知识,还能够培养良好的逻辑思维能力和解决问题的能力。
平行线分线段成比例定理

左 左 = 右 右
L5 L4 A D B E C
L5
L4 D
L1
L2
E A
L1
L2
B C 数学符号语言 L3 数学符号语言 ∵ DE∥BC ∵ DE∥BC
L3
AD AE AB AC
AD AE AB AC
平行于三角形一边的直线截其他两边(或两边的 延长线),所得的对应线段的比相等.
例1 如图: l1∥l2∥l3 ,
A1 A 要把表示对应角顶点的 字母写在对应的位置上。 注意 B1 C
B
C1
当 ∠A =∠A1,∠B =∠B1, ∠C =∠C1, AB : A1B1 = BC : B1C1 = CD : C1D1 = k 时, 则△ABC 与△A1B1C1 相似,
记作△ABC ∽ △A1B1C1。
平行线分线段成比例定理:
(1)若AB=3 , DE=2, EF=4,求 BC. 解: l ∥l ∥l A
一般把所求线段 BC EF AB DE 写成比例第一项.
即:
BC EF BCDE 4 AB
1
2
3
B C
D E
F
l1 l2 l3
3
2
BC=6
(2)若AC=8,DE=2,EF=3,求AB.
AB DE DE AB 2 16 AB AC DF DE EF 8 2 3 5
过点E作EF∥AB,EF交BC于点F. ∵DE∥BC,EF∥AB,
AD AE BF AE , . AB AC BC AC DE . BC
E
C
∵四边形DEFB是平行四边形, DE AE AD AE , ∴DE=BF,
BC AC AB AC
平行线分线段成比例定理

l1 // l2 // l3,AB=3 ,DE=2 ,
A B C D E F
l1
l2
l3
2014-8-29
例题4
A A
6
D
4
E
12
9
B C
15
9
B F
D
E
10
G C
A
C
6 4
B
O
3
D
EC=( 6 )
AE=( 8 ) GC=( 6 )
AD=( 14 )
3、如图1:已知L1∥L2∥L3 , AB=3厘米,BC=2厘米,DF=4.5厘米. 则EF=( 1.8 ),DE=( 2.7 ).
( DE) (AC ( DF) ( AC) ( DF)
F
C L3
2、如图L1∥L2∥L3 , DE (1)已知BC=3, 3,则AB=(9) EF (2)已知AB=a,BC=b,EF= c, C ac 则DE=( ) b
A
D
L1
B
E F
L2 L3
例题1
如何来证明?
平行线等分线段定理:
如果一组平行线在一条直线上截得的线段相等, 那么在其 他直线上截得的线段也相等. 已知:如图,直线 l1∥l2∥l3 AB=BC 求证: A1B1=B1C1 证明:过B1作EF∥AC,分别交l1、l3于 点E、F
l1 l2 l3
A
A1 B1
3 1 2 4
E
B C
∵ l1∥l2∥l3 ∴得到□ ABB1E和□ BCFB1 ∴EB1 =AB ,B1F=BC ∵AB=BC ∴EB1=B1F 又∠1=∠2,∠3=∠4 ∴△A1B1E≌△C1B1F ∴A1B1=B1C1
平行线分线段成比例定理

如图,有一块形状为直角梯形的草地,周围均为水泥 如图,有一块形状为直角梯形的草地, 直道,两个拐角A 处均为直角, 直道,两个拐角A、B处均为直角,草地中间另有一条水泥 直道EF垂直于AB 垂足为E.已知AE EF垂直于AB, E.已知AE长 EB长 DF长 直道EF垂直于AB,垂足为E.已知AE长a米,EB长b米,DF长 c米.求CF.
要熟悉该定理的几种基本图形
A B C D B C A E F E D D E F C A B B C C E D B A E F A B E D
F D
C A
16 16 8 CF = DE = , BF = 8= . 3 3 3
B
F
C
例2:三角形内角平分线分对边成两线 三角形内角平分线分对边成两线 这两线段和相邻的两边成比例. 段,这两线段和相邻的两边成比例 这两线段和相邻的两边成比例
A
4 3
E
已知: 是 已知:AD是△ABC中∠A的平 中 的平 分线, 分线, BD AB 求证: 求证:DC
课 堂 小 结
平行线分线段成比例定理与平行线等分线段 定理有何联系? 定理有何联系?
A B D E
AB 当 =1 BC AB 当 ≠1 BC
A B
D E
C
F
C
F
结论:后者是前者的一种特殊情况! 结论:后者是前者的一种特殊情况! 平行线分线段成比例定理: 平行线分线段成比例定理:
三条平行线截两条直线,所得的对应线段成比例. 对应线段成比例 三条平行线截两条直线,所得的对应线段成比例.
l4
l5
问题二 如何不通过测量,运用所学知识,快速将一根绳 如何不通过测量,运用所学知识, 子分成两部分,使这两部分之比是2:3? 子分成两部分,使这两部分之比是2:3?
平行线分线段成比例及证明

A
D
l1
AB BC DE EF
因为
BC AC
EF DF
(平行线分线段成 比例定理)。
BE FC
l2
l3
BC AC EF DF
AB BC AC DE EF DF
!
上下全 上下全
已知:如图, l1 //l2 //l3 ,AC=8,DE=2,EF=3,
求AB。
方法一 解:因为 l1 //l2 //l3
∵l1∥l2∥l3 ∴AM =DE MN=EF 在△ACN中,有 AB S ABM
BC S BCM
AM S ABM MN S BMN
∵BM∥CN ∴S△BCN= S△BMN ∴ AB AM
BC MN
亦即 A B B E BC EF
平行线分线段成比例定理:
三条平行线截两条直线所得的 线段对应成比例
ADAE D
E
在 AD 中 , CEF/,A A /CD F D A AC EB
C
AB AD AD AF
∴AD2=AB•AF,即AD是AB和AF的比例中项
三 练习
已知:如图,l1
//l2
//l3
,
求证:
AB DE
BC。AC EF DF
证明:因为 l1 //l2 //l3
AB BC
DE EF
(平行线分线段成 比例定理)。
平行线分线段成比例及证明
平行线分线段成比例定理:
三条平行线截两条直线所得的
A
线段对应成比例 如图
B
已知l1∥l2∥l3
求证 AB DE
Hale Waihona Puke CBC EF或 AB DE
AC DF
或
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A C
§6.4 平行线分线段成比例定理
主备:盛莉莉 审核:袁泉
学习目标
会用平行线分线段成比例定理.
学习重点与难点
掌握平行线分线段成比例定理和平行线等分线段定理. 教学过程
一、自主探索
如图,已知321////l l l ,求证:
l 1l 2
l 3
1.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段对应成比例.
2.平行线等分线段定理:两条直线被三条平行线所截,如果在一直线上所截得的线段相等,那么在另一直线上所截得的线段也相等。
3.平行线分线段成比例定理与平行线等分线段定理的联系: . 例1 填空:
例2已知:如图321////l l l ,AB=3 ,DE=2 ,EF=4。
求AC 的长。
l 1l 2
l 3
例3已知AD // EF // BC ,AD=15,BC=21,2AE = EB ,求EF 的长
例4 已知:AD 为△ABC 的中线,EF//BC, EF 交AD 于G.求证:EG=FG .
例5 已知:梯形ABCD ,AD//BC, EF//BC ,EF 交BD 于G 交AC 于H.
求证:EG=FH .
EF
DE
BC AB =)
1(DF
DE
AC AB =)
2(DF
EF
AC BC =)
3
(=
==∴BC BE CD AC AD CD AB DE //)1(
==GC
AG BC EF AD 则若////)2(==FB
CF
AE AB ABCD
则已知平行四边形)3(
c
b a
A
B C
例6 如图,△ABC 中,D
是AB 上的点,E 是AC 上的点,延长ED 与射线CB 交于点F . 若AE ∶EC=1∶2,AD ∶BD=3∶2.求FB ∶FC 的值.
随堂演练
1.已知:如图,DE // BC ,EO: OC =3:7,
2.已知:BE 平分∠ABC
,DE//BC. AD=3, DE=2, AC=12,AE 的长度为 .
3. 在Rt △ABC 中,∠C=90°,DE ⊥BC 于点E. AD= 5, DB=10, CE=
4. DE 的长度为 AC 的长度为 .
4.如图,已 知DE
// FG // BC , AD : DF : BF= 2 : 3 : 4,则DE : FG : BC =
.
5.若a // b// c ,DE=3, EO=2, OF=4, OB=1,
求AB 、OC 的长.
6.已知:EF//BC 求证:
7.如图,已知□ABCD ,E 、F 为BD 的三等分点,CF 交AD 于G ,GE 交BC 于H . (1) 求证:点G 为AD 的中点;
8.已知:□ABCD 的对角线AC 、BD 交于点O ,点E 在BC 延长线上,OE 交CD 于F. 若AB=8,BC=10,CE=3,求CF 的长度.
F C
=BC ED )1(=AB AE )2(BC EF AD AG =.)2(HC
BH 求A E D B C
O 第1题图 第2题图 第3题图 A B C 第4题图。