高等代数总结

高等代数总结
高等代数总结

高数极限求法总结

首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方 1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式 (含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!) E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 取大头原则最大项除分子分母!!!!!!!!!!!

《高等代数一》知识点

高等代数知识点 第一章 多项式 1. 数域的定义、常见数域 2. (系数在)数域P 上的多项式的定义 3. 多项式相等 4. 多项式的次数、零多项式和零次多项式 5. 一元多项式的运算(加减乘)、运算律、多项式环、次数定理 6. 整除的定义:()()g x f x ?()()()f x g x h x =(证明,不整除则用反证法)、因式和倍式 7. 整除的性质: (1) 一些特殊的整除性(0,常数,自身) (2) 整除的反身性 (3) 整除的传递性 (4) 整除的组合性 8. 带余除法()()()()f x q x g x r x =+、综合除法 9. 整除的判定法则:余式为零 10. 整除不受数域的影响 11. 公因式及最大公因式的定义、()()(),f x g x ,()0,()()g x g x =,()0,00= 12. 最大公因式的求法(辗转相除法)P44:5 13. 最大公因式可以表示为()(),f x g x 的一个组合()()()()()d x u x f x v x g x =+——P45:8 14. 互素的定义 15. 互素的相关定理(证明)P45:12、14 (1) ()()(),11()()()()f x g x u x f x v x g x =?=+ (2) ()()()()()()()(),1,f x g x f x g x h x f x h x =? (3) ()()()()()()() ()()()121212,,,1,f x g x f x g x f x f x f x f x g x =? 16. 不可约多项式的定义(次数大于等于1) 17. 平凡因式、不可约等价于只有平凡因式 18. 可约性与数域有关 19. 不可约多项式的性质: (1) ()p x 不可约,则()cp x 也不可约 (2) ()p x 不可约,()[],f x P x ?∈ ()()|(),(),()1p x f x or f x p x ?= (3) ()p x 不可约,()()()p x f x g x ()()()|(),p x f x or p x g x ? 20. 标准分解式1212()()()()s r r r s f x cp x p x p x =

高数求极限方法总结

第一章极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1 lim 2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞ →q q n n 当等。 定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限 作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 0)1(lim ; e x x x =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。 (2)一定注意两个重要极限成立的条件。 例如: 133sin lim 0=→x x x ,e x x x =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f , )(x g ~)(1x g ,则当)()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)()(lim 1 10x g x f x x →。 5.连续性 定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内

(完整版)高等代数知识点归纳

1122,, 0,.i j i j in jn A i j a A a A a A i j ?=?++=?≠?? L = =()mn A O A A O A B O B O B B O A A A B B O B O * = =* *=-1 (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1 范德蒙德行列式: ()12222 1211 1112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 分块对角阵相乘:11 112222,A B A B A B ???? == ? ???? ??11112222A B AB A B ??= ???,1122n n n A A A ?? = ??? 分块矩阵的转置矩阵:T T T T T A B A C C D B D ?? ??= ? ????? () 1121112 222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ??? L L M M M L ,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A -=, 1 1A A --=. 分块对角阵的伴随矩阵:* * *A BA B AB ?? ??= ? ???? ?

知识点总结高等代数

第二章行列式知识点总结 一行列式定义 1、n 级行列式1112121 22 212 n n ij n n n nn a a a a a a a a a a = (1)等于所有取自不同行不同列的n 个元素的乘积1212n j j nj a a a (2)的代 数和,这里12n j j j 是一个n 级排列。当12 n j j j 是偶排列时,该项前面带正号;当12 n j j j 是奇排列时,该项前 面带负号,即: 12 1212 1112121222() 1212 (1)n n n n n j j j ij j j nj n j j j n n nn a a a a a a a a a a a a a τ= = -∑ 。 2、等价定义 121212() 12(1)n n n i i i ij i i i n n i i i a a a a τ = -∑和12 1211221212 ()() (1)n n n n n n i i i j j j ij i j i j i j n i i i j j j a a a a ττ+= -∑ 和 3、由n 级排列的性质可知,n 级行列式共有!n 项,其中冠以正号的项和冠以负号的项(不算元素本身所带的负号)各占一半。 4、常见的行列式 1)上三角、下三角、对角行列式 11 11 11 222222 112200nn nn nn nn a a a a a a a a a a a a *===* 2)副对角方向的行列式 111(1)21 2,1 2,1 2 12,111 1 1 0(1) n n n n n n n n n n n n n n a a a a a a a a a a a a -----* ===-* 3)范德蒙行列式: 1222212 11 1112 111() (2) n n i j j i n n n n n a a a a a a a a a a a n ≤<≤---= -≥∏ 二、行列式性质 1、行列式与它的转置行列式相等。

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

高等代数行列式知识点总结

第一章 行列式( * * * ) 一、复习指导:行列式在高等代数中是十分重要的,它不仅是每年必要的一道大题,而且还是一个基础章节,它与学好后面的章节也有一定的联系,是学习后面重要章节的基础。在首师大真题中,行列式往往会以求数字型n 阶行列式的值作为一道大题出现,分值15分。具体可以参考真题。 二、考点精讲: (一)基本概念 定义1 逆序—设j i ,是一对不等的正整数,若j i >,则称),(j i 为一对逆序。 定义2 逆序数—设n i i i Λ21是n ,,2,1Λ的一个排列,该排列所含逆序总数称为该排列的逆序数,记为)(21n i i i Λτ,逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列。 定义3 行列式—称nn n n n n a a a a a a a a a D Λ ΛΛΛΛΛΛ 21 22221112 11 = 称为n 阶行列式,规定 n n n nj j j j j j j j j a a a D ΛΛΛ21212121) ()1(∑-= τ 。 定义4 余子式与代数余子式—把行列式nn n n n n a a a a a a a a a D Λ ΛΛΛΛΛΛ 21 22221112 11 = 中元素ij a 所在的i 行元素和j 列元素去掉,剩下的1-n 行和1-n 列元素按照元素原来的排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,称ij j i ij M A +-=) 1(为元素ij a 的代数余子式。 (二)、几个特殊的高阶行列式 1、对角行列式—形如 n a a a Λ ΛO ΛΛΛΛ0 00 02 1 称为对角行列式,n n a a a a a a ΛΛ ΛO ΛΛΛΛ21210 00 0=。

高等数学求极限的16种方法

高等数学求极限的16种方法 首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)

高数中求极限的16种方法——好东西 )

假如高等数学是棵树木得话,那么极限就是他的根,??函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,??可见这一章的重要性。 为什么第一章如此重要?? ?各个章节本质上都是极限,??是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先??对??极限的总结??如下 极限的保号性很重要? ?就是说在一定区间内??函数的正负与极限一致 1??极限分为? ?一般极限? ?,??还有个数列极限,??(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,? ?(只能在乘除时候使用,但是不是说一定在加减时候不能用??但是前提是必须证明拆分后极限依然存在) e的X次方-1? ?或者(1+x)的a次方-1等价于Ax??等等。??全部熟记 (x趋近无穷的时候还原成无穷小) 2??LHopital?法则? ?(大题目有时候会有暗示??要你使用这个方法) ??首先他的使用有严格的使用前提!!!!!! ? ?必须是??X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,??当然n趋近是x趋近的一种情况而已,是必要条件?? (还有一点??数列极限的n当然是趋近于正无穷的??不可能是负无穷!) ? ?必须是函数的导数要存在!!!!!!!!(假如告诉你g(x),??没告诉你是否可导,直接用无疑于找死!!) ??必须是??0比0??无穷大比无穷大!!!!!!!!! ? ?当然还要注意分母不能为0?? ??LHopital? 法则分为3中情况 1 0比0? ?无穷比无穷??时候??直接用 2? ?0乘以无穷? ?无穷减去无穷? ?(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后? ?这样就能变成1中的形式了 3??0的0次方? ? 1的无穷次方无穷的0次方? ? ??对于(指数幂数)方程方法主要是取指数还取对数的方法,??这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(??这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0??当他的幂移下来趋近于无穷的时候??LNX趋近于0) 3泰勒公式? ? (含有e的x次方的时候??,尤其是含有正余旋??的加减的时候要特变注意??!!!!) E的x展开? ?sina??展开? ?cos??展开? ?ln1+x展开 对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 ??取大头原则? ? 最大项除分子分母!!!!!!!!!!! ??看上去复杂处理很简单!!!!!!!!!!

高数 数学极限总结

函数极限总结 一.极限的产生 极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。 极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。 从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。[1] 二.极限知识点总结 1. 极限定义 函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式 时,对应的函数值 都满足不等式: 那么常数A 就叫做函数f(x) 当x →x 0时的极限,记作。[2] 单侧极限:①.左极限:或 ②.右极限:或 定理: 函数当时极限存在的充分必要条件是左、右极限各自存在且相 等 即。 2. 极限概念 函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式 时,对应的函数值f(x)都满足不 δ<<|x -x |00ε <-|)(|A x f A x f x x =→)(lim 0 A x f x x =- →)(lim )()(左→→x A x f A x f x x =+ →)(lim )()(右→→x A x f A x f x f A x f x x ==? =+-→)()()(lim 0)()()()()(0000lim x f x f x f x f x f x x ==?=+ -→)(x f 0x x →)()()(lim 0 00x f x f x f x x →+ -==0,,,x x x x x →-∞→+∞→∞→0x x →

高等代数的知识结构

高等代数知识结构一、高等代数知识结构图 高等代数线性代数 工具 线性方程组 中心课题 线性典范型 研究范围 线性空间 行列式 矩阵 线性方程组 向量相关性 行列式的计算 行列式的性质 矩阵的秩 矩阵的运算 与逆 矩阵的初等变换 线性方程组的解法及判别定理 线性方程组解的结构 极大线性无关组 线性相关和线性无关 二次型 线性流形 线性函数 若尔当典范性 化为标准型(配方法, 线性方程组法,正交法) 对角化 正定性,合同 单线性函数 对称双线性函数 J矩阵 II-C定理 矩阵的可对角化 线性空间 欧式空间 酉空间 线性空间的性质与同构, 子空间的判定 线性变换 坐标变换与基变换 特征值与特征向量 可对角化及不变子空间 欧式空间的性质 正交化与正交补的求法 正交变换与正交矩阵 酉空间的性质 复数域上的正交变换

二、高等代数知识结构内容 (一)线性代数: 工具:线性方程组 1.行列式: 1行列式的计算设有2n 个数,排成n 行n 列的数表 nn n n n n a a a a a a a a a 21 2222111211 ,即n 阶行 列式.这个行列式等于所有取自不同行不同列的n 个元素的乘积 n 21nj j 2j 1a a a ⑴的代数和,这里n 21j j j 是n 21,,, 的一个排列,每一项⑴都按下列规则带有符号:当n 21j j j 是偶排列时, ⑴带正号;当n 21j j j 是奇排列时, ⑴带负号.即 nn n n n n a a a a a a a a a 2 12222111211 =() ()n 21n 21n 21nj j 2j 1j j j j j j 1a a a τ∑-, 这里∑n 21j j j 表示对所有n 级排列求和. a.行列式的性质: 性质1.行列互换,行列式不变。 性质2.一行的公因子可以提出来(或以一数乘行列式的一行就相当于用这个数 多项式理论 整除理论 因式分解理论 多项式根的理论 多元多项式/ 对称多项式 最大公因式定理 互素与同于 因式分解唯一性 重因式 复数域 实数域 有理数域 求法 判定(爱绅斯坦因) 根的判别式 韦达定理

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

高数求极限的方法小结

高数求极限的方法小结 The document was finally revised on 2021

高等数学中求极限的方法小结 2.求极限的常用方法 利用等价无穷小求极限 #这种方法的理论基础主要包括:(1)有限个无穷小的和、差、积仍是无穷小.(2)有界函数与无穷小的乘积是无穷小.(3)非零无穷小与无穷大互为倒数.(4)等价无穷小代换(当求两个无穷小之比的极限时,分子与分母都可用等价无穷小代替).[3] 设αα'~、~ββ'且lim lim ββαα ' =;则:β与α是等价无穷小的充分必要条件为:0()βαα=+. 常用等价无穷小:当变量0x →时, 2 1sin ~,tan ~,arcsin ~,arctan ~,1~,ln(1)~,1cos ~,2 x x x x x x x x x e x x x x x -+ -~,(1)1~x x x αα+-. 例1 求01cos lim arctan x x x x →-. 解 21 0,1cos ~,arctan ~2x x x x x →-时, 故,原式220112lim 2 x x x →== 例2 求123 0(1)1 lim cos 1 x x x →+--. 解 1 2223 11 0,(1)1~ ,1cos ~32 x x x x x →+--时,因此:

原式20212 3lim 132 x x x →==-. 例3 求 1 lim tan x x →-. 解 0,x → 时1 1~,tan ~3x x x ,故:原式=0113lim 3 x x x →=. 例4 求() 2 1lim 2ln(1) x x e x x →-+. 解 0,1~,ln(1)~x x e x x x →-+时,故: 原式2201 lim 22 x x x →==. 例5 试确定常数a 与n ,使得当0x →时,n ax 与33ln(1)x x -+为等价无穷小. 解 330ln(1)lim 1n x x x ax →-+= 而左边22 5311003331lim lim n n x x x x x x nax nax --→→-+--=, 故 15n -=即6n = 0331 lim 11662x a a a →--∴=∴=∴=-. 利用洛必达法则求极限 #利用这一法则的前提是:函数的导数要存在;为0比0型或者 ∞ ∞ 型等未定式类型. 洛必达法则分为3种情况:(1)0比0,无穷比无穷的时候直接用.(2)0乘以无穷,无穷减去无穷(无穷大与无穷小成倒数关系时)通常无穷大都写成无穷小的倒数形式,通项之后,就能变成(1)中形式了.(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数,幂函数)形式的方法主要是取指数的方法,这样就能把幂函数指数位置的函数移下来了,就是写成0与无穷的形式了.

高等代数欧几里得空间知识点总结

第九章 欧几里得空间( * * * ) 一、复习指导:在第九章中,有两个重要的考点:1.标准正交基(施密特正交化)2.实对称矩阵如何相似对角化,如何求标准形。除此之外,欧氏空间的含义,概念,性质也要作为一个比较重要的内容来复习。 二、考点精讲: 三、首师大真题: (一)欧氏空间 1.设V 是是数域R 上一线性空间,在V 上定义了一个二元实函数,称为内积,记为(,)αβ,特具有一下性质: (1)(,)(,)αββα=; (2)(,)(,)k k αβαβ= (3)(,)(,)(,)αβγαγβγ+=+; (4)(,)0αα≥,当且仅当α=0时(,)αβ=0.这里,,αβγ是V 中任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间。 2.α的长度,记为α。 3.非零向量的夹角,β规定为(,) ,arccos ,0,ααβαβπαβ =≤≤ 4.如果向量,αβ的内积为零,即(,)0αβ=,那么,αβ称为正交或互相垂直,记为αβ⊥。 5.设V 是一个n 维欧几里得空间,在V 中取一组基1,2,......,n εεε令 (,),(,1,2,....)ij i j a i j n εε==矩阵()ij n n A a ?= 称为基1,2,......,n εεε的度量矩阵。 (1)度量矩阵是正定的; (2)不同基底的度量矩阵是合同的。 6.欧氏空间V 中一组非零向量,如果它们两两正交,就称为一正交向量组。在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基。 (1)施密特正交化 这是把线性无关向量组改造为单位正交向量组的方法. 以3个线性无关向量α1,α2,α3为例. ①令β1=α1, β2=α2- 11112) ,() ,(ββββα, β3=α3-11113),(),(ββββα-22223) ,() ,(ββββα. 此时β1,β2,β3是和α1,α2,α3 等价的正交非零向量组. (二)同构 1.实数域R 上欧氏空间V 与' v 称为同构,如果由V 到' v 有一个1-1上的映射σ,适合 (1)()()()σαβσασβ+=+ (2)()()k k σασα=

高数:总结求极限的常用方法

总结求极限的常用方法,详细列举,至少4种 极限定义法 泰勒展开法。 洛必达法则。 等价无穷小和等价无穷大。 极限的求法 1. 直接代入法 适用于分子、分母的极限不同时为零或不同时为 例 1. 求 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。 (x趋近无穷的时候还原成无穷小) 2落笔他法则 首先他的使用有严格的使用前提!!!!!! 必须是X趋近而不是N趋近!!!!! 必须是函数的导数要存在!!!!!!!! 必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0

落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0) 3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!) E的x展开sina 展开cos 展开ln1+x展开 对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 取大头原则最大项除分子分母!!!!!!!!!!! 看上去复杂处理很简单!!!!!!!!!! 5无穷小于有界函数的处理办法 面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。 面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!

高等代数 知识点

第一章 定义1 数域 定义2 数域P上的一元多项式 定义3 多项式相等 定义4 一元多项式环 带余除法 定义5 整除 定理1 r(x)=0 定义 6 最大公因式 定理 2 d(x)=u(x)f(x)+v(x)g(x); (f(x),g(x))= u(x)f(x)+v(x)g(x) 定义7 互素(f(x),g(x))=1 定理 3 u(x)f(x)+v(x)g(x)=1 定理4 f ,g互素且f|gh,则f|h 推论f1|g,f2|g,且f1,f2互素,则f1f2|g, 定义8 不可约多项式 定理5 一个不可约多项式p,能够表达成P|fg, 则p|f或者p|g 因式分解及其唯一性定理数域P上的一个多项式f,都可以唯一的分解成数域P上的一些不可约多项式的乘积。

第四章 1 转轴----坐标系(x1,y1,z1)到(x2,y2,z2)的坐标变换矩阵是A,如果令X1=(x1,y1,z1)的转置,X2=(x2,y2,z2)的转置,则X1=AX2。 2单位矩阵E=数量矩阵为kE= 如:AE=A,EA=A 3矩阵的加法,乘法,减法,结合律,交换律,零矩阵 4 秩(A+B)秩A+秩B 5 如:A=则矩阵的数量乘积 kA= 6 矩阵的转置记作A的转置为A’。例如A= 则A’= 注意:转置的性质(A’)’=A (A+B)’=A’+B’( AB)’=B’A’ (kA)’=kA’ 定理1 假设A B是数域P上的两个n n矩阵,那么|AB|=|A||B| 即矩阵乘积的行列式等于它的因子的行列式的乘积 推论1 |A1A2An|=|A 1||A 2||An|

定义6数域P上的一个n n矩阵A,如果|A|0,称为非退化的,否则称为退化的 推论2 假设A B是数域P上的两个n n矩阵,矩阵AB为退化的充要条件是A,B中至少有一个是退化的 定理2 假设A是数域P上的n m矩阵,B是数域P上的m s 矩阵,于是秩(AB)min[秩A,秩B]。即乘积的秩不 超过个因子的秩 推论3 如果A=A1A2An,那么秩A min(秩Ai) 定义7 如果有n级方阵B,使得AB=BA=E,则n级方阵A称为是可逆的 定义8 如果有n级方阵B,使得AB=BA=E,那么B就称为A的逆矩阵,记作A-1 定义9 假设A ij是矩阵A=中a ij的代数余子式,矩阵A*=称为A的伴随矩阵。 A*A=AA*=dE 其中d=|A| 定理3 矩阵A 可逆的充分必要条件是A是非退化的, 而A-1=A* 推论如果A,B可逆,那么AB与A'也可逆, 且(A’)-1=(A-1)’,(AB)-1=B-1A-1

极限计算方法及例题

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有:

高等数学中求极限方法总结

高等数学中求极限方法总结 高等数学第一章在整个高等数学的学习中都占有相当重要的地位,特别是极限,原因就是后续章节本质上都是极限。一个经典的形容就是假如高等数学是棵树木的话,那么极限就是它的根,函数就是它的皮。树没有跟,活不下去,没有皮,只能枯萎,可见极限的重要性。故在这里总结了10种常用的求极限的方法并举例说明。 1、利用等价无穷小的转化求极限例:求极限x x x x 1cos sin lim 20→。解:x x x x 1cos sin lim 20→x x x x 1cos lim 20→=x x x 1cos lim 0→==2注:通常在乘除时候使用,但是不是说一定在加减时候不能用,但是前提是必须证明拆分后极限依然存在,要记住常用的等价无穷小,例如当0→x 时,).(0~sin ,21~ sin ,~3x x x x x tgx x tgx ??。2、罗比达法则例:求极限∫→x x tdt x 020arctan 1lim 解:∫→x x tdt x 020arctan 1lim 2 1211 lim 2arctan lim 200=+==→→x x t x x 例:求极限????? ???→11ln 1lim 1x x x 解:x x x x x x x x ln )1(ln 1lim 11ln 1lim 11???=????? ???→→21111lim 1ln 11lim 211=+=?+?=→→x x x x x x x x x …注:使用罗比达法则必须满足使用条件,要注意分母不能为零,导数存在。罗比达法则分为三种情况(1)0比0和无穷比无穷时候直接分子分母求导;(2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1的形式;(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,)

相关文档
最新文档