扩频通信的基本原理(直接序列扩频、跳频等)

合集下载

直接扩频通信理论基础

直接扩频通信理论基础

汇报人:XXX
智能工业:通过直接扩频通信技术 实现工业设备的远程监控和维护, 提高工业生产效率和设备可靠性。
军事通信:抗干扰能力强,适用于 复杂环境
物联网:适用于低功耗、低速率的 通信场景,如智能家居、智能农业 等
添加标题
添加标题
添加标题
添加标题
卫星通信:扩频码可实现码分多址, 提高频谱利用率
智能交通:用于车辆识别、交通信 号控制等,提高交通效率与安全性
保密性好:扩频通信可以将信号隐藏在噪声中,使得信号不易被窃取。
抗截获能力强:由于扩频通信的信号是随机变化的,因此很难被截获。
PART TWO
扩频通信是一种利用信息扩展频带传输的通信方式 理论依据:香农定理,即信息传输速率等于频带宽度与信噪比的比值
扩频通信通过扩展信号的频带宽度,降低信号功率谱密度,提高抗干扰能力和信噪比
物联网:物联网设备数量众多,扩频通信具有低功耗、低成本和抗干扰能力强等特点,适用于物联网领域。
扩频通信技术可以提高卫星通信的抗干扰能力和保密性 扩频通信技术可以扩展卫星通信的频带,提高通信容量和传输速率 扩频通信技术可以降低卫星通信的发射功率,减小干扰和噪声的影响 扩频通信技术可以应用于卫星导航、定位和遥感等领域的信号传输和处理
特点:具有较强 的抗干扰能力和 较高的保密性, 广泛应用于军事、 卫星通信等领域。
优势:扩频通信 具有抗干扰能力 强、抗多径干扰 能力强、抗截获 能力强等优点。
原理概述:直接序列扩频通信利用高速伪随机序列将信息扩展频谱,实现抗干扰和保 密通信。 信号特点:信号具有低功率谱密度和抗干扰能力强,能够实现远距离传输和隐蔽通信。
XXX,a click to unlimited possibilities

精编扩频通信的基本原理(直接序列扩频、跳频等)资料

精编扩频通信的基本原理(直接序列扩频、跳频等)资料

扩频通信的理论基础1.1扩频通信的基本概念通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。

通信系统的有效性,是指通信系统传输信息效率的高低。

这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。

在模拟通信系统中,多路复用技术可提高系统的有效性。

显然,信道复用程度越高,系统传输信息的有效性就越好。

在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。

通信系统的可靠性,是指通信系统可靠地传输信息。

由于信息在传输过程中受到干扰,收到的信息与发出的信息并不完全相同。

可靠性就是用来衡量收到信息与发出信息的符合程度。

因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。

在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。

在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。

扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了应用。

近年来,扩展频谱通信技术的理论和应用发展非常迅速,在民用通信系统中也得到了广泛的应用。

扩频通信是扩展频谱通信的简称。

我们知道,频谱是电信号的频域描述。

承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。

信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。

频域和时域的关系由式(1-1)确定:⎰∞∞--=t e t f f F ft j d )()(π2⎰∞∞-=f e f F t f ft j d )()(π2 (1-1) 函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)内绝对可积,即t t f d )(⎰∞∞-必须为有限值。

扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(与待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。

无线扩频通信技术

无线扩频通信技术

扰信号来说基本上不可能捕捉到传输信号,对于固定频率干扰也可以跳变一个频点避开。 当本方截获到地方的跳频序列后,迅速以同样的跳频序列施放干扰,由于跳频序列相同,预先设定的跳频序列就无法实现正常通信,这时只有通 过转换跳频序列才能恢复通信,但是又会被从新跟踪并干扰。 由于跳频通信本身也是属于宽带传输,按照仙农定理,它也可以实现低信噪比传输,即信号可以淹没在噪声里传输。 目前,跳频系统的同步时间基本在几百毫秒的水平,今后也必将越来越短。 现代通信的新领域,数字蜂窝移动通信,专用网络通信,室内无线通信,CDMA移动通信,无线局域网,无线广域网,“蓝牙”(短距离高速、 互通式信息传输)传输技术都是基于扩频通信体制的通信方式。 由于技术原因限制,还不能实现真正的话音点对多点业务,基本上都是依赖系统的叠加来实现。 其中无线调制解调器能够提供透明的数据通道,根据需要配置终端设备,可以支持多种数据业务,如,话音、数据、网络、图象等。 由于扩频通信技术有很多优点可以克服这些问题,并且可以提供更高的保密技术,因此,从80年代末, 联邦通信委员会(FCC)规划了ISM波段 并批准扩频通信使用该频段来,扩频通信技术得到了快速的发展和广泛的应用。 系统兼容性
兼容性是指,跳频通信系统可以与一个不跳频的定频再带通信系统在莫个固定频点上进行通信。 当然通信干扰与反干扰是一对矛盾,互相制约又互相促进发展。 因此,现代的网络技术为话音、数据、图象的综合业务提供了良好的平台。 它们都提供了高速的无线网络连接,可以广泛的应用于点对点或点对多点无线局域网、无线广域网连接或宽带无线接入。 当然通信干扰与反干扰是一对矛盾,互相制约又互相促进发展。 当然通信干扰与反干扰是一对矛盾,互相制约又互相促进发展。 跳频扩频通信技术-优点 由于无线扩频通信技术具有十分显著的优越性,极大的推动了该技术及其产品在军用、民用领域的发展和应用。 IP图象传输系统也由于传输效果比较好,设备简单,使用方便,已经得到了广泛的应用。 目前,应用了扩频通信技术的通用产品主要有两类,一是专门数据传输的扩频无线调制解调器,二是专门提供无线网络连接的无线网桥、无线网 卡、无线路由器。 由于技术原因限制,还不能实现真正的话音点对多点业务,基本上都是依赖系统的叠加来实现。 在此基础上,借助无线网络技术构建移动网络平台,便可以实现一种新的移动话音、数据、图象传输系统。 抗干扰能力强

直扩与跳频比较

直扩与跳频比较

1.问题提出:直接序列扩频与跳频特性比较2.相关资料查询:直接序列扩频系统:直接序列扩频系统(DS)又称为伪噪声系统(PN),是将要发送的信息用伪随机序列扩展到一个很宽的频带上去,在接收端,用与发送端扩展用的相同的伪随机序列对接收到的扩频信号进行相关处理,恢复出原来的信号。

图2 -1 直接序列扩频原理图跳频:跳频系统(FH)的载频受一伪随机码的控制,不断地、随机地跳变,可看成载频按照一定规律变化的多频频移键控。

图2-2 跳频原理图3.特性比较:扩频方式优点缺点DS 1.通信隐蔽性好2.信号易产生,易实现数字加密3.抗多径干扰1.同步要求严格2.“远-近”特性不好FH 1.频谱利用率高2.有良好的“远-近”特性3.快跳可避免瞄准干扰1.信号隐蔽性差2.快跳频率合成器难做4.详细分析:直接序列扩频与跳频是通信中用得最多的扩频方式,由于这两种系统抗干扰机理不同,它们有各自不同的长处与不足,现就两种系统进行详细的分析:直接序列扩频的优点:1.通信隐蔽性好:由于信号经过扩频调制后频谱被大大扩展,使信号的功率谱密度大大降低,接收端接收到的信号谱密度比接收机噪声低,即信号完全淹没在噪声中,这样对其他同频段电台的接收不会形成干扰,信号也就不容易被发现,进一步检测出信号就更难,所以有非常高的隐蔽性。

2.信号易产生,易实现数字加密:直接序列扩频是对PN码的处理,PN码是一种周期码,可以预先确定并可重复地产生和复制,具有类似白噪声随机特性的二进制码序列,PN码序列中0,1出现的概率各为1\2,且在码长达到一定程度时会从其第一位开始循环,具有一定的规律性,所以实现起来比较容易。

3.抗多径干扰:直接序列扩频系统要用伪随机码的相关接收,只要多径时延大于一个伪随机码的切普宽度,这种多径不会对直扩系统形成干扰,甚至还可以用这些多径能量来提高系统性能。

直接序列扩频的缺点:1.同步要求严格:由于直接扩频的伪随机码速率比跳频伪随机码速率要高很多,而且码也长得多,因此,直扩对同步精度要求高。

跳频扩频原理

跳频扩频原理

跳频扩频原理跳频扩频技术(FHSS/DS)是一种广泛应用于近几十年来的人工无线通信中的数字信号传输技术。

它通过将信号转化为更宽带的带宽,并采用无线电频率跳跃技术来分散信号,从而达到抵御干扰和窃听攻击的目的。

跳频扩频技术被广泛应用于军事、民用、移动通信、工业自动化等领域,成为许多数字通信系统中最常见的技术之一。

跳频扩频技术有两种基本形式:扩频和跳频,其中扩频是将数据信息转换成一个更宽的频带,通过码序列进行编码分配的方式进行传输,达到了抗干扰和保密的目的。

而跳频技术则是将数据信息按照规定的频率顺序按照一定的规律进行跳变传输,从而使得频率难以被干扰和窃听攻击所感知。

由此可见,跳频扩频技术不仅具有高质量的信号传输能力,而且还具有防干扰和保密性的重要特点。

跳频扩频技术在数字通信系统中的原理,并不复杂,实现起来也相对简单。

跳频扩频技术的基本原理是,通过将数据信号在较短的时间内传输到较大的频带上,将其扩展成一个更宽的频带,在信号发送过程中将其随机和跳跃的变化频率进行传输,以达到正常通信数据传输的目的。

跳频扩频技术的系统中,数据经过多级编码和解码,最终被解码为原始数据信息。

在随机跳频频段的过程中,信号的转换和跳跃也对抗了干扰和窃听攻击。

1.在发送端,数据信号按照一定的规律通过加扰和功率控制经过扩频同步器,将原来窄带的信号转化为宽带信号。

2.在跳频序列生成器中,随机生成一个跳频序列,然后将其与数据信号进行按位异或运算,得到加密的数据信号。

3.通过根据规律时钟定时跳频,将加密后的信号发送出去。

4.当接收方收到加密的信号时,通过解密器进行解密,将加密的数据信号转化为原始数据信号。

跳频扩频技术是一种数字通信系统中重要的信号传输技术,具有高质量、高速率、防干扰和保密性等特点。

通过随机跳跃频率和扩频码的组合,可以实现防窃听、反干扰和无线电频率资源共享的目的。

在军用、民用和通信领域中,跳频扩频技术已成为基本的数字信号传输技术,发挥着越来越重要的作用,将随着科技的发展和技术的进步不断完善和逐步广泛应用。

扩频通信的工作方式及其特点

扩频通信的工作方式及其特点

扩频通信的工作方式及其特点在发端输入的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。

在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。

扩频通信工作方式1.直接序列扩频轻易序列QPSK(ds-ss)就是轻易利用具备低码率的QPSK码序列使用各种调制方式在发端拓展信号的频谱,而在收端用相同的QPSK码序列回去展开解码,把拓展阔的QPSK信号转换成完整的信息。

2.跳频扩频冲频QPSK技术就是通过伪随机码的调制,并使载波工作的中心频率不断弹跳发生改变,而噪音和干扰信号的中心频率却不能发生改变。

这样,只要交、发信机之间按照紧固的数字算法产生相同的伪随机码,就可以达至同步,确定噪音和其他干扰信号。

3.跳时扩频冲时就是并使升空信号在时间轴上LBP。

先把时间轴分为许多时片。

在一帧内哪个时片升空信号由QPSK码序列展开掌控。

可以把冲时认知为:用一定码序列展开挑选的多时片的时移键控。

由于使用窄得很多的时片回去传送信号,相对说来,信号的频谱也就沉降了。

在发端,输入的数据先存储起来,由扩频码发生器的扩频码序列去控制通)断开关,经二相或四相调制后再经射频调制后发射。

在收端,由射频接收机输出的中频信号经本地产生的与发端相同的扩频码序列控制通-断开关,再经二相或四相解调器,送到数据存储器和再定时后输出数据。

只要收、发两端在时间上严格同步进行,就能正确地恢复原始数据。

冲时也可以看作就是一种时分系统,所相同的地方是它不是在一帧中紧固分配一定边线的时片,而是由QPSK码序列掌控的按一定规律LBP边线的时片。

冲时系统的处置增益等同于一帧中所分的时片数。

由于直观的冲时抗干扰性不弱,很少单独采用。

4.脉冲线性扩频升空的射频脉冲信号,在一个周期内,其载频的频率并作线性变化。

因其频率在较宽的频带内变化,信号的频宽也被沉降了。

扩频通信原理

扩频通信原理

扩频通信原理扩频通信是一种利用扩频技术进行通信的方式,它通过将信号在较大的频带上进行传输,从而提高了通信系统的容量和抗干扰能力。

在扩频通信中,信号被调制成具有较大带宽的信号,然后再通过扩频码进行调制,最终在信道上传输。

扩频通信技术在军事通信、卫星通信、移动通信等领域有着广泛的应用。

扩频通信的原理主要包括信号调制、扩频码调制、信道传输和解调等几个方面。

首先,信号调制是将要传输的信息信号调制成具有较大带宽的信号,一般采用正交频分复用(OFDM)技术或者直接序列扩频(DSSS)技术。

接着,扩频码调制是将调制后的信号再通过扩频码进行调制,这个扩频码是一种伪随机序列,可以将信号的频谱扩展到较大的频带上。

然后,调制后的信号通过信道进行传输,这个信道可能会受到多径效应、多普勒频移等影响,因此需要采用合适的信道编解码技术来提高通信质量。

最后,接收端需要对传输过来的信号进行解调和解扩频,最终还原出原始的信息信号。

扩频通信的优点在于它具有较强的抗干扰能力和隐蔽性,因为扩频信号在频域上具有较大的带宽,使得它对窄带干扰信号具有很好的抑制作用。

此外,扩频码是一种伪随机序列,使得只有知道正确的扩频码才能够解扩频,因此具有较强的隐蔽性。

另外,扩频通信还可以实现多用户的同时通信,因为不同用户可以使用不同的扩频码来进行通信,从而提高了通信系统的容量。

然而,扩频通信也存在一些缺点,首先是它需要较大的带宽资源,这在一些频谱资源紧张的情况下会显得不太合适。

其次,扩频通信的系统复杂度较高,需要采用较复杂的调制解调器和编解码器,从而增加了系统的成本。

此外,由于扩频信号的带宽较大,使得其在功率和能耗上也会有所增加。

总的来说,扩频通信作为一种重要的通信技术,在现代通信系统中有着广泛的应用。

它通过利用扩频技术,提高了通信系统的容量和抗干扰能力,具有很好的隐蔽性和多用户接入能力。

随着通信技术的不断发展,相信扩频通信在未来会有更广阔的应用前景。

扩频通信的基本原理

扩频通信的基本原理

扩频通信的理论基础扩频通信的基本概念通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。

通信系统的有效性,是指通信系统传输信息效率的高低。

这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。

在模拟通信系统中,多路复用技术可提高系统的有效性。

显然,信道复用程度越高,系统传输信息的有效性就越好。

在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。

通信系统的可靠性,是指通信系统可靠地传输信息。

由于信息在传输过程中受到干扰,收到的信息与发出的信息并不完全相同。

可靠性就是用来衡量收到信息与发出信息的符合程度。

因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。

在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。

在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。

扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了应用。

近年来,扩展频谱通信技术的理论和应用发展非常迅速,在民用通信系统中也得到了广泛的应用。

扩频通信是扩展频谱通信的简称。

我们知道,频谱是电信号的频域描述。

承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。

信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。

频域和时域的关系由式(1-1)确定:⎰∞∞--=t e t f f F ft j d )()(π2⎰∞∞-=f e f F t f ft j d )()(π2 (1-1)函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)内绝对可积,即t t f d )(⎰∞∞-必须为有限值。

扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(与待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扩频通信的理论基础1.1扩频通信的基本概念通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。

通信系统的有效性,是指通信系统传输信息效率的高低。

这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。

在模拟通信系统中,多路复用技术可提高系统的有效性。

显然,信道复用程度越高,系统传输信息的有效性就越好。

在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。

通信系统的可靠性,是指通信系统可靠地传输信息。

由于信息在传输过程中受到干扰,收到的信息和发出的信息并不完全相同。

可靠性就是用来衡量收到信息和发出信息的符合程度。

因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。

在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。

在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。

扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了使用。

近年来,扩展频谱通信技术的理论和使用发展非常迅速,在民用通信系统中也得到了广泛的使用。

扩频通信是扩展频谱通信的简称。

我们知道,频谱是电信号的频域描述。

承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。

信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。

频域和时域的关系由式(1-1)确定:⎰∞∞--=t e t f f F ft j d )()(π2⎰∞∞-=f e f F t f ft j d )()(π2 (1-1) 函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)内绝对可积,即t t f d )(⎰∞∞-必须为有限值。

扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(和待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。

也就是说在传输同样信息信号时所需要的射频带宽,远远超过被传输信息信号所必需的最小的带宽。

扩展频谱后射频信号的带宽至少是信息信号带宽的几百倍、几千倍甚至几万倍。

信息已不再是决定射频信号带宽的一个重要因素,射频信号的带宽主要由扩频函数来决定。

由此可见,扩频通信系统有以下两个特点:(1) 传输信号的带宽远远大于被传输的原始信息信号的带宽;(2) 传输信号的带宽主要由扩频函数决定,此扩频函数通常是伪随机(伪噪声)编码信号。

以上两个特点有时也称为判断扩频通信系统的准则。

扩频通信系统最大的特点是其具有很强的抗人为干扰、抗窄带干扰、抗多径干扰的能力。

这里我们先定性地说明一下扩频通信系统具有抗干扰能力的理论依据。

扩频通信的基本理论根据是信息理论中香农(C ·E ·Shannon)的信道容量公式⎪⎭⎫ ⎝⎛+=N S B C 1log 2 (1-2) 式中: C ——信道容量,b/s ;B ——信道带宽,Hz ;S ——信号功率,W ;N ——噪声功率,W 。

香农公式表明了一个信道无差错地传输信息的能力同存在于信道中的信噪比以及用于传输信息的信道带宽之间的关系。

令C 是希望具有的信道容量,即要求的信息速率,对(1-2)式进行变换⎪⎭⎫ ⎝⎛+=N S B C 1ln 44.1 (1-3) 对于干扰环境中的典型情况,当1<<NS 时,用幂级数展开(1-3)式,并略去高次项得NS B C 44.1= (1-4) 或SN C B 7.0= (1-5) 由式(1-4)和(1-5)可看出,对于任意给定的噪声信号功率比S N /,只要增加用于传输信息的带宽B ,就可以增加在信道中无差错地传输信息的速率C 。

或者说在信道中当传输系统的信号噪声功率比N S /下降时,可以用增加系统传输带宽B 的办法来保持信道容量C 不变。

或者说对于任意给定的信号噪声功率比N S /,可以用增大系统的传输带宽来获得较低的信息差错率。

若100/=S N (20dB),kb/s 3=C ,则当kHz 21031007.0=⨯⨯=B 时,就可以正常的传送信息,进行可靠的通信了。

这就说明了增加信道带宽B ,可以在低的信噪比的情况下,信道仍可在相同的容量下传送信息。

甚至在信号被噪声淹没的情况下,只要相应的增加信号带宽也能保持可靠的通信。

如系统工作在干扰噪声比信号大100倍的信道上,信息速率R =C =3kb/s ,则信息必须在kHz 210=B 带宽下传输,才能保证可靠的通信。

扩频通信系统正是利用这一原理,用高速率的扩频码来扩展待传输信息信号带宽的手段,来达到提高系统抗干扰能力的目的。

扩频通信系统的带宽比常规通信系统的带宽大几百倍乃至几万倍,所以在相同信息传输速率和相同信号功率的条件下,具有较强的抗干扰的能力。

香农在其文章中指出,在高斯噪声的干扰情况下,在受限平均功率的信道上,实现有效和可靠通信的最佳信号是具有白噪声统计特性的信号。

这是因为高斯白噪声信号具有理想的自相关特性,其功率谱密度函数为2)(0N f S = -∞< f <∞ (1-6) 对应的自相关函数为 ⎰∞∞-==)(2d )()(0π2τδN f e f S τR f τj (1-7) 其中:τ为时延,)(τδ定义为⎩⎨⎧≠=∞=000)(τττδ (1-8) 白噪声的自相关函数具有)(τδ函数的特点,说明它具有尖锐的自相关特性。

但是对于白噪声信号的产生、加工和复制,迄今为止仍存在着许多技术问题和困难。

然而人们已经找到了一些易于产生又便于加工和控制的伪噪声码序列,它们的统计特性近似于或逼近于高斯白噪声的统计特性。

伪噪声序列的理论在本书以后的章节中要专门讲述,这里仅简略引用其统计特性,借以说明扩频通信系统的实质。

通常伪噪声序列是一周期序列。

假设某种伪噪声序列的周期(长度)为N ,且码元i c 都是二元域{}1,1-上的元素。

一个周期(或称长度)为N ,码元为i c 的伪噪声二元序列{}i c 的归一化自相关函是一周期为N 的周期函数,可以表示为∑∞-∞=-*=k c kN R R )()()(τδττ (1-9)其中)(τc R 为伪噪声二元序列{}i c 一个周期内的表示式 ⎪⎩⎪⎨⎧≠-===∑=+01011)(1τNτcc N τR N i i i c τ (1-10) 式中0=τ,1,2,3,…N 。

当伪噪声序列周期(长度)N 取足够长或N →∞时,式(1-10)可简化为⎪⎩⎪⎨⎧≠≈-==00101)(τNττR c (1-11) 比较式(1-7)和式(1-11),看出它们比较接近,当序列周期(长度)足够长时,式(1-11)就逼近式(1-7)。

(式(1-10)是自相关函数归一化的形式,乘周期N 后就是一般表达式,在一般表达式中N R =)0()。

所以伪噪声序列具有和白噪声相类似的统计特性,也就是说它很接近于高斯信道要求的最佳信号形式。

因此用伪噪声码扩展待传输信息信号频谱的扩频通信系统,优于常规通信系统。

哈尔凯维奇(А·А·Харкевич)早在上世纪50年代,就已从理论上证明:要克服多径衰落干扰的影响,信道中传输的最佳信号形式应该是具有白噪声统计特性的信号形式。

采用伪噪声码的扩频函数很接近白噪声的统计特性,因而扩频通信系统又具有抗多径干扰的能力。

下面我们以直接序列扩频通信系统为例,来研究扩频通信系统的基本原理。

图1-1给出了直接序列扩频通信系统的简化原理方框图。

由信源产生的信息流{}n a 通过编码器变换为二进制数字信号)(t d 。

二进制数字信号中所包含的两个符号的先验概率相同,均为2/1,且两个符号相互独立,其波形图如图1-2(a)所示,二进制数字信号)(t d 和一个高速率的二进制伪噪声码)(t c 的波形(如图1-2(b)所示,伪噪声码作为系统的扩频码序列)相乘,得到如图1-2(c)所示的复合信号)()(t c t d ,这就扩展了传输信号的带宽。

一般伪噪声码的速率c c T R /1=是Mb/s 的量级,有的甚至达到几百Mb/s 。

而待传输的信息流{}n a 经编码器编码后的二进制数字信号的码速率b b T R /1=较低,如数字话音信号一般为16 kb/s ~32kb/s ,这就扩展了传输信号的带宽。

)(t s )(t s 的带宽取决于伪噪声码)(t c 的码速率c R 。

在PSK 调制的情况下,射频信号的带宽等于伪噪声码速率的2倍,即c R R 2RF =,而几乎和数字信号)(t d 的码速率无关。

以上对待传输信号)(t d 的处理过程就是对信号)(t d 的频谱进行扩展的过程。

经过上述过程的处理,达到了对)(t d 扩展频谱的目的。

在接收端用一个和发射端同步的参考伪噪声码)ˆ(d r T t c -所调制的本地参考振荡信号]ˆ)ˆ(π2cos[2IF 0ϕ+++t ff f d (IF f 为中频频率),和接收到的)(t s 进行相关处理。

相关处理是将两个信号相乘,然后求其数学期望(均值),或求两个信)(t绝大部分的干扰信号和噪声的能量(功率)被中频滤波器滤除,这样就大大地改善了系统的输出信噪比,如图1-3(c)所示。

关于这一特性,将在扩频通信系统的性能分析一章中作进一步分析。

为了对扩频通信系统的这一特性有一初步了解,我们以解扩前后信号功率谱密度示意图来说明这一问题。

(b) (a) (a) d (t ) +1-1 (d) s (t )(b) c (t ) +1-1 (c) d (t )c (t ) -1 A -A (a) (b) (c)假设有用信号的功率为01P P =,码分多址干扰信号的功率02P P =,多径干扰信号的功率03P P =,其他进入接收机的干扰和噪声信号功率0P N =。

再假设所有信号的功率谱是均匀分布在c R B 2RF =的带宽之内。

解扩前的信号功率谱见图1-4中的(a),图中各部分的面积均为0P 。

解扩后的信号功率谱见图1-4中的(b),各部分的面积保持不变。

通过相关解扩后,有用信号的频带被压缩在很窄的带宽内,能无失真的通过中频滤波器(滤波器的带宽为b b R B 2=)。

其他信号和本地参考扩频码无关,频带没有被压缩反而被展宽了,进入中频滤波器的能量很少,大部分能量落在中频滤波器的通频带之外,被中频滤波器滤除了。

我们可以定性的看出,解扩前后的信噪比发生了显著的改变。

图1-4 解扩前后信号功率谱密度示意图(a) 解扩前;(b) 解扩后1.2扩频通信系统的分类 扩频通信系统的关键问题是在发信机部分如何产生宽带的扩频信号,在收信机部分如何解调扩频信号。

相关文档
最新文档