2015第4次课 第三章 异质结的能带图(2)解析

合集下载

异质结的能带图剖析PPT课件

异质结的能带图剖析PPT课件

(4.17)
4.1.3 隧穿机制
J Js (T)exp(AV )
隧道电流表现出来的特点是lnJ-V 的曲线斜率和温度无关。
(4.18)
Lg(J)
T1 T2 T3
V 第22页/共34页
4.2 异质结的注入比
电子面临的势垒下降:VD-EC
空穴面临的势垒上4升. 2: V异D+质E结v 的 注 入 比
第8页/共34页
4.1突变异质结的伏安特性
ΔEC
(a) 低尖峰势垒 由n区扩散向结处的电子流可以 通过发射机制越过尖峰势垒进入 p区.因此异质pn 结的电流主要有 扩散机制决定-扩散模型.
qVD1 ΔEV
qVD2
( b) 高尖峰势垒
由n区扩散向结处的电子, 只有能量
高于势垒尖峰的才能通过发射机
qVD2
qV k0T
)
1]exp(
x1 Ln1
)
exp(
x Ln1
)
电子扩散电流密度
Jn qD | [exp( ) 1] d[n1(x)n10 ]
qDn1n10
qV
n1
dx
x x1 第1L5n页1 /共34页 k0T
(4.5)
p2从0 p型区p1价0 带ex底p到(n型(q区VDk价0T带E底v )的势垒高度(为4.6)
式中D为常数。 同质结:Eg=0,r=D。 异质结:r 随着Eg呈指数上升。 例如了E,七g=在十0.p3四-3Ge万VaA,倍s/结。N果在-A注同l0.3入样Ga比的0.7r正A高s向异达电质7.4压结×下中10,,5,可它因以们而获的注得入更比高提的高
注入电子浓度。
对于晶体管和半导体激光器等器件来说, “注人比” 是个很重要的物理量, 它决定晶体管的放大倍数 、激光器的注人效率和阐值电流密度, 因为总电流中 只有注人到基区或有源区中的少数载流子, 才对器件的 功能发挥真正的作用所以, 用异质结宽带隙材料作发射 极, 效率会很高, 这是异质结的特性之一

2015第4次课第三章异质结的能带图2解析

2015第4次课第三章异质结的能带图2解析
– heat and oxygen can be used to remove hydrocarbons
? The XPS technique could cause damage to the surface, but it is negligible.
X-Rays and the Electrons
3.2节 异质结的能带偏移
?异质结的形成 ?导带带阶和价带带阶 ?带阶的计算 ?实验确定 ?测量的尺
影响能带偏移的因素: 1.工艺:MBE 2.异质结界面的晶向
极性表面时,界面处存在偶极矩,影响能带偏移 3. IV 和III-V , II-VI 和III-V 时界面处,原子交 换反应.形成原子偶极距.
原理
采用光子作为探针的分析方法 .采用x线或紫外光使放在 超高真空中的固体样品内的电子向外飞出 .通过测量电 子的能量和强度就可以得到物质内固有的电子结合能 .
Sampling depth: 20-100 A
X射线光电子能谱是瑞典Uppsala大学 K.Siegbahn(西格巴恩)及其同事经过近20年 的潜心研究而建立的一种分析方法。 K.Siegbahn给这种谱仪取名为化学分析电子能 谱(Electron Spectroscopy for Chemical Analysis),简称为“ESCA”,这一称谓仍在 分析领域内广泛使用。
level the neutral solid is in its “ground state.”
Lowest state of energy
Why Does XPS Need UHV?
? Contamination of surface
– XPS is a surface sensitive technique. ? Contaminates will produce an XPS signal and lead to incorrect analysis of the surface of composition.

异质结原理知识讲解

异质结原理知识讲解

1998 德国TEMIC 工业化的SiGeHBT 工艺。
IBM(Blue Logic BiCMOS 5HP工艺(SiGeHBT和
3.3V0.5umCMOS结合。
27
The Booming of Wireless and Broadband World from Y2K
Why using SiGeC i.s.o. SiGe?
总电流与外加偏压呈指数变化关系16ktqvktqvktqvktqxnexpexpexpktqvktqvktqvexpexpexp扩散模型17发射区基区es18srnebrsrtrfrsrvrbrne19brsrbrneisr20要求不同材料晶格常数应尽量接近减少在界面处产生的位错缺陷导致的载流子复合要获得高增益发射区与基区的材料组合要有大的ev异质结材料的热膨胀系数的一致性材料的禁带宽度之差导带和价带的断续量材料迁移率
29
SiGeHBT特点
Si Ge有 具有异质结结构 在工艺上与 Si器件相容 具有Si器件的“低成本”, 具有异质结结构的“高性能”。 很多人认为 Si Ge不仅可以在高频领域战 胜 Si,而且可以在低成本方面战胜 GaAs
30
SiGe/Si异质结特点
Si/ Si Ge异质结结构特性可以大大提高晶 格匹配,载流子的迁移率、载流子的饱 和速度以及二维载流子气浓度 ,所以 Si Ge用于SiGeHBT的应用展望:高频、高 速、光电、低温等器件及集成电路大大 提高它们的性能。
L N 1
kT kT
kT
15
突变异质结及I-V特性
热电子模型
1
Jqx D 2N 2 k m T 2ex q p kD V 2 Tex qkp aV 2 Tex q p ka V 1 T

异质结

异质结

N AND pn n ≈ k BT ln 1 2 = k BT ln 2 ni2 n1 p1 n1
即内建电势取决于两种半导体载流子浓度的比值。具体到pN结,取 决于N型半导体中的多子(电子)与p型中的少子(电子)浓度比。
§2.3 半导体异质结
根据《半导体物理》的结论,p区和N区各自的内建电势分别是 2 eN A x 2 eN N x N p , VDN = VDp = 2ε p 2ε N 若近似认为,正负电荷在耗尽层是均匀分布的,则电中性条件为
Space charge region
Vo
(f)
x
nno ni
npo
(c)
PE(x) eVo Hole PE(x)
pno
ρnet
x=0 M x
x Electron PE(x)
(g)
eNd
W 杴p Wn
x
(d)
eV 杴o
-eNa
Properties of the junction. pn
§2.3 半导体异质结
由两种性质带隙宽度不同的半导体材料通过一定的生长方法所形成一突变异质结pn1pn结的形成与能带图窄带隙的p型半导体与宽带隙的n型半导体生长一起时界面处出现了载流子的浓度差于是n中的电子向p中扩散相反p中的空穴也会向n中扩散在界面形成空间电荷内建电场e扩散迁移23半导体异质结1960年anderson用能带论分析了pn结的形成与有关问题直观而深刻并得到一些十分有用的结论称为anderson模型
3、载流子的输运 Anderson模型:零偏压时,由N向p越过势垒VDN的电子流应与从p到 N越过势垒∆Ec-VDp的电子流相等,即
∆E − eVDp eV = B2 exp − DN B1 exp − c k T k BT B D N D N B1 = e ⋅ n 2 10 , B2 = e ⋅ n1 20 Ln 2 Ln1 Ln1 = Dn1τ e1 , Ln 2 = Dn 2τ e 2

第3章 异质结构

第3章 异质结构
2
1
突变结:在异质结界面附近,两种材料的组
分、掺杂浓度发生突变,有明显的空间电荷 区边界,其厚度仅为若干原子间距。
缓变结:在异质结界面附近,组分和掺杂浓
度逐渐变化,存在有一过渡层,其空间电荷 浓度也逐渐向体内变化,厚度可达几个电子 或空穴的扩散长度。
同型异质结:导电类型相同的异质结
如:N‐AlxGa1‐xAs/n‐GaAs, p‐GexSi1‐x/p‐Si
EC1
EC2 EC2
VDN EV 2 EV2
VDp Eg2
EDp Eg Eg2
EC
2
eND 2 2
eNA ( 21 xN 2
xp x)2 (xN x)2
x xp xp ≤x 0
0 x ≤xN xN x
x xp xp ≤x 0 0 x ≤xN
eV D F1 F2 F
依据这一分析,很容易发现异质结界面无论是导带还是价 带都会出现不连续性。导带底和价带顶的这种不连续性 分别为EC和EV:
Eg Ec Ev (Eg 2 Eg1)
Ec 1 2 Ev Eg Ec Eg
1. 异质结的带隙差等于导带差同价带差之和。 2. 导带差是两种材料的电子亲和势之差。 3. 而价带差等于带隙差减去导带差。
16
8
17
自建电场E的作用下,电子和空穴的飘移电流分别为:
ins n E ne n E
ips p E pe p E
从泊松(Poisoon)方程出发,利用‫׏‬D =‫׏‬(E)=式,推导出 电子和空穴的扩散电流分别为:
i nd
eDn
dn dx
i pd
eD p
dp dx
流经异质i结n 界i面ns 的i空nd 穴 电ne流 n等E于空eD穴n的ddn飘x 移电流:

异质结

异质结

Dai Xianying
化合物半导体器件
3.2 异质结的电学特性
3.2.1 突变异质结的I-V特性
突变异质结I-V模型:扩散模型、发射模型、发射-复合模 型、隧道模型、隧道复合模型。 同质结I-V模型:扩散和发射模型
两种势垒尖峰: (a)低势垒尖峰负反向势垒 (b)高势垒尖峰正反向势垒
Dai Xianying
3.11 突变同型nn异质结平衡能带图
Dai Xianying
化合物半导体器件
3.1 异质结及其能带图
3.1.2 异质结的能带图
2)突变同型异质结能带图
3.12 突变同型pp异质结平衡能带图
Dai Xianying
化合物半导体器件
3.1 异质结及其能带图
3.1.2 异质结的能带图
2、考虑界面态时的能带图
Dai Xianying (a)单量子阱
(b)多量子阱
(c)超晶格 化合物半导体器件
3.4 多量子阱与超晶格
多量子阱(a)和超晶格(b)中电子的波函数
Dai Xianying
化合物半导体器件
3.4 多量子阱与超晶格
3.4.1 复合超晶格
1、Ⅰ型超晶格
Dai Xianying
化合物半导体器件
3.4 多量子阱与超晶格
化合物半导体器件
3.1 异质结及其能带图
3.1.2 异质结的能带图
3、渐变异质结能带图
1)渐变的物理含义 2)渐变异质结的近似分析:能带的叠加 3)渐变能级
Dai Xianying
化合物半导体器件
3.1 异质结及其能带图
3.1.3 突变反型异质结的接触势垒差及势垒区宽度
推导过程参考刘恩科等著 《半导体物理》第9章

异质结

异质结

金属-半导体接触的能带图
间隙为零 ΔÆ0
qφBn0达到极限 空间电荷区W
qVbi半导体内 建势
对n型半导体,势垒高度的 极限值为金属功函数和半导
qφ Bn = q (φ m − χ )
体电子亲合势之差:
对P型半导体,势垒高度的 q φ Bp = E g − q (φ m − χ )
极限值: 肖特基模型
假设导带中电子能量全部为动能假设导带中电子能量全部为动能电流由能量足以克服势垒的电子浓度和它在电流由能量足以克服势垒的电子浓度和它在xx方向的运动速度给出方向的运动速度给出42设输运沿设输运沿xx方向积分范围方向积分范围零偏压下的内建势零偏压下的内建势为克服势垒在为克服势垒在输运方向需要输运方向需要的最低速度的最低速度这是速度在这是速度在之间分布在所有方向上的单位体积中的电子数之间分布在所有方向上的单位体积中的电子数x方向速度对应的动方向速度对应的动能必须大于势垒高度能必须大于势垒高度其中其中为速率若考虑到不同运动方向可用三个速度分量来表示并且为速率若考虑到不同运动方向可用三个速度分量来表示并且ktqvktktqvkt势垒高度势垒高度bibi热电子发射的有效里查孙常数热电子发射的有效里查孙常数电子向真空发电子向真空发a中将自由电子质量用有效质中将自由电子质量用有效质量来代替量来代替
表面看作一薄层, 在禁带中具有能量连续分布的局域态,由 于表面处电荷的填充,有自己的平衡费米能级EFS0
EF EFS0
若表面态密度Æ∞,体内电
子填充表面能级,且不显著
改变表面费米能级位置,体 内EF下降与EFS平齐,造成 能带弯曲,形成空间电荷区。
在表面态密度很大时, EFS~EFS0, 费米能级定扎。
3。考虑界面复合
在异质结的制备和处理过程中,必然会有悬键存在,还存在各种缺陷 态,这些都可能构成禁带中的界面态,有界面复合电流存在。

半导体物理异质结解析PPT课件

半导体物理异质结解析PPT课件
第13页/共30页
界面量子阱中二维电子气的势阱和状态密度
第14页/共30页
电子的能量:
二维电子气的状态密度
k空间原胞的面积:
k空间k-k+dk圆环的面积: E-k关系: 状态密度:
第15页/共30页
低维半导体材料及其状态密度
Bulk
QW
QD
3D
2D
0D
DD((EE))
DD((EE))
D(E)
E
• qVD = qVD1 + qVD2 = EF2 - EF1 = W1 - W2
半导体物理学
第7章 金第属4页和/半共导30体页的接触
SCNU 光电学院
4
突变反型异质结的能带特征
• n型半导体的能带弯曲量为qV2,且导带底在交界面处形成一个向
上的“尖峰”。
• p型半导体的能带弯曲量为qV1,且导带底在交界面处形成一个向
第2页/共30页
pn结的能带图
qVD E Fn EFp
第3页/共30页
突变反型异质结的能带图
• 形成异质结时电子从n型半导体流向p型半导体,空穴的流动方向相反。
• 达到平衡时,两块半导体具有统一的费米能级。
• 在异质结界面的两边形成空间电荷区,产生内建电场和附加电势能,使 空间电荷区中的能带发生弯曲。
EE
EE
Modification of density of states by confining carriers
第16页/共30页
双异质结间的单量子阱结构
第17页/共30页
双异质结间的单量子阱结构
势阱形状: 波函数分离变量: 波函数分离变量: 薛定谔方程:
第18页/共30页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1制样:在GaAs衬底上生长出一层厚度约为数十埃的AlAs层. 2测量:用已知波长的x光照射样品,分别由GaAs层和AlAs层中激 发出光电子,测量光电子的能量求出Ga3d和Al2p态电子的束缚能 ; 3由公式(3.2.7)式求出DEv.
2
1
2
X光光电子发射谱方法是 一种比较准确的测量能带不连续的方 法,准确度可达到0.02电子伏,它带有基本物理测量的性质。
h3
1 C2

2( 1 N A1 2 N D 2 ) q1 2 N A1 N D 2
(VD V )
C-2
-
p n
+ 0 VD V
Ec qVD 2 (Eg1 1 )
(3.33)
3.2.3 耗尽层法测 band offset
同型异质结
Ec 1 qVD1 qVD 2 2 Ec qVD 2 1
按入射光分类:
X射线: X-ray photoelectron spectroscopy (XPS), electron spectroscopy for chemical analysis (ESCA).(1-2keV) ( core level electron) 紫外光: Ultravialet photoelectron spectroscopy (UPS) (<50eV) (from valence band)
测量原理
测量装置示意图
Energy Levels
Vacumm Level Ø, which is the work function
Fermi Level
BE
At absolute 0 Kelvin the electrons fill from the lowest energy states up. When the electrons occupy up to this level the neutral solid is in its “ground state.”
3.2节 异质结的能带偏移
•异质结的形成 •导带带阶和价带带阶 •带阶的计算 •实验确定 •测量的尺 影响能带偏移的因素: 1.工艺:MBE 2.异质结界面的晶向 极性表面时,界面处存在偶极矩,影响能带偏移 3. IV 和III-V , II-VI 和III-V 时界面处,原子交 换反应.形成原子偶极距.


采用光子作为探针的分析方法.采用x线或紫外光使放在 超高真空中的固体样品内的电子向外飞出.通过测量电 子的能量和强度就可以得到物质内固有的电子结合能.
Sampling depth: 20-100 A
X射线光电子能谱是瑞典Uppsala大学 K.Siegbahn(西格巴恩)及其同事经过近20年 的潜心研究而建立的一种分析方法。 K.Siegbahn给这种谱仪取名为化学分析电子能 谱(Electron Spectroscopy for Chemical Analysis),简称为“ESCA”,这一称谓仍在 分析领域内广泛使用。
EbF h s EKS EbF h Ek A
3.29 3.31
Ek EKS ( s A ) 3.30
hn:Mg 靶:1253.6eV Al 靶: 1486.6 eV FA: 4eV 测出EK 就可求出某一壳层电子的结合能
可以由XPS测出
• 价带能级 • 导带能级 • 内层电子能级
Ec E f N exp( ) ND c kT NC 2 Ec E f kT ln( N ) D
1
v EF Ev kT ln( N A )
N
2 m k T Nc 2
* e B
3/2
h3
NV
2 m k T 2
* h B
3/2
在理想突变异质结的界面上都存在势垒,由C-2-V直线 的截距求出导带和价带的不连续。
X-Ray
The noise signal comes from the electrons that collide with other electrons of different layers. The collisions cause a decrease in energy of the electron and it no longer will contribute to the characteristic energy of the element.
Al: 1S2 2S2 2P6 3S2 3P1
1. 利用差值计算 2. 参考能级
能量的尺
E
GaAs c
GaAs v
Ec
E
AlAs c
EFEvEFra bibliotekEAlAs v
E
GaAs Ga 3 d
E B
E
测量能带的方法:XPS, C-V,I-V,光学方法
AlAs Al 2 p
3.2.1
X射线光电子谱法测能 带带阶
EKS:发射出的光电子的动能 Fs:样品功函数,既克服晶体 场的作用,将电子从费米能 级转移到真空能级所需的能 量
v Eb
v h Eb EKS v F Eb Eb s F h Eb s EKS
(3.26) (3.27) (3.28)
样品架与谱仪相连 接且接地,费米能 级一致。 但样品功函数FS与 分析器材料的功函 数FA不同 Ek:谱仪测量的电子动能
) ln( m* )] (3.37)
C 2 N D1 Ec qVD kT ln( N N D 2 NC 1 )
(3.38)
通过对p-n结或其它整流接 触附近的要研究的区域施加 反向偏压。通过测量耗尽层 的电容随电压的变化,可求 出自由载流子浓度。 弱整流的n-n(或p-p)
Ec
Ec EF kT ln[n( x) / NC ( x)] (3.39)
EcGaAs
EvGaAs
GaAs EGa 3d
Ec
EcAlAs
EF
Ev
EvAlAs
E B
AlAs E Al 2p
GaAs GaAs AlAs AlAs EV EB (EV EGa ) ( E E 3d V Al 2 P ) (3.32)
• △EB是GaAs和AlAs中的Ga3d和Al2p芯电子的束缚 能之差,可以用光电子谱测出,
耗尽层近似方法
C
dQ qAN (W ) dW (3.40) dV dV dC ( A dW ), dW A dC dV dV C 2 dV W 2 dV
C A W
(3.41)
C qAN (W ) dW dV (3.42) (3.43)
+ (E cl) InN/AlN. 17.04 57.56 71.50 3.10eV
3.2.2 C-V 截距法测 band offset
对于一个突变异质p-n结,内建势可以通 过C-V测量求出,进而求出导带带阶
异型异质结
Ec qVD 2 2 ( Eg1 qVD1 1 ) q(VD 2 VD1 ) 2 ( Eg1 1 ) Ec qVD 2 ( Eg1 1 ) (3.33)
• The XPS technique could cause damage to the surface, but it is negligible.
X-Rays and the Electrons
Electron without collision
Electron with collision
N 2 Ec EF kT ln( N )
C2 D2
(3.34) (3.35) (3.36)
N 1 Ec EF kT ln( N )
C1 D1
2 1 kT ln(
NC 2 N D1 N D 2 NC 1 N D1 ND 2
)
3 2
* m2 1
2 1 kT [ln(
如果能测出电子能度分布, 可从上式求出导带边能量 从而,推出导带不连续。 x
• 1 耗尽层的电容的电压依存性(C-V特性)可以简单精确地 确定载流子浓度,所以,它和霍耳测量一样,是评价浅能级 杂质的基本方法。 • 2 为了形成耗尽层,需要采用在半导体表面真空蒸镀铝等金 属的办法形成肖特基二极管。因此,亦将C-V法称为肖特基法。 • 3 耗尽层的电容可以视为以耗尽层幅宽为间距的平板电容器。 • 4 在直流偏压下叠加一个小振幅的交流电压可以测量耗尽层 的电容。测定频率通常用1MHz 左右。 • 5 扩散电位可以由C-2-V 曲线外插求出。 • 6 考虑到相对于半导体材料的势垒高度和反应性,也可采用 金,铝以外的金属。对短时间测量即可完成的情况,也可采 用水银等液体金属或电解液等。
Valence band offset of wurtzite InN/AlN heterojunction determined by photoelectron spectroscopy
C.-L. Wu,a C.-H. Shen, and S. Gwob Department of Physics, National Tsing-Hua University, Hsinchu 300, Taiwan, The valence band offset VBO at the wurtzite-type, nitrogen-polarity InN/AlN(0001)heterojunction has been determined by photoelectron spectroscopy to be 3.10±0.04 eV.
Three types of samples were grown on Si111 substrates for PES measurements: 1 InN/AlN heterojunctions 2 nm/100 nm in thicknesses, 2 650-nm-thick InN epilayers, 3 130-nm-thick AlN epilayers.
相关文档
最新文档