化工原理课程设计精馏板式塔的设计
化工原理_课程设计_精馏塔_(筛板式)

化工原理课程设计任务书设计题目:乙醇——水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)设计条件: 1. 常压操作,P=1 atm(绝压)。
2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。
因沿程热损失,进精馏塔时原料液温度降为90℃。
3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。
4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。
5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。
6.操作回流比R=(1.1——2.0)R min。
设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。
2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。
3.写出该精流塔的设计说明书,包括设计结果汇总和对自己设计的评价。
指导教师:时间1设计任务1.1 任务1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。
2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。
因沿程热损失,进精馏塔时原料液温度降为90℃。
3.塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为40吨/日。
4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。
5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶采用全凝器,泡点回流。
6.操作回流比R=(1.1—2.0)R。
min1.1.3 设计任务1.完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。
2.画出带控制点的工艺流程示意图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。
3.写出该精馏塔的设计说明书,包括设计结果汇总和对自己设计的评价。
1.2 设计方案论证及确定1.2.1 生产时日设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。
塔板式精馏塔设计(图文表)

塔板式精馏塔设计(图文表)(一)设计方案的确定本设计任务为乙醇-水混合物。
设计条件为塔顶常压操作,对于二元混合物的分离,应采用连续精馏流程。
酒精精馏与化工精馏过程不同点就在于它不仅是一个将酒精浓缩的过程,而且还担负着把粗酒精中50多种挥发性杂质除去的任务,所以浓缩酒精和除去杂质的过程在酒精工业中称为精馏。
物料中的杂质基本上是在发酵过程中生成的,只是很少数的杂质是在蒸煮和蒸馏过程中生成的。
本次设计的精馏塔用板式塔,内部装有塔板、降液管、各种物料的进出口及附属结构(如全凝器等)。
此外,在塔板上有时还焊有保温材料的支撑圈,为了方便检修,在塔顶还装有可转动的吊柱。
塔板是板式塔的主要构件,本设计所用的塔板为筛板塔板。
筛板塔的突出优点是结构简单造价低,合理的设计和适当的操作能使筛板塔满足要求的操作弹性,而且效率高,并且采用筛板可解决堵塞问题,还能适当控制漏液。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。
塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。
该物系属不易分离物系,最小回流比较小,采用其1.5倍。
设计中采用图解法求理论塔板数,在溢流装置选择方面选择单溢流弓形降液管。
塔釜采用间接蒸汽加热,塔顶产品经冷却后送至储罐。
(二)精馏塔的物料衡算1.原料液及塔顶、塔底产品的摩尔分率乙醇的摩尔质量 M 乙醇=46kg/kmol纯水的摩尔质量 M 水 =18kg/kmolx F =18/65.046/35.046/35.0+=0.174x D =18/1.046/9.046/9.0+=0.779x W =46/995.018/005.018/005.0+=0.0022.原料液及塔顶、塔底产品的平均摩尔质量M F =0.174×46+18×(1-0.174)= 22.872 kg/kmol M D =0.779×46+18×(1-0.779)= 39.812 kg/kmol M W =0.002×46+18×(1-0.002)= 18.056 kg/kmol3.物料衡算 D=30024812.3948000000⨯⨯=167.454 kmol/hF=D+WF ·x F =D ·x D +W ·x W解得 F=756.464 kmol/h W=589.01 kmol/h{(三)塔板数的确定1.回流比的选择由任务书提供的乙醇-水物系的气液平衡数据绘出x-y 图;由于设计中选用泡点式进料,q=1,故在图中对角线上自点a(x D,x D)作垂线,与Y轴截距oa=x D/(R min+1)=0.415 即最小回流比R min=x D/oa-1=0.877取比例系数为1.5,故操作回流比R为R=1.5×0.877=1.3162.精馏塔的气液相负荷的计算L=RD=1.316×167.454=220.369 kmol/hV=L+D=(R+1)D=2.316×167.454=387.823 kmol/h L ’=L+qF=220.369+756.464=976.833 kmol/h V ’=V+(q-1)F=V=387.823 kmol/h3.操作线方程精馏段操作线方程为 y=1+R R x+11+R x D =1316.1316.1+x+11.3161+×0.779即:y=0.568x+0.336提馏段操作线方程为y=F q D R qF RD )1()1(--++x-F q D R DF )1()1(--+-x W=1.316*167.454+1*756.464(1.316+1)*167.454x-756.464167.454(1.3161)*167.454-+×0.002 即:y=2.519x-0.0034.采用图解法求理论塔板数塔顶操作压力P D=101.3 KPa单板压降△P=0.7 kPa进料板压力P F=0.7×18+101.3=113.9 kPa塔底操作压力P W=101.3+0.7×26=119.5 kPa精馏段平均压力P m=(101.3+113.9)/2=107.6 kPa 压力P m=(113.9+119.5)/2=116.7 kPa2.操作温度计算计算全塔效率时已知塔顶温度t D=78.43 o C进料板温度 t F=83.75 o C塔底温度t W=99.53 o C精馏段平均温度t m=(t D+t F)/2=(78.43+83.75)/2=81.09 o C提馏段平均温度t m=(t W+t F)/2=(99.53+83.75)/2=91.64 o C3.平均摩尔质量计算塔顶平均摩尔质量计算由x D=y1=0.779 查上图可得x1=0.741M VDm=0.779×46+(1-0.779)×18=39.812 g/molM LDm=0.741×46+(1-0.741)×18=38.748 g/mol进料板平均摩尔质量计算 t f=83.74 o C由y F=0.518 查上图可得x F=0.183M VFm =0.518×46+(1-0.518)×18=32.504 g/mol M LFm =0.183×46+(1-0.183)×18=23.124 g/mol 精馏平均摩尔质量M Vm =( M VDm + M VFm )/2=36.158 g/molM Lm =( M LDm + M LFm )/2=30.936 g/mol4.平均密度计算气相平均密度计算由理想气体状态方程计算,即ρVm =RT PMv =)15.27309.81(314.8158.366.107+⨯⨯=1.321 kg/m 3 液相平均密度计算液相平均密度依1/ρLm =∑αi /ρi 计算 塔顶液相平均密度计算t D =78.43 o C 时 ρ乙醇=740 kg/m 3 ρ水=972.742 kg/m 3ρLDm =)742.972/1.0740/9.0(1+=758.14 kg/m 3进料板液相平均密度计算t F =83.75 o C 时 ρ乙醇=735 kg/m 3 ρ水=969.363 kg/m 3ρLFm =)363.969/636.0735/364.0(1+=868.554 kg/m 3塔底液相平均密度计算t W =99.53 o C 时 ρ乙醇=720 kg/m 3 ρ水=958.724 kg/m 3ρLWm =)724.958/995.0720/005.0(1 =957.137 kg/m 3精馏段液相平均密度计算ρLm =(ρLFm +ρLDm )/2=(758.14+868.554)/2=813.347 kg/m 3提馏段液相平均密度计算ρLm =(ρLFm +ρLWm )/2=(957.137+868.554)/2=912.846 kg/m 35.液体平均表面张力计算液体平均表面张力依σLm =∑x i σi 计算塔顶液相平均表面张力计算t D =78.43时 σ乙醇=62.866 mN/m σ水=17.8 mN/m σLDm =0.779×17.8+0.221×62.886=84.446 mN/m 进料板液相平均表面张力计算t F =83.75时 σ乙醇=61.889 mN/m σ水=17.3 mN/m σLFm =0.183×17.3+0.817×61.889=53.729 mN/m 塔底液相平均表面张力计算t W =99.53时 σ乙醇=58.947 mN/m σ水=15.9 mN/m σLWm =0.005×15.9+0.995×58.947=58.732 mN/m 精馏段液相平均表面张力计算σLm =(84.446+53.729)/2=69.088 mN/m 提馏段液相平均表面张力计算σLm =(58.732+53.729)/2=56.231 mN/m6.液体平均粘度计算液体平均粘度依lgμLm=∑x i lgμi计算塔顶液相平均粘度计算t D=78.43o C时μ乙醇=0.364mPa·s μ水=0.455 mPa·slgμLDm=0.779lg(0.455)+0.221lg(0.364)=-0.363μLDm =0.436 mPa·s进料液相平均粘度计算t F=83.75 o C时μ乙醇=0.341mPa·s μ水=0.415 mPa·slgμLFm=0.183lg(0.415)+0.817lg(0.341)=-0.452μLFm=0.353 mPa·s塔底液相平均粘度计算t W=99.53 o C时μ乙醇=0.285mPa·s μ水=0.335 mPa·slgμLWm=0.002lg(0.335)+0.998lg(0.285)=-0.544μLWm=0.285 mPa·s精馏段液相平均粘度计算μLm=(0.436+0.353)/2=0.395 mPa·s提馏段液相平均粘度计算μLm=(0.285+0.353)/2=0.319 mPa·s(五)精馏塔的塔体工艺尺寸计算1.塔径的计算精馏段的气液相体积流率为V S =ρ3600VM =2.949 m 3/s L S =ρ3600LM =0.0023 m 3/s 查史密斯关联图,横坐标为Vh Lh (vlρρ)21=949.20023.0(321.1347.813) 1/2=0.0196取板间距H T =0.45m ,板上液层高度h L =0.06m , 则H T -h L =0.39m 查图可得C 20=0.08 由C=C 20(20L σ)0.2=0.08(69.088/20)0.2=0.103u max =C (ρL -ρV )/ ρV =2.554 m/s取安全系数为0.7,则空塔气速为 u=0.7u max =1.788 m/sD=4V s /πu=788.1/14.3/949.2*4=1.39 m 按标准塔径元整后 D=1.4 m 塔截面积A T =(π/4)×1.42=1.539 ㎡ 实际空塔气速为 u=2.717/1.539=1.765 m/s 2.精馏塔有效高度的计算精馏段有效高度为Z 精=(N 精-1)H T =7.65 m 提馏段有效高度为Z 提=(N 提-1)H T =3.15 m在进料板上方开一人孔,其高度为 1m 故精馏塔的有效高度为 Z=Z 精+Z 提+1=7.65+3.15+1=11.8 m(六)塔板主要工艺尺寸的计算1.溢流装置计算因塔径D=1.4 m ,可选用单溢流弓形降液管 堰长l W =0.7×1.4=0.98 m 2.溢流强度i 的校核i=L h /l W =0.0023×3600/0.98=8.449≤100~130m 3/h ·m 故堰长符合标准 3.溢流堰高度h W平直堰堰上液层高度h ow =100084.2E (L h /l W )2/3由于L h 不大,通过液流收缩系数计算图可知E 近似可取E=1h ow =100084.2×1×(L h /l W )2/3=0.0119 mh W =h L -h ow =0.06-0.0119=0.0481 m 4.降液管尺寸计算查弓形降液管参数图,横坐标l W /D=0.7 可查得A f /A T =0.093 W d /D=0.151 故 A f =0.093A T =0.143 ㎡ W d =0.151W d =0.211 ㎡留管时间θ=3600A T H T /L H =27.64 s >5 s 符合设计要求5.降液管底隙高度h oh O =L h /3600l W u 0’=0.0023/0.98×0.08=0.03 m h W -h O =0.0481-0.03=0.0181 m >0.006 m 6.塔板布置塔板的分块 D=1400 mm >800 mm ,故塔板采用分块式。
化工原理板式塔设计

化⼯原理板式塔设计⽬录第⼀章板式精馏塔的设计1.1概述 (1)1.2板式精馏塔的设计原则与步骤 (1)1.3理论塔板数的确定 (3)1.4塔板效率和实际塔板数 (7)1.5板式精馏塔的结构设计 (8)1.6 板式精馏塔⾼度及其辅助设备 (27)1.7 板式精馏塔的计算机设计 (31)第⼆章板式精馏塔设计举例2.1苯-甲苯板式精馏塔设计 (33)2.2⼄醇—⽔板式精馏塔设计 (47)2.3 甲醇—⽔板式精馏塔设计 (66)第三章塔设备的机械计算3.1 塔体及裙座的强度计算 (86)3.2 塔盘板及其⽀撑梁的强度、挠度计算 (104)3.3 塔盘技术条件 (105)3.4 塔盘⽀撑件的尺⼨公差 (109)附录 (111)第⼀章板式精馏塔的设计1.1概述蒸馏是利⽤液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的⽅法。
蒸馏操作在化⼯、⽯油化⼯、轻⼯等⼯业⽣产中中占有重要的地位。
为此,掌握⽓液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是⾮常重要的。
蒸馏过程按操作⽅式可分为间歇蒸馏和连续蒸馏。
间歇蒸馏是⼀种不稳态操作,主要应⽤于批量⽣产或某些有特殊要求的场合;连续蒸馏为稳态的连续过程,是化⼯⽣产常⽤的⽅法。
蒸馏过程按蒸馏⽅式可分为简单蒸馏、平衡蒸馏、精馏和特殊精馏等。
简单蒸馏是⼀种单级蒸馏操作,常以间歇⽅式进⾏。
平衡蒸馏⼜称闪蒸,也是⼀种单级蒸馏操作,常以连续⽅式进⾏。
简单蒸馏和平衡蒸馏⼀般⽤于较易分离的体系或分离要求不⾼的体系。
对于较难分离的体系可采⽤精馏,⽤普通精馏不能分离体系则可采⽤特殊精馏。
特殊精馏是在物系中加⼊第三组分,改变被分离组分的活度系数,增⼤组分间的相对挥发度,达到有效分离的⽬的。
特殊精馏有萃取精馏、恒沸精馏和盐溶精馏等。
精馏过程按操作压强可分为常压精馏、加压精馏和减压精馏。
⼀般说来,当总压强增⼤时,平衡时⽓相浓度与液相浓度接近,对分离不利,但对在常压下为⽓态的混合物,可采⽤加压精馏;沸点⾼⼜是热敏性的混合液,可采⽤减压精馏。
化工原理课程设计精馏塔设计9724

塔顶塔底的温度,进而求取全塔的平均温度,从而可以根据全
塔平均温度求取全塔平均相对挥发度。
式中: R ---回流
R m in —最小回流比
—全塔平均相对挥发度
3.理 论 板 数 和 实 际 板 数 的 确 定
(1)逐板法计算理论板数,交替使用操作线方程和相平衡关系。
精馏段操作线方程: yn1
L LD
3. 附属设备设计和选用 (1)加料泵选型,加料管规格选型
加料泵以每天工作3小时计(每班打1小时)。 大致估计一下加料管路上的管件和阀门。 (2)高位槽、贮槽容量和位置 高位槽以一次加满再加一定裕量来确定其容积。 贮槽容积按加满一次可生产10天计算确定。 (3)换热器选型 对原料预热器,塔底再沸器,塔顶产品冷却器等进行选型。 (4)塔顶冷凝器设计选型 根据换热量,回流管内流速,冷凝器高度,对塔顶冷凝器进 行选型设计。
0.735
lW hn
hOW
5 2
hOW
hn
5 2
LS —塔内液体流量, m3 S hn —齿深, m;可取为 0.015m
(3).堰高 hW
堰高与板上液层高度及堰上液层高度的关系:
hW hL hOW
2024/7/16
5、降液管的设计
(1)、降液管的宽度Wd 与截面积 Af
可根据堰长与塔径比值 lW ,查图求取。 D
塔径
流体 流 量 m3/h
Mm
U 形流型 单流型 双流型 阶梯流型
600
5 以下
5~25
900
7 以下
7~50
1000 1200
7 以下 9 以下
45 以下 9~70
1400
9 以下
70 以下
化工原理板式塔课程设计

化工原理板式塔课程设计一、课程目标知识目标:1. 理解化工原理中板式塔的基本概念、分类和结构;2. 掌握板式塔的流体力学特性和传质单元操作原理;3. 学会运用板式塔的物料和能量平衡方程,分析实际工艺过程中的塔内流动和传质现象;4. 了解板式塔在化工生产中的应用和常见问题。
技能目标:1. 能够运用板式塔的设计方法,进行塔板数、塔径和塔高的初步计算;2. 掌握板式塔内流体流动和传质的模拟与优化方法;3. 能够运用相关软件(如Aspen Plus)对板式塔进行模拟和性能分析;4. 培养解决实际工程问题,如塔内液泛、漏液、堵塞等问题的能力。
情感态度价值观目标:1. 培养学生对化工原理学科的兴趣,激发学习热情;2. 培养学生的团队协作意识,学会与他人共同解决问题;3. 增强学生的环保意识,认识到化工生产过程中节能减排的重要性;4. 培养学生的创新精神和实践能力,为将来从事化工领域工作打下基础。
本课程针对高年级化工原理相关专业学生,结合课程性质、学生特点和教学要求,明确以上课程目标。
通过本课程的学习,学生能够掌握板式塔的基本理论、设计方法和应用技能,为实际工程问题的解决和未来职业发展奠定基础。
同时,注重培养学生的团队协作、创新精神和环保意识,提高学生的综合素养。
后续教学设计和评估将围绕以上具体学习成果展开。
二、教学内容1. 板式塔基本概念与结构- 板式塔的定义、分类及特点;- 常见塔板类型及其结构。
2. 板式塔流体力学特性- 单板塔的流体流动现象;- 塔内液相和气相流动的压降计算;- 液泛和漏液的判断及防止措施。
3. 传质单元操作原理- 传质的基本理论;- 传质单元数的计算;- 影响传质效率的因素。
4. 板式塔物料和能量平衡- 板式塔内物料和能量的平衡方程;- 塔内流动和传质的模拟与优化;- 实际工艺过程中的案例分析。
5. 板式塔设计方法- 塔板数、塔径和塔高的初步计算;- 塔内流体流动与传质的模拟;- 设计软件(如Aspen Plus)的应用。
化工原理课程设计精馏塔

化工原理课程设计任务书1.设计题目:分离乙醇—正丙醇二元物系旳浮阀式精馏塔2.原始数据及条件:进料:乙醇含量45%(质量分数,下同),其他为正丙醇分离规定:塔顶乙醇含量 93%;塔底乙醇含量 0.01%生产能力:年处理乙醇-正丙醇混合液 25000 吨,年动工 7200 小时操作条件:间接蒸汽加热;塔顶压强 1.03atm(绝压);泡点进料; R=53.设计任务:⑴完毕该精馏塔旳各工艺设计,包括设备设计及辅助设备选型。
⑵画出带控制点旳工艺流程图、塔板版面布置图、精馏塔设计条件图。
⑶写出该精馏塔旳设计阐明书,包括设计成果汇总和设计评价。
概述本次设计针对二元物系旳精馏问题进行分析、计算、核算、绘图,是较完整旳精馏设计过程。
精馏设计包括设计方案旳选用,重要设备旳工艺设计计算、辅助设备旳选型、工艺流程图旳制作、重要设备旳工艺条件图等内容。
通过对精馏塔旳核算,以保证精馏过程旳顺利进行并使效率尽量旳提高。
本次设计成果为:理论板数为 20 块,塔效率为 42.2%,精馏段实际板数为 40块,提馏段实际板数为 5 块,实际板数 45 块。
进料位置为第 17 块板,在板式塔重要工艺尺寸旳设计计算中得出塔径为 0.8 米,设置了四个人孔,塔高 22.19 米,通过浮阀板旳流体力学验算,证明各指标数据均符合原则。
关键词:二元精馏、浮阀精馏塔、物料衡算、流体力学验算。
目录第一章绪论 (5)第二章塔板旳工艺设计 (7)一、精馏塔全塔物料衡算 (7)二、乙醇和水旳物性参数计算 (7)1.温度 (7)2.密度 (8)三、理论塔板旳计算 (11)四、塔径旳初步计算 (12)五、溢流装置 (14)六、塔板分布、浮阀数目与排列 (15)第三章塔板旳流体力学计算 (16)一、气相通过浮阀塔板旳压降 (16)二、淹塔 (17)三、物沫夹带 (18)四、塔板负荷性能图 (19)1.物沫夹带线 (19)2.液泛线 (19)3.液相负荷上限 (20)4.漏液线 (20)5.液相负荷下限 (20)第四章塔附件旳设计 (21)一、接管 (21)二、筒体与封头 (23)三、除沫器 (23)四、裙座 (24)五、人孔 (24)第五章塔总体高度旳设计 (24)一、塔旳顶部空间高度 (24)二、塔总体高度 (24)第六章附属设备旳计算 (24)8.1热量衡算 (24)8.1.10℃旳塔顶气体上升旳焓Qv (24)258.1.2回流液旳焓QR..................................................................8.1.3塔顶馏出液旳焓Q D (25)8.1.4冷凝器消耗旳焓Q C (25)8.1.5进料口旳焓Q F (25)8.1.6塔釜残液旳焓Q W (26)8.1.7再沸器Q B (26)8.2冷凝器旳设计 (26)8.3冷凝器旳核算 (27)8.4泵旳选择 (27)浮阀塔工艺设计计算成果列表 (28)重要符号阐明 (29)参照文献 (31)第一章绪论精馏旳基本原理是根据各液体在混合液中旳挥发度不一样,采用多次部分汽化和多次部分冷凝旳原理来实现持续旳高纯度分离。
《化工原理课程设计》板式精馏塔设计报告

《化工原理课程设计》报告4万吨/年甲醇~水板式精馏塔设计目录一、概述 (4)1.1 设计依据·································错误!未定义书签。
1.2 技术来源·································错误!未定义书签。
1.3 设计任务及要求 (5)二:计算过程 (7)1. 塔型选择 (7)2. 操作条件的确定 (8)2.1 操作压力 (8)2.2 进料状态 (8)2.3 加热方式 (8)2.4 热能利用 (8)3. 有关的工艺计算 (9)3.1 最小回流比及操作回流比的确定·········错误!未定义书签。
3.2 塔顶产品产量、釜残液量及加热蒸汽量的计算错误!未定义书签。
3.3 全凝器冷凝介质的消耗量 (17)3.4 热能利用·····························错误!未定义书签。
化工原理设计--苯—甲苯分离过程板式精馏塔设计

2008级化工原理课程设计化工原理课程设计设计题目:常压、连续精馏分离苯—甲苯混合体系目 录一、化工原理课程设计任务书 ................................................................................................... 1 二、设计计算 . (2)(一)确定设计方案的原则 ........................................................................................................... 2 (二)操作条件的确定 ................................................................................................................... 3 (三).设计方案的选定及基础数据的搜集 ............................................................... 4 (四) 精馏塔的物料衡算 ........................................................................................... 8 (五) 塔板数的确定 (8)(一)理论板层数N T 的求取 ............................................................................... 8 (1)最小回流比的求取; ....................................................................................... 8 (2)求精馏塔的气、液相负荷 ........................................................................... 9 (3)求操作线方程 ............................................................................................... 9 (二)实际板层数的求取 .. (10)(六) 精馏塔的工艺条件及有关物性数据的计算 (10)(1)操作压力计算 ............................................................................................. 10 (2)操作温度计算 ............................................................................................. 11 (3)平均摩尔质量计算 ..................................................................................... 11 (4)平均密度计算 (11)(七) 气液负荷计算 ................................................................................................. 13 (八) 精馏塔的塔体工艺尺寸计算 . (13)(1) 塔径的计算 ................................................................................................... 13 (2)塔高的计算 . (14)(九) 塔板主要工艺尺寸的计算 (14)(1) 溢流装置计算 ............................................................................................... 14 (2)塔板布置 .. (15)(十) 筛板的流体力学验算 (16)(1) 气体通过筛板压强相当的液柱高度σh h h h l c p ++= (16)(2) 液面落差 (17)(3) 液沫夹带 (17)(5) 液泛 (17)塔板负荷性能图 (18)(1)漏液线 (18)(2) 液沫夹带线 (18)(3)液相负荷下限线 (19)(4)液相负荷上限线 (19)(5) 液泛线 (19)设计结果一览(表9) (21)三、个人心得体会及改进意见 (22)四、参考文献 (22)附录(符号说明) (23)2008级化工原理课程设计一、化工原理课程设计任务书板式精馏塔设计任务书(一)设计题目:设计分离苯―甲苯连续精馏筛板塔(二)设计任务及操作条件1、设计任务:原料处理量: f= 5300kg/h进料组成: X F=0,55(轻组分苯的摩尔分率,下同)塔顶产品组成: X D=0.91分离要求:回收率η=0.95全塔效率: 58%2、操作条件:平均操作压力:101.3 kPa回流比: R=1.8Rmin单板压降: <=0.7kPa工时:年开工时数7200小时泡点进料:q=1 Xq=Xe=X F(三)设计方法和步骤:1、设计方案简介根据设计任务书所提供的条件和要求,通过对现有资料的分析对比,选定适宜的流程方案和设备类型,初步确定工艺流程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
确保停留时间大于或等于3~5s,这样使得溢流中的泡沫有足够的时间在降
液管中分离。
(27)
⑤ 降液管底隙高度hb:
(28)
• 采用合适的回流比; • 蒸馏系统的合理设置,如采用中间再沸器和中间 冷凝器的流程,可以提高精馏塔的热力学效率。
3.板式精馏塔的工艺计算
釜。 (1) (2)
得出:
3.1物料衡算及操作线方程
• 常规塔:一处进料和塔顶、塔底各有一个产品,塔釜间接蒸汽加热的精馏
(3)
(4)
式中:F、D、W——分别为原料液、馏出液和釜残液流量,kmol/h;
2.2进料状态的选择
• • • • • • •
进料状态以进料热状态参数q表示,有五种进料状态; q>1.0时,为低于泡点温度的冷液进料; q=1.0时,为泡点下饱和液体; q=0时,为露点下的饱和蒸气; 1>q>0时,为介于泡点和露点间的气液混合物; q<0时,为高于露点的过热蒸气进料。 为使塔的操作稳定,免受季节气温影响,精、提馏段采 用相同塔径以便于制造,则采用饱和液体(泡点)进料, 但需增设原料预热器。
• 4、塔的负荷性能图(放在说明书的流体力学验算后、用 标准坐标纸绘制)
2.设计方案的确定
2.1操作压力
精馏操作可以在常压、减压和加压下进行。
除热敏性物料外,凡通过常压精馏即可实现分离要 求,并能用江河水或循环水将馏出物冷凝下来的 系统,都采用常压精馏;
对热敏性物料或混合物沸点过高的系统,宜采用减 压精馏; 常压下成气态的物料必须采用加压精馏。
5.2.3 溢流装置的设计
溢流装置的设计参数包括溢流堰长lw、堰高hw、弓形降 液管截面积Af、降液管底隙高度hb、堰上液层高度how。
① 堰长lw:依据溢流型式及液体负荷决定 单溢流型:lw一般取为(0.6~0.8)D; 双溢流型:两侧堰长lw取(0.5~0.7)D,D为塔径
② 堰上液层高度how: 对于平直堰,设计时how一般应大于0.006m。 可按下式计算:
5.2.2降液管
降液管是塔板间液体流动的通道,也是溢流液中夹带的气体得以分离的场合。 从形状上看,降液管可以分为弓形降液管和圆形降液管。
(a)圆形降液管;(b)内弓形降液管,均适用于直径较小的塔板; (c)弓形降液管,它由部分塔壁和一块平板围成,能充分利用塔内空间,提供较大 的降液面积及两相分离空间,普遍应用于直径较大、负荷较大的塔板; (d)倾斜式弓形降液管,它即增大了分离空间又不过多的占用塔板间距,适用于大 直径大负荷的塔板。下面介绍单流型具有弓形降液管塔板的溢流装置的设计。
(25)
Ls-液体体积流量,m3/h; E-液流收缩系数,一般情况取1。 当平堰上液层高度how< 6mm或液流强度Ls/lw < 3m3/(m h)时,需改为齿形流,此时how的计算 公式可参看手册。
③ 溢流堰高hw:
(26) 对于常压或加压塔,一般取hw=50~80mm;
对于减压塔或要求塔板阻力很小时,hw为25mm左右; 当液体量很大时,hw可适当取大。
利用体系的汽-液相平衡方程(A),精馏段操作线方程(A)和提 馏段操作线方程(C),自塔顶开始,向下逐板计算,可以求得各层 塔板上的汽、液相组成,计算结果较精确。
当计算至xn与xF相等或接近时,第n层为加料板。同理,于加料板以下, 改用方程(A)与方程(C)进行交叉计算,直至xN等于或略小于xw为 止,则再沸器相当于第NT块塔板,此塔的总理论板数为NT-1,提馏段 板数为(NT-n)块。
hb不宜小于0.02~0.025m,以免引起堵塞。当选定hb后,即可求得液体流经底隙 的流速μ0,其值不大于0.3~0.5m/s。
(29)
⑥ 受液盘及进口堰
受液盘有凹形和平形两种形式。 对于直径较小的塔或处理易聚合的物系时,塔板不易有死角存在,多采用平形受液盘。 对于直径大于800mm以上的塔板或有侧线抽出时,也可以采用凹形受液盘。 当大直径的塔采用平形受液盘时,一般需在塔板上设置进口堰。
板式塔大致可以分为两类: 1、降液管的塔板,如泡罩、浮阀、筛板等等; 2、无降液管塔板,如穿流式筛板,穿流式波纹板。 工业上应用较多的是有降液管的浮阀、筛板和泡罩塔板等。
泡罩塔主要优点是操作弹性大,液气比范围大,适用于多种介质,操作稳定 可靠;但其结构复杂,造价高,安装维修不便,气相压降较大。 浮阀塔是现今应用最广的一种板型,其主要优点是生产能力大,操作弹性较 大,分离效果较高,塔板结构较泡罩塔简单。制造费是泡罩塔板的60~80%, 是筛板塔的120~130%。目前国内多用F1型(重阀)浮阀塔。 筛板塔主要优点是结构简单,制造维修方便,造价低,相同条件下生产能力 高于浮阀塔,塔板效率接近浮阀塔。缺点是稳定操作范围窄,小孔径筛板易 堵塞,不适宜处理粘性大、脏的和带固体粒子的料液。
4.3.4 塔底空间高度HB
为了保证塔底产品抽出稳定,使塔底液体不致流空,一般可取塔底产品的 停留时间为10~15min,因此可按残液量和塔径进行计算,也可取经验值, 常取1.3~3m。
4.3.5 塔体总有效高度H
(24)
S—人孔的数目(不包括塔顶空间和塔底空间的人孔))
5.塔板类型及主要参数
5.1塔板类型的选择
1.1 化工原理课程设计的目的
• 学生需要培养的能力: • 1、查阅资料,选用公式和搜集数据的能力; • 2、综合分析设计任务要求,确定化工工艺流 程,进行设备选型; • 3、迅速准确进行工程计算的能力; • 4、用简洁的文字,清晰的图表来表达自己设 计思想的能力。
1.2 化工原理课程设计的内容
4.塔体主要尺寸的设计
4.1塔板间距(HT)
需要考虑以下几个因素: 1、雾沫夹带:板间距小,则雾沫夹带量大,板间距增加则 雾沫夹带量可以减小,当板间距增大到一定程度,雾沫夹 带量的改变很小,过大的板间距就没有必要了。 2、物料的起泡性:易起泡的物系,板间距较大,反之则小。 3、操作弹性:当有较大的操作弹性时,选较大的板间距。 4、与塔径的大小有关。不同的塔径范围的塔板间距建议采 用下表的数据。
4.3 其它塔体的主要尺寸
4.3.1塔顶高度HD
塔顶空间高度作用是安装塔板和人孔的需要,也使气体中的液滴自由沉降,塔顶空间
高度一般取1.0~1.5m。
4.3.3进料段高度 HF
进料如果是液相,则HF应稍大于一般的板间距,并满足安装人孔的 需要。如果是两相进料,则HF需要取得大一些,以利于进料两相分 离。一般可取: HF=(1.0~1.2)m。
3.3 理论板数的确定
3.3.1 作图法
由(xD,xD)点开始,在精馏段操作线与平衡线间做梯级,当跨过 第m块理论板后液相浓度首次出现xm<xq,则取第m块理论板为加料 板可使总的理论板数最小。梯级的总个数即为理论塔板数。 作图法的缺点:当平衡线和操作线较靠近时,作图法画梯级的误差 较大。
3.3.2 逐板计算法
(12)
(13)
(3)对于理想溶液或在相对挥发度可取为常数时,可以用 解析法计算Rmin; 进料为饱和液体时:
(14)
进料为饱和蒸气时:
(15)
a全塔—全塔平均相对挥发度,α全塔变化不大时,可取塔顶和塔底的α几何平均值。
3.2.2 适宜的回流比 分别取不同的系数,求出对应的塔板数,然后画出R-N图, 由图可知最合适的回流比。
3.3.3 简捷法求理论板数
a. 在全回流下求出所需理论板数Nmin,对于接近理想体系的混合物,可以采用芬斯克 方程计算;
(16)
b.使用吉利兰图,根据 在内的理论板数N;
,由曲线查出
,即可求出不包括再沸器
C.确定进料板位置,利用公式(16),以xF代xw,α精馏代替α全塔,求得精馏段 的最小理论板数Nmin(精),按照步骤b法求得精馏段的理论板数N精,则加料板
4.2塔径D的计算
适宜的空塔气速:
(22)
对于直径较小或板间距小的塔,以及起泡严重的物系,系数取 低限,反之则取高限。 初步估算的塔径为:
(23)
目前,塔的直径已标准化,所求得的塔径必须圆整到标准值。 塔径在1米以下者,标准化先按100mm增值变化;塔径在1米 以上者,按200mm增值变化,即1000mm,1200mm,1400 mm….。 圆整后的直径,再按实际塔径按(23)式求出实际空塔气速, 验算其是否在最大允许空塔气速的0.6~0.8范围内,做为后面 有关计算中的空塔气速值。
(20)
(21)
C20—为液相表面张力σ为0.02N/m时的负荷因数,可由Smith气相负荷 因数关联图查出。需要先知道液滴沉降高度(HT-hL),液气流动
参数 有关。
hL——为板上清液高度,由于塔径和降液管的尺寸未定,hL可以取估计值: 对于常压及加压塔: hL=60~ 80mm 对于减压塔: hL=20~ 30mm
另外,考虑安装检修的需要,在塔体人孔处的板间距不 应小于600mm;对只需开手孔的小型塔,开手孔处的板间距 可取为450mm以下。
4.2塔径D的计算
以不发生气速,求得塔径。 最大允许空塔气速: 其中C为气相负荷因数:
式中σ —为表面张力,N/m;
1.2.2图纸的主要内容:
• 1、工艺流程简图 • 2、一张塔设备工艺条件图,用A1纸画,标准机械制图方 法制图,包括塔和关键部位图、技术特性表、接管表 (塔 径在1.5m米以上须开人孔,0.8mm以下,只开手孔)。 • 技术特性表:注明操作压强、温度、工作介质、容器类别 等。 • 用标准标注方法 • 3、Y-X相图,N-R图用标准坐标纸绘制
5.2 塔板有关参数的计算
5.2.1板上液流型式的确定
常用的塔板流动型式有下面几种: (1)单流型:这是最普遍和最常用的,液体的流径较长,板面利用好; 塔板结构简单,直径小于2.2m以下的塔普遍采用此型; (2)双流型:用于大塔径及液相负荷较大的场合; (3)回流型:又称U型流型,用于液气比较小的场合; (4)其他流型:当塔径及液流量都特大式,双流型无法满足,可以用四 流型或阶梯型。