特殊平行四边形动点及存在性问题(压轴题)演示教学

特殊平行四边形动点及存在性问题(压轴题)演示教学
特殊平行四边形动点及存在性问题(压轴题)演示教学

特殊平行四边形动点及存在性问题(压轴题)

特殊平行四边形中的动点及存在性问题

【例1】正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为。

【练习1】如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.

(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;

(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.

【例2】如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D 是OA的中点,点P在BC上运动,当三角形△ODP是腰长为5的等腰三角形时,P的坐标为;

x

【练习2】如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),

C(b,0

),并且a,b满足16

b=.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O 同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)

(1)求B、C两点的坐标;

(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;

(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.

【例3】(1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为;

(2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.

x

【练习3】如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).

(1)求G点坐标;

(2)求直线EF解析式;

(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.

x

【例4】在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0

EF.

(1)求证:AE=DF;

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;

(3)当t为何值时,△DEF为直角三角形?请说明理由.

动点问题题型方法归纳

动点问题 知识点: 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 6 4 y x =-+ 与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点 Q的运动时间为t秒,OPQ △的面积为S,求出S与t之间的函数关系式; (3)当 48 5 S= 时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M的坐标.

提示:第(2)问按点P到拐点B所有时间分段分类; 第(3)问是分类讨论:已知三定点O、P、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60o. (1)求⊙O的直径; (2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切; (3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速 度从B点出发沿BC方向运动,设运动时间为 )2 )( (<

专题:二次函数中的动点问题2(平行四边形存在性问题)

y x O 二次函数中的动点问题(二) 平行四边形的存在性问题 一、技巧提炼 1、二次函数y=ax 2 +bx+c 的图像和性质 a >0 a <0 图 象 开 口 对 称 轴 顶点坐标 最 值 当x = 时,y 有最 值是 当x = 时,y 有最 值是 增减 性 在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧 y 随x 的增大而 y 随x 的增大而 2、平行四边形模型探究 如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。 A B C x y 图1 图2 如图2,过A 、B 、C 分别作BC 、AC 、AB 的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。 3、平面直角坐标系中直线和直线l2: 当l1∥l2时k1= k2;当l1⊥l2时k1·k2= -1 4、二次函数中平行四边形的存在性问题: 解题思路:(1)先分类(2)再画图(3)后计算 二、精讲精练 1、已知抛物线y=ax2+bx+c与x轴相交于A、B两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C 点,且OA:OB:OC=1:3:3,△ABC的面积为6,(如图1) (1)求抛物线的解析式; (2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形若存在,请求出点M的坐标;若不存在,请说明理由; (3)如图2,在直线BC上方的抛物线上是否存在一动点P,△BCP面积最大如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.

动点问题、存在性问题小结

动点问题和存在性问题小结训练 一、基础训练 1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为X=﹣.下列结论中, 正确的是() A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b 2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论: ① b2-4ac>0;② 2a+b<0;③ 4a-2b+c=0;④ a:b:c= -1:2:3. 其中正确的是( ) (A) ①② (B) ②③ (C) ③④ (D)①④ 3.已知二次函数的图象过(-2,0)、(4,0)、(0,3)三点,求这个二次函数的关系式. 4.已知一个二次函数当x = 8时,函数有最大值9,且图象过点(0,1),求这个二次函数的关系式. 5.已知二次函数的图象过(3,0)、(2,-3)二点,且对称轴是x=1,求这个二次函数的关系式. 6.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系. (1)试求y与x之间的函数关系式; (2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少? 7.如图,在平面直c bx ax y+ + =2角坐标系中,抛物线c bx ax y+ + =2经过 A(-2,-4),O(0,0),B(2,0)三点. (1)求抛物线的解析式; (2)若点M是抛物线对称轴上一点,求AM+OM的最小值. (3)在此抛物线上是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.

二次函数平行四边形存在性问题例题

二次函数平行四边形存在性问题例题 一.解答题(共9小题) 1.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点. (1)求抛物线的解析式; (2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标; (3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由. 2.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧). (1)求抛物线的解析式及点B坐标; (2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值; (3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由. 3.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点

分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x 轴于点C. (1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若(1)中抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP 为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)若把(1)中的抛物线向左平移3.5个单位,则图象与x轴交于F、N(点F 在点N的左侧)两点,交y轴于E点,则在此抛物线的对称轴上是否存在一点Q,使点Q到E、N两点的距离之差最大?若存在,请求出点Q的坐标;若不存在,请说明理由. 4.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C. (1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA ﹣QO|的取值范围. 5.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,

平行四边形的存在性问题

平行四边形的存在性问题 【真题典藏】 1.(2008年青浦区第24题)如图1,在平面直角坐标系中,点O 是坐标原点,正比例函数kx y =(x 为自变量)的图像与双曲线x y 2 - =交于点A ,且点A 的横坐标为2-. (1)求k 的值. (2)将直线kx y =(x 为自变量)向上平移4个单位得到直线BC ,直线BC 分别交x 轴、y 轴于B 、 C ,如点 D 在直线BC 上,在平面直角坐标系中求一点P ,使以O 、B 、D 、P 为顶点的四边形是菱形. 图1 图2 2.(2009年普陀区第25题)如图2,在平面直角坐标系xOy 中,O 为原点,点A 、C 的坐标分别为(2, 0)、(1,33). 将△AOC 绕AC 的中点旋转180°,点O 落到点B 的位置,抛物线x ax y 322 -=经 过点A ,点D 是该抛物线的顶点. (1)求证:四边形ABCO 是平行四边形; (2)求a 的值并说明点B 在抛物线上; (3)若点P 是线段OA 上一点,且∠APD =∠OAB ,求点P 的坐标; (4)若点P 是x 轴上一点,以P 、A 、D 为顶点作平行四边形,该平行四边形的另一顶点在y 轴上,写出点P 的坐标. 3.(2010年上海市第24题)参见《考典40 几何计算说理与说理计算问题》第3题. 4.(2011年上海市第24题)已知平面直角坐标系xOy (如图3),一次函数3 34 y x =+的图像与y 轴交于点A ,点M 在正比例函数3 2 y x = 的图像上,且MO =MA .二次函数 y =x 2+bx +c 的图像经过点A 、M . (1)求线段AM 的长; (2)求这个二次函数的解析式;

ZBP平行四边形存在性问题之两定两动.doc

学习必备欢迎下载 问题 1:存在性问题的处理框架是什么? 问题 2:两定两动的平行四边形存在性问题的分类标准是什么? 1. 如图,将矩形OABC 放置在平面直角坐标系中,OA=8, OC=12,直线与x 轴交于点D,与 y 轴交于点E,把矩形沿直线DE翻折,点 O 恰好落在AB 边上的点 F 处,M 是直线 DE 上的一个动点,直线DF 上是否存在点N,使以点 C,D,M ,N 为顶点的四边形是平行四边形?则符合题意的点N 的坐标是? 2.如图,在平面直角坐标系中,直线与交于点A,与x 轴分别交于 点 B 和点 C, D 是直线 AC上一动点, E 是直线AB 上一动点.若以O, D, A,E 为顶点的四边形是平行四边形,则点 E 的坐标为? 反思与总结: 问题 1:平行四边形存在性问题的处理框架中第一步:研究背景图形,需要研究哪些内容? 问题 2:画出对应图形后求解点坐标的套路是什么?

练习 1.如图,直线与 x 轴、 y 轴分别交于A, B 两点,直线BC x 轴交于点C,且 与 ∠ABC=60°,若点 D 在直线AB 上运动,点E在直线 BC 上运动,且以O, B, D,E 为顶点的 四边形是平行四边形,则点 D 的坐标为 ( ) 2..如图,在平面直角坐标系中,矩形OABC的对角线AC=12,∠ ACO=30°,把矩形沿直线 DE 翻折,使点 C 落在点 A 处, DE 与 AC 相交于点 F,若点 M 是直线 DE上一动点,点N 是直线 AC 上一动点,且以O,F,M , N 为顶点的四边形是平行四边形,则点N 的坐标为 () 3.如图,直线分别交x轴、y轴于A,B两点,线段AB 的垂直平分线交x 轴于 点 C,交 AB 于点 D.若在平面内存在点 E,使得以点 A,C,D,E 为顶点的四边形是平行四边 形,则点 E 的坐标为

特殊平行四边形动点及存在性问题(压轴题)复习课程

特殊平行四边形动点及存在性问题(压轴题)

特殊平行四边形中的动点及存在性问题 【例1】正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为 。 【练习1】如图,在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点. (1)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标; (2)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标. 【例2】 如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当三角形△ODP 是腰长为5的等腰三角形时,P 的坐标为 ; 【练习2】如图,在平面直角坐标系中,AB ∥OC ,A (0,12),B (a ,c ),C (b ,0),并且a ,b 满 足16b =.一动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q 从点O 出发在线段OC 上以每秒1个单位长度的速度向点C 运动,点P 、Q 分别从点A 、O 同时出发,当点P 运动到点B 时,点Q 随之停止运动.设运动时间为t (秒) (1)求B 、C 两点的坐标; (2)当t 为何值时,四边形PQCB 是平行四边形?并求出此时P 、Q 两点的坐标; (3)当t 为何值时,△PQC 是以PQ 为腰的等腰三角形?并求出P 、Q 两点的坐标. x

【例3】(1)如图,矩形ONEF 的对角线相交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点M 的坐标为 ; (2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A 、B 、C 构成平行四边形的顶点,求点D 的坐标. 【练习3】如图,四边形ABCD 为矩形,C 点在x 轴上,A 点在y 轴上,D 点坐标是(0,0),B 点坐标是(3,4),矩形ABCD 沿直线EF 折叠,点A 落在BC 边上的G 处,E 、F 分别在AD 、AB 上,且F 点的坐标是(2,4). (1)求G 点坐标; (2)求直线EF 解析式; (3)点N 在x 轴上,直线EF 上是否存在点M ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,请直接写出M 点的坐标;若不存在,请说明理由. 【例4】在Rt △ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm /s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm /s 的速度运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是ts (0

动点存在性问题

第一讲动点存在性问题 一.考情分析 二.知识回顾 1、题型分类 在中考中,存在性问题一般分为四类: 1.是否存在三角形(等腰三角形、直角三角形); 2.是否存在四边形(平行四边形、直角梯形和等腰梯形); 3.是否存在三角形与已知三角形相似或者全等; 4.是否存在三角形与已知三角形的面积之间有数量关系。 2、方法归纳 在解决动点存在性问题时,一般先假设其存在,得到方程,如果有解,则存在,反之,则不存在。而在列方程时,一般要用到特殊三角形以及特殊平行四边形的性质、相似、解直角三角形等知识点,需要注意的是,列方程时,一定要遵循:用两种不同的方法表示同一个量,否则,将会得到“1=1”之类的恒等式。 对于是否存在三角形,一般按顶点分为三类情况。 而对于是否存在平行四边形则有两种形式的题目:如果已知三个定点,就有三种情况,一般利用平移坐标法即可求出答案;如果只有两个定点就应该按与边平行以及与对角线平行两种情况考虑了。 对于等腰梯形,就应该考虑腰长在下底边上的投影了。 对于是否存在三角形与已知三角形相似或者全等,则与是否存在三角形一样,分三类情况,当然,如果有一个角是一个定角(比如直角),则就分为两类情况。

类型一:是否存在三角形(等腰三角形、直角三角形) (A )【典型例题1】如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。设运动的时间为t (秒)。当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形? (C )【典型例题2】如图2,在等腰梯形中,,是的中点,过点作交于点.,. (1)求点到的距离; (2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设. ①当点在线段上时(如图3),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由; ②当点在线段上时(如图4),是否存在点,使为等腰三角形?若存在, 请求出所有满足要求的的值;若不存在,请说明理由. (B )【典型例题3】如图,已知直线1 12y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线 21 2y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。 学习心得 A B Q C P D 图1

一次函数之平行四边形存在性问题

一次函数与平行四边形 1.线段中点公式 平面直角坐标系中,点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2), 则线段AB 的中点P 的坐标为 (2,22121y y x x ++) 例:如图,已知点A (-2,1),B (4,3),则线段AB 的中点P 的坐标是________. 2.线段的平移 平面内,线段AB 平移得到线段A'B' ,则①AB ∥A'B' ,AB =A'B' ;②AA'∥BB',AA'= BB'. 如图,线段AB 平移得到线段A'B' ,已知点A (-2,2),B (-3,-1), B' (3,1),则点A'的坐标是________. 例:如图,在平面直角坐标系中,□ABCD 的顶点坐标分别为A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)、D (x 4,y 4),已知其中3个顶点的坐标,如何确定第4个顶点的坐标? 例:如图,已知□ABCD 中A (-2,2),B (-3,-1), C (3,1),则点D 的坐标是________. 方法一:利用线段平移 总结:x 1-x 2= x 4-x 3,y 1-y 2= y 4-y 3 或者 x 4-x 1= x 3-x 2,y 4-y 1= y 3-y 2 等 方法二:利用中点公式 总结:x 1+x 3= x 2+x 4,y 1+y 3= y 2+y 4

类型一:三定一动 例1 、如图,平面直角坐标中,已知中A (-1,0),B (1,-2),C (3,1),点D是平面内一动点,若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是_________________________________. 总结:三定一动问题,可以通过构造中点三角形得以解决. 说明:若题中四边形ABCD是平行四边形,则点D的坐标只有一个结果________

2019-2020年中考数学专题37动态几何之动点形成的等腰三角形存在性问题(含解析)

2019-2020年中考数学专题37 动态几何之动点形成的等腰三角形存在性问题 (含解析) 数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的 观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形 的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有 点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就 问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解 这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存 在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相 似三角形存在问题;其它存在问题等。本专题原创编写动点形成的等腰三角形存在性问题模拟题。 在中考压轴题中,动点形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思 想准确地进行分类。 1.如图,在平面直角坐标系xOy中,A(2,0),B(4,0),动点C在直线 1 l:y x 2 上,若以A、B、C三点 为顶点的三角形是等腰三角形,则点C的个数是【】 A.1 B.2 C.3 D.4 【答案】A。 【考点】单动点问题,坐标与图形性质,等腰三角形的判定,含30度角直角三角形的性质。

平行四边形的存在性问题

平行四边形的存在性问题 专题攻略 解平行四边形的存在性问题一般分三步: 第一步寻找分类标准,第二步画图,第三步计算. 难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使计算又好又快.如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点. 如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况. 灵活运用向量和中心对称的性质,可以使得解题简便. 针对训练 1.如图,已知抛物线y=-x2-2x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为P.若以A、C、P、M为顶点的四边形是平行四边形,求点M的坐标. 解析、由y=-x2-2x+3=-(x+3)(x-1)=-(x+1)2+4, 得A(-3,0),B(1,0),C(0,3),P(-1,4). 如图,过△P AC的三个顶点,分别作对边的平行线,三条直线两两相交的三个交点就是要求的点M. ①因为AM1//PC,AM1=PC,那么沿PC方向平移点A可以得到点M1. 因为点P(-1,4)先向下平移1个单位,再向右平移1个单位可以与点C(0,3)重合,所以点A(-3,0)先向下平移1个单位,再向右平移1个单位就得到点M1(-2,-1). ②因为AM2//CP,AM2=CP,那么沿CP方向平移点A可以得到点M2. 因为点C(0,3)先向左平移1个单位,再向上平移1个单位可以与点P(-1,4)重合,所以点A(-3,0)先向左平移1个单位,再向上平移1个单位就得到点M2(-4,1). ③因为PM3//AC,PM3=AC,那么沿AC方向平移点P可以得到点M3. 因为点A(-3,0)先向右平移3个单位,再向上平移3个单位可以与点C(0,3)重合,所以点P(-1,4)先向右平移3个单位,再向上平移3个单位就得到点M3(2,7). 2.如图,在平面直角坐标系xOy中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标. 解析.由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0). ①如图1,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P关于AB 的中点(1,0)对称,所以点M的横坐标为2. 当x=2时,y =-x2+2x+3=3.此时点M的坐标为(2,3).

二次函数中的平行四边形存在性问题

二次函数中的平行四边形存在性问题 目标:1、通过本节课的学习,提高学生分析问题,解决问题的能力。 2、能总结出解决平行四边形存在性问题的一般方法和思路。重点:解决平行四边形存在性问题的一般方法及思路。 难点:根据条件求平行四边形的顶点坐标。 过程: 一、复习 1、平行四边形的性质 角: 边; 对角线: 2、二次函数的相关知识点 表达式、顶点坐标、对称轴、增减性 二、探索新知 1、単动点(知3点求1点) (1)已知平面上有不在同一条直线上的三点A、B、C,点D是平面上任一点,若此四点能构成平行四边形则符合条件的D点有几个? ()

学生画图说明 思考:如何找第四点?找第四点的方法? (2)类题 (1)已知抛物线与坐标轴分别交于A(-1、0)、B (3、0)、C (0、3)三点,能否在平面内在找一点D使得它们四点围成的四边形为平行四边形? 学生分析总结规律、思路。 ①、根据平行四边形的边、对角线的性质(对边平行且相等, 对角线互相平分)我们可以选择一种情况作为画图的依据。 ②、在求点的坐标时(以边为例)我们先满足对边平行再用对 边相等求出要求的点的坐标。

2、 双动点(知2点求2点) (1) 学生再次画图说明(给出两点画出另外两点) (2)类题 如图,抛物线y= 13 x 2-mx+n 与x 轴交于A 、B 两点,与y 轴交于点C (0.-1).且对称轴x=l . ① 求出抛物线的解析式及A 、B 两点的坐标; ② 点Q 在y 轴上,点P 在抛物线上,要使Q 、P 、A 、B 为顶点的四边形是平行四边形,请求出所有满足条件的点P 的坐标。

点A,点B是定点 点P,点Q是动点 分两种情况:AB为边,AB为对角线 3、小结 4、布置作业 5、

专题06 动点折叠类问题中图形存在性问题(解析版)

专题06 动点折叠类问题中图形存在性问题 一、基础知识点综述 动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题,更能体现其解题核心——动中求静,灵活运用相关数学知识进行解答,有时需要借助或构造一些数学模型来解答. 实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分,题型繁多,题意新颖,具有创新力. 其主要考查的是学生的分析问题及解决问题的能力. 要求学生具备:运动观点;方程思想;数形结合思想;分类讨论思想;转化思想等等. 存在性问题 主要有等腰三角形存在性、直角三角形存在性、特殊落点存在性等问题,常用的数学解题模型有“一线三直角”等模型,作图方法是借助圆规化动为静找落点. 解题思路:分析题目→依据落点定折痕→建立模型→设出未知数列方程求解→得到结论. 解题核心知识点: 折叠性质; ①折叠前后图形大小、形状不变;②折痕是折叠前后对应点连线的垂直平分线; 勾股定理; 相似图形的性质、三角函数等. ★等腰三角形存在性问题 解题思路:依据圆规等先确定落点,再确定折痕; ★直角三角形存在性问题 解题思路:依据不同直角顶点位置分类讨论,作出图形求解. 二、精品例题解析 题型一:折叠问题中等腰三角形存在性问题 例1.(2019·金水区校级模拟)如图,∠AOB=90°,点P为∠AOB内部一点,作射线OP,点M在射线OB 上,且OM= ,点M与点M’关于射线OP对称,且直线MM’与射线OA交于点N,当△ONM’为等腰三角形时,ON的长为.

平行四边形存在性问题

平行四边形存在性问题 一、解平行四边形的存在性问题一般分三个步骤 第一步寻找分类标准,第二步画图,第三步计算. 二、难点在于寻找分类标准,寻找恰当的分类标准,可以使得解的个数不重复不遗漏,也可以使计算又准又快. 三、如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点,利用横纵坐标的平移变化得出结论。 四、如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况,灵活运用向量和中心对称的性质,可以使得解题简便。(辅助手段~三角形全等,等积法,中点坐标公式) 例1.已知抛物线 b ax ax y ++-=22 与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C . ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式; ⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 例2、如图,抛物线:y= x 2﹣x ﹣ 与x 轴交于A 、B (A 在B 左侧),A (﹣1,0)、B (3,0),顶点为C (1,﹣2)(1)求过A 、B 、C 三点的圆的半径.(2)在抛物线上找点P ,在y 轴上找点E ,使以A 、B 、P 、E 为顶点的四边形是平行四边形,求点P 、E 的坐标. 例 3.已知,如图抛物线

23(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在B 点左侧。点B 的坐标为(1,0),OC=30B .(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值: (3)若点E 在x 轴上,点P 在抛物线上。是否存在以A 、C 、E 、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由. 例4.已知抛物线:x x y 22 12 1+- = (1)求抛物线1y 的顶点坐标. (2)将抛物线1y 向右平移2个单位,再向上平移1个单位,得到抛物线2y ,求抛物线2y 的解析式. (3)如下图,抛物线2y 的顶点为P ,x 轴上有一动点M ,在1y 、2y 这两条抛物线上是否存在点N ,使O (原点)、P 、M 、 N 四点构成以OP 为一边的平行四边形, 若存在,求出N 点的坐标;若不存在,请说明理由. 例5.如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理 x y y 12 3 4 5 6 7 8 9 54321 -1-2-3-4 1 y 2 -1

平行四边形存在性问题

平行四边形存在性问题 1.如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在x轴、y轴上,且OA、OB的长满足方程x2﹣16x+64=0. (1)求点A、B的坐标; (2)将点A翻折落在线段OB的中点C处,折痕交OA于点D,交斜边于点E,求直线DE的解析式; (3)在(2)的条件下,在平面直角坐标系内,是否存在点F使点A、D、E、F为顶点的四边形是平行四边形?若存在请直接写出点F的坐标;若不存在,请说明理由. 2.如图,?ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动,两点均运动到点D停止. (1)若动点M、N同时出发,经过几秒钟两点相遇? (2)在相遇前,是否存在过点M和N的直线将?ABCD的面积平分?若存在,请求出所需时间;

若不存在,请说明理由. (3)若点E在线段BC上,BE=2cm,动点M、N同时出发且相遇时均停止运动,那么点M运动到第几秒钟时,与点A、E、N恰好能组成平行四边形? 3.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处. (1)如图,已知折痕与边BC交于点E,连结AP、EP、EA.求证:△ECP∽△PDA; (2)若△ECP与△PDA的面积比为1:4,求边AB的长; (3)在(2)的条件下以点A为坐标原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,问在坐标平面内是否存在点M,使得以点A、B、E、M为顶点的四边形是平行四边形?若存在请直接写出点M的坐标;若不存在请说明理由.

【压轴题】动点存在性问题集锦

【压轴题】动点存在性问题集锦 1如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x 与x 轴相交于点B ,连结OA ,抛物线2x y =从点O 沿OA 方向平移,与直线2=x 交于点P ,顶点M 到A 点时停止移动. (1)求线段OA 所在直线的函数解析式; (2)设抛物线顶点M 的横坐标为m , ①用m 的代数式表示点P 的坐标; ②当m 为何值时,线段PB 最短; (3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的坐标;若不存在,请说明理由. 2如图所示,已知二次函数图象的顶点坐标为C (1,1), 直线,y =k x +m 的图象与该二次函数的图象交于A ,B 两点,其中,点A 坐标为(52,13 4 ),点B 在Y 轴上,直线与x 轴的交点为 F , P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作X 轴的垂线与这个二次函数的图象交于E 点. (1)求k 、m 的值及这个二次函数的解析式; (2)设线段PE 的长为h,点P 的横坐标为x,求h 与x 之间的函数关系,并写出自变量x 的取值范围; (3)D 为直线AB 与这个二次函数图象对称轴的交点,在线段AB 上是否存在点p ,使得以点P 、E 、D 为顶点的三角形与△BOF 相似?若存在,请求出P 点的坐标;若不存在,请说明理由. 3已知:抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

初二动点问题(含答案)

动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想 1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从 A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动, 如果P,Q分别从A,C同时出发,设移动时间为t秒。 当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形 . 8 2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任 意一点,则DN+MN的最小值为 5 3、如图,在Rt ABC △中,9060 ACB B ∠=∠= °,°,2 BC=.点O是AC的中点,过 点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作 CE AB ∥交直线l于点E,设直线l的旋转角为α. (1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为; ②当α=度时,四边形EDBC是直角梯形,此时AD的长为; (2)当90 α=°时,判断四边形EDBC是否为菱形,并说明理由. 解:(1)①30,1;②60,1.5; (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形 在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300. ∴AB=4,AC ∴AO= 1 2 AC .在Rt△AOD中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形 4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E. (备用图)C B E D 图1 N M A B C D E M N 图2 A C B E D N M 图3

专题05 动点与特殊三角形存在性问题大视野(解析版)

专题05 动点与特殊三角形存在性问题大视野 【例题精讲】 题型一、等腰三角形存在性问题 例1. 【2019·黄石期中】如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分别是AB、AC 的中点,动点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时动点Q从点B出发,沿BF方向匀速运动,速度为2cm/s,连接PQ,设运动时间为ts(0<t<1),则当t=______时,△PQF为等腰三角形. 【答案】2. 【解析】 解:∵∠ABC=90°,∠ACB=30°,AB=2, ∴AC=2AB=4,BC=√42?22=2√3, ∵E、F分别是AB、AC的中点, ∴EF=1 2 BC=√3,BF= 1 2 AC=2,EF∥BC, 由题意得:EP=t,BQ=2t,∴PF=√3-t,FQ=2-2t,

①当PF =FQ 时, 则√3-t =2-2t , 解得:t =2-√3; ②当PQ =FQ 时,过Q 作QD ⊥EF 于D , 则PF =2DF , ∵BF =CF , ∴∠FBC =∠C =30°, 由上知,EF ∥BC , ∴∠BFP =∠C =30°, 则DF DQ ,PF , -t 2-2t ) 解得:t = 611 ; ③当PF =PQ 时,∠PFQ =∠PQF =30°, ∴∠FPQ =120°, 而在P 、Q 运动过程中,∠FPQ 最大为90°,所以此种情况不成立; 故答案为:2-√3或 611 +. 例2. 【2019·广州市番禺区期末】已知:如图,在Rt ∥ABC 中,∥C =90°,AB =5cm ,AC =3cm ,动点P 从点B 出发沿射线BC 以1cm /s 的速度移动,设运动的时间为t 秒.

平行四边形存在性(习题及答案)

平行四边形存在性(习题) 例题示范 例1:如图,在平面直角坐标系中,直线1 =+交 y x =-+与3 y x 于点A,与x轴分别交于点B和点C,D是直线AC上一动点,则在直线AB上是否存在点E,使以O,D,A,E为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.

【思路分析】 1.研究背景图形 2.根据不变特征确定分类标准 E(,)? O.,A.,D,E平行四边形 3.分析特殊状态的形成因素,画出符合题意的图形并求解 ①当OA作为边时,根据平行四边形的判定,需满足OA∥DE, OA=DE,要找DE,借助平移,由于点D在直线AC上,让线段DE沿直线AC上下平移,确保点D在直线AC上,来找直线AB上的点E,注意需要沿AC的上方、下方分别平移,找出点之后,设计方案,利用平移性质,求出坐标; ②当OA作为对角线时,利用平行四边形的判定,需满足OA, DE互相平分,设出E点坐标,根据中点坐标公式表达出D点坐标,代入直线AC表达式即可. 4.结果验证

【过程书写】 解:由题意得,B (1,0),C (-3,0) ∵直线1y x =-+与3y x =+交于点A ∴A (-1,2) ①当OA 作为边时,OA ∥DE ,OA =DE ,如图所示, 设1E (1) t t -+,根据平移可得,1(13)D t t --+, ∵点1D 在直线AC 上 ∴t -1+3=-t +3 解得,1 2 t =∴111()22 E ,同理可得,257()22 E -,②当OA 作为对角线时,DE 与OA 互相平分,设OA 的中点为 F ∵A (-1,2),O (0,0) ∴F 1(1)2 -,设3E (1)m m -+,, 则3(11) D m m --+, ∵点3D 在直线AC 上 ∴-m -1+3=m +1解得,1 2 m =∴311()22 E ,点3E 与点1E 重合,如图所示, 综上,符合题意的点E 的坐标为1157()()2222 -,,,

二次函数中平行四边形存在性问题

二次函数中平行四边形存在性问题 解题原理:对角线互相平分的四边形是平行四边形 1. 平行四边形顶点坐标公式 平行四边形ABCD的顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),则:x1+x3=x2+x4;y1+y3=y2+y4. 证明:如图,连接AC、BD,相交于点E. ∵点E为AC的中点, ∴E点坐标为( 22 1x x+ , 23 1y y+ ). 又∵点E为BD的中点, ∴E点坐标为( 24 2x x+ , 24 2y y+ ). ∴x1+x3=x2+x4;y1+y3=y2+y4. 即平行四边形对角线两端点的横坐标、纵坐标之和分别相等. 2 解题的预备知识 如右图,已知不在同一直线上的三点A、B、C,在平面内另找一个点D,使以A、 B、C、D为顶点的四边形是平行四边形.答案有三种:以AB为对角线的□ACBD1, 以AC为对角线的□ABCD2,以BC为对角线的□ABD3C. 3 两类存在性问题解题策略 第一步:把四个点的坐标表示出来(如果是动点用字母表示其坐标) 第二步:分三种情况讨论对角线(如果四个点中有一组平行例1中PM//OB那么以PM为对角线是不存在的,就可以只讨论以PB、PO为对角线的情况) 第三步:利用对角线两端点的横坐标、纵坐标之和分别相等列式。 题型1 有一组对边平行,探究平行四边形存在性问题 例1.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t. (1)分别求出直线AB和这条抛物线的解析式. (2)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.

相关文档
最新文档