高斯

合集下载

高斯简介

高斯简介

高斯(Johann Carl Friedrich Gauß (Gauss)聽文件-播放,1777年4月30日-1855年2月23日),生于布伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。

高斯被认为是最重要的数学家,并有「数学王子」的美誉。

1792年,15岁德高斯进入Braunschweig学院。

在那里,高斯开始对高等数学作研究。

独立发现了二项式定理的一般形式、数论上的“二次互反律”、素数定理、及算术-几何平均数。

1795年高斯进入哥廷根大学。

1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。

1855年2月23日清晨,高斯于睡梦中去世。

[编辑] 生平高斯是一对普通夫妇的儿子。

他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。

在她成为高斯父亲的第二个妻子之前,她从事女佣工作。

他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。

当高斯三岁时便能够纠正他父亲的借债帐目的事情,已经成为一个轶事流传至今。

他曾说,他能够在脑袋中进行复杂的计算,全拜上帝所赐。

高斯有一個很出名的故事:用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。

他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。

这一年,高斯9岁。

高斯12岁时,已经开始怀疑元素几何学中的基础证明。

当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里德几何学。

他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。

高斯的老师Bruettner与他助手Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。

数学家高斯

数学家高斯
姓名:高斯 别称:Johann Carl Friedrich Gauss 出生地:布伦瑞克 出生时间:1777年04月30日 去世时间:1855年02月23日 主要作品:高等大地测量学理论(上) 主要成就:证明代数基本定理、曲面论 国籍:德国 职业:数学家、物理学家和天文学家 毕业院校:布伦瑞克工业大学,哥廷根大学 信仰:自然神论者 血型:O型 智商:325
数学成就
欧几里得已经指出,正三边形、正四边形、正五边形、正十五边形和边数是上述边数两倍的正多边 形的几何作图是能够用圆规和直尺实现的,但从那时起关於这个问题的研究没有多大进展。高斯在 数论的基础上提出了判断一给定边数的正多边形是否可以几何作图的准则。例如,用圆规和直尺可 以作圆内接正十七边形。这样的发现还是欧几里得以后的第一个。 这些关於数论的工作对代数数的现代算术理论(即代数方程的解法)作出了贡献。 高斯还将复数引进了数论,开创了复整数算术理论,复整数在高斯以前只是直观地被引进。1831年 (发表於1832年)他给出了一个如何藉助於x,y平面上的表示来发展精确的复数理论的详尽说明。 高斯是最早怀疑欧几里得几何学是自然界和思想中所固有的那些人之一。欧几里得是建立系统性几 何学的第一人。他模型中的一些基本思想被称作公理,它们是透过纯粹逻辑构造整个系统的出发点。 在这些公理中,平行线公理一开始就显得很突出。按照这一公理,通过不在给定直线上的任何点只 能作一条与该直线平行的线。 不久就有人推测︰这一公理可从其他一些公理推导出来,因而可从公理系统中删去。但是关於它的 所有证明都有错误。高斯是最早认识到可能存在一种不适用平行线公理的几何学的人之一。他逐渐 得出革命性的结论︰确实存在这样的几何学,其内部相容并且没有矛盾。但因为与同代人的观点相 背,他不敢发表。
历经变故
1806年,卡尔·威廉·斐迪南公爵在抵抗拿破仑统帅的法军时不幸在耶 拿战役阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人 有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国 处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯 有些心灰意冷。 但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安 慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿 时才得知他那时的心态。在一篇讨论椭圆函数的手稿中,突然插入 了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。” 慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以 维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他 的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他, 自从1783年莱昂哈德·欧拉去世后,欧拉在彼得堡科学院的位置一直

高斯

高斯
2015-4-27
谷神星
返回
17
五、业绩长存
• 1855年2月23日清晨,高斯在睡梦中安详 的去 世了 。 • “在数学世界里你,高斯处处留芳。”他是18 ~19世纪之交的一个承上启下的中间人物。 • 高斯曾被形容为:“能从九霄云外的高度按照 某种观点掌握星空和深奥数学的天才。”
2015-4-27
2015-4-27
9
正十七边形的作图步骤:
2015-4-27
10
3.代数基本定理的证明 ——精彩的博士论文
• 1798年9月高斯以优异的成绩结束了在哥廷 根大学的学习。第二年完成论文,题目是《 关于每一单变量代数整函数都可分解为一阶 或二阶实因子的证明》。 • 他第一次对代数基本定理作出了实质性的证 明,从而解决了悬存了三百年的大难题。任 何一个复系数的单变量的代数方程都至少有
2015-4-27 3
数学王子——高斯
一、生平事迹 二、在数学上历史贡献 三、在物理学上的贡献 四、在天文学上的贡献 五、业绩长存
2015-4-27 4
一、高斯故事
• 三岁时,当水泥工头的父亲,星期六总会发薪水 给工人,有一次他趴在地板上暗地里跟着父亲计 算该给工人的薪水,他站了起来纠正错误的数目 ,把在场的大人吓得木瞪口呆。 。 • 高斯读小学的时候,很快算出了布特纳老师出的 一道难题:从1加起,加2,加3,加4,„„一直 加到100,满以为这下准能把学生们难住。没想到 高斯一会儿就算了出来。老师一看,答数是5050 ,一点不错,大吃一惊!
2015-4-27 16
四、在文学上的贡献
预测出“谷神星”的位置
• 高斯采用新的数学方法,创立 了一种行星椭圆轨道法。找到 了“谷神星”的位置。 • 1809年高斯的第二本巨著《 天体运动理论》出版。在书中 他首先公布了最小二乘法院里 的应用,并阐述了在各种观测 情况下,如何计算圆锥形轨道 的方法和摄动的理论。

高斯定理概念

高斯定理概念

高斯定理概念
高斯定理是电磁学中的一个重要定理,它描述了电场与电荷分布之间的关系。

根据高斯定理,电场通过一个封闭曲面的总通量等于该曲面内的电荷总量除以真空介电常数。

具体来说,高斯定理可以表述为:一个封闭曲面S内的电场E 的通量Φ等于该曲面内的电荷量Q除以真空介电常数ε0。

数学公式为:∮S E·dS = Q/ε0,其中∮表示对曲面S上所有微元面积求积分,E表示电场强度矢量,dS表示微元面积的矢量法向量,Q表示曲面S内的总电荷量,ε0表示真空介电常数。

高斯定理的应用十分广泛,可用于计算电场强度、电荷分布、电容等问题。

同时,高斯定理还为静电场的理论研究提供了一个重要工具,它将复杂的空间分布电荷问题转化为简单的电荷量问题。

高斯公式应用案例

高斯公式应用案例

高斯公式应用案例摘要:一、高斯公式的简介二、高斯公式的应用案例1.计算曲面的面积2.计算立体图形的体积3.计算质心4.计算转动惯量正文:高斯公式,又称高斯(Gauss)积分公式,是一种在微积分学中用于计算曲面积分和立体图形的体积的公式。

它具有广泛的应用,可以解决许多实际问题。

下面我们通过四个具体的应用案例来了解高斯公式的应用。

一、高斯公式的简介高斯公式是指在三维空间中,一个曲面的面积可以通过以下公式计算:A = ∫∫_S {dS} = _S {σdτ}其中,A 表示曲面的面积,S 表示曲面的微小面积元,dS 表示面积元的法向量,σ表示曲面上的应力,dτ表示微小体元的微元。

二、高斯公式的应用案例1.计算曲面的面积假设我们想要计算一个球面的面积,我们可以将球面分割成无数小的曲面元,每个曲面元可以用一个小的球冠来近似表示。

然后,我们计算每个球冠的面积,最后将所有球冠的面积加起来,就可以得到球面的面积。

这个过程实际上就是利用高斯公式来计算曲面的面积。

2.计算立体图形的体积高斯公式不仅可以计算曲面的面积,还可以计算立体图形的体积。

例如,我们可以用高斯公式来计算一个长方体的体积。

首先,我们将长方体分割成无数小的立方体,然后计算每个立方体的体积,最后将所有立方体的体积加起来,就可以得到长方体的体积。

3.计算质心质心是物体所有部分的平均位置,可以通过高斯公式来计算。

假设我们想要计算一个形状不规则的物体的质心,可以将物体分割成无数小的部分,每个部分可以用一个小的质量元来近似表示。

然后,我们计算每个质量元的质量,最后将所有质量元的质量加起来,并除以总质量,就可以得到质心的位置。

4.计算转动惯量转动惯量是物体旋转时抵抗改变自身形状的能力,也可以通过高斯公式来计算。

假设我们想要计算一个形状不规则的物体的转动惯量,可以将物体分割成无数小的部分,每个部分可以用一个小的质量元和一个小立方体来近似表示。

然后,我们计算每个质量元和小立方体的转动惯量,最后将所有转动惯量加起来,就可以得到物体的总转动惯量。

高斯公式

高斯公式
3
2. 简单应用
例1 计算曲面积分
∫∫ ( x − y )dxdy + ( y − z ) xdydz,
Σ
其 中 Σ 为 柱 面 x + y = 1及 平 面 z = 0, z = 3
2 2
所 围 成 的 空 间 闭 区 域 Ω的 整 个 边 界 曲 面 的 外 侧.
4
解 P = ( y − z ) x , Q = 0, R = x − y , z 3 ∂P ∂Q ∂R = y − z, = 0, = 0, ∂x ∂y ∂z
其中 Σ 为锥面 x + y = z 介于平面 z = 0 及 z = h( h > 0 )之间的部分的下侧, cos α , cos β , 之间的部分的下侧, cos γ 是 Σ 在 ( x , y , z ) 处的法向量的方向余弦 .
解 由第二型曲面积分的定义
原式 = ∫∫ x dydz + y dzdx + z dxdy
∫∫ Pdydz + Qdzdx + Rdxdy
Σ
Σ Ω . 这里 是 的整个边界曲面的外侧
2
由两类曲面积分之间的关系知
∂P ∂Q ∂R ∫∫∫ ( ∂x + ∂y + ∂z )dv Ω = ∫∫ ( P cosα + Qcos β + Rcosγ )dS.
Σ
Gauss公式的实质 Gauss公式的实质 揭示了空间闭区域上的三重积分与 其边界曲面上的曲面积分之间的关系. 其边界曲面上的曲面积分之间的关系
原式 = ∫∫∫ ( y − z )dxdydz
= ∫∫∫ ( ρ sinθ − z ) ρ d ρ dθ dz
= ∫ dθ ∫ ρdρ ∫ ( ρ sin θ − z )dz

高数高斯公式


R z
)dv
Pdydz
Qdzdx
Rdxdy
2、高斯公式的实质
(1)应用的条件
(2)物理意义 divAdv AdS
21
习题10 6
P174
高斯 ( Gauss ) 公 式25
1(2)(3)(4),2(3),3(2)
22
1
3
x2 y2 dxdy
Dxy
2
d
R
r rdr
2 R3
0
0
3
1
1
1
高斯
1 4 R3 2 R3 4 R3
( Gauss ) 公 式10
23
3
3
9
例 3 计算曲面积分
高斯
( x2 cos y2 cos z2 cos )ds,其中Σ为
( Gauss ) 公 式11
解 P ( y z)x, Q 0, x R x y,
1
3
z
o1
y
5
P y z, Q 0, R 0,
x
y
z
z
高斯 ( Gauss ) 公
式7
1
3
原式 ( y z)dxdydz
(利用柱面坐标得)
(r sin z)rdrddz
o1
y
x
2
1
3
0 d 0 rdr 0 (r sin z)dz
A( x, y, z) P( x, y, z)i Q( x, y, z) j R( x, y, z)k
沿场中某一有向曲面Σ的第二类曲面积分为
AdS Pdydz Qdzdx Rdxdy
如E为称电为场向强量 度,场单A位(时x,间y,通z)过向正的侧电穿通过量曲面I Σ的E通dS量.

高斯

h Gauss 高斯( 1777~1855) 1777~1855) 德国数学家和物理学家。1777年 德国数学家和物理学家。1777年4 30日生于德国布伦瑞克 日生于德国布伦瑞克, 月30日生于德国布伦瑞克,幼时家境贫 困,聪敏异常,受一贵族资助才进学校 聪敏异常, 受教育。1795~1789年在哥廷根大学学 受教育。1795~1789年在哥廷根大学学 1799年获博士学位 1870年任哥廷 年获博士学位。 习,1799年获博士学位。1870年任哥廷 根大学数学教授和哥廷根天文台台长, 根大学数学教授和哥廷根天文台台长, 一直到逝世。1833年和物理学家W.E.韦 年和物理学家W.E. 一直到逝世。1833年和物理学家W.E.韦 伯共同建立地磁观测台,组织磁学学会 伯共同建立地磁观测台, 以联系全世界的地磁台站网。1855年 以联系全世界的地磁台站网。1855年2 23日在哥廷根逝世 日在哥廷根逝世。 月23日在哥廷根逝世。 高斯长期从事于数学并将数学应用于物理学、 高斯长期从事于数学并将数学应用于物理学、天文学和大地测 量学等领域的研究,著述丰富,成就甚多。 量学等领域的研究,著述丰富,成就甚多。他一生中共发表 323篇 著作,提出404项科学创见(发表178 404项科学创见 178项 323篇(种)著作,提出404项科学创见(发表178项),
在各领域的主要成就有: 在各领域的主要成就有: 物理学和地磁学中,关于静电学、 (1)物理学和地磁学中,关于静电学、温差电和摩擦电的研 利用绝对单位(长度、质量和时间) 究、利用绝对单位(长度、质量和时间)法则量度非力学量以 及地磁分布的理论研究。 及地磁分布的理论研究。 利用几何学知识研究光学系统近轴光线行为和成像, (2)利用几何学知识研究光学系统近轴光线行为和成像, 建立高斯光学。 建立高斯光学。 天文学和大地测量学中,如小行星轨道的计算, (3)天文学和大地测量学中,如小行星轨道的计算,地球 大小和形状的理论研究等。 大小和形状的理论研究等。 结合试验数据的测算,发展了概率统计理论和误差理论, (4)结合试验数据的测算,发展了概率统计理论和误差理论, 发明了最小二乘法,引入高斯误差曲线。此外,在纯数学方面, 发明了最小二乘法,引入高斯误差曲线。此外,在纯数学方面, 对数论、代数、几何学的若干基本定理作出严格证明。 对数论、代数、几何学的若干基本定理作出严格证明。 CGS电磁系单位制 emu) 电磁系单位制( 在CGS电磁系单位制(emu)中磁感应强度的单位定为高斯 1932年以前曾经用高斯作为磁场强度单位),便是为了纪 年以前曾经用高斯作为磁场强度单位), (1932年以前曾经用高斯作为磁场强度单位),便是为了纪 念高斯在电磁学上的卓越贡献。 念高斯在电磁学上的卓越贡献。

数学家高斯

助下,结算出天体的运行轨迹。并 用这种方法,发现了谷神星的运行轨迹。谷神星 于1801年由意大利天文学家皮亚齐发现,但他 因病耽误了观测,失去了这颗小行星的轨迹。皮 亚齐以希腊神话中“丰收女神”(Ceres)来命名 它,即谷神星(Planetoiden Ceres),并将以前 观测的位置发表出来,希望全球的天文学家一起 寻找。高斯通过以前的三次观测数据,计算出了 谷神星的运行轨迹。奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这 颗小行星。从此高斯名扬天下。高斯将这种方法 著述在著作《天体运动论》中。
期的角高 的日网斯 计期为设 算,了计 公高获的 式斯知汉 。推任诺
导意威 了一大 复年地 活中测 节复量 日活的
在高斯19岁时,仅用没有刻度的尺规与圆 规便构造出了正17边形(阿基米德与牛顿均 未画出)。并为流传了2000年的欧 氏几何提 供了自古希腊时代以来的第一次重要补充。
高斯计算的谷神星轨迹高斯总结 了复数的应用,并且严格证明了每 一个n阶的代数方程必有n个实数或 者复数解。在他的第一本著名的著 作《数论》中,作出了二次互反律 的证明,成为数论继续发展的重要 基础。在这部著作的第一章,导出 了三角形全等定理的概念。
高斯出生:
高斯1777年4月30日生于不 伦瑞克的一个工匠家庭,1855年 2月23日卒于哥廷根。幼时家境 贫困,但聪敏异常,受一贵族资 助才进学校受教育。1795~1798 年在格丁根大学学习1798年转入 黑尔姆施泰特大学,翌年因证明 代数基本定理获博士学位。从 1807年起担任格丁根大学教授兼 格丁根天文台台长直至逝世。
高斯成为哥廷根大学的教授和当地天文台的 台长。
高斯墓地:
高斯非常信教且保守。他的父亲死于1808年 4月14日,晚些时候的1809年10月11日,他的第 一位妻子Johanna也离开人世。次年8月4日高斯 迎娶第二位妻子Friederica Wilhelmine (17881831)。他们又有三个孩子:Eugen (18111896), Wilhelm (1813-1883) 和 Therese (18161864)。 1831年9月12日她的第二位妻子也死去, 1837年高斯开始学习俄语。1839年4月18日,他 的母亲在哥廷根逝世,享年95岁。高斯于1855 年2月23日凌晨1点在哥廷根去世。他的很多散 布在给朋友的书信或笔记中的发现于1898年被 发现。

高等数学11.6高斯(Gauss)公式

公式称为高斯(Gauss,1777-1855,德国)公式.
一、高斯公式
P Q R )dV ( x y z Pdydz Qdzdx Rdxdy

其中 取外侧 .
由两类曲面积分之间的关系得高斯公式的另一种形式:
P Q R Pdydz Qdzdx Rdxdy ( ) dv x y z

对图中区域 , 可添加曲面 3 ( 上侧 ),
1 2 ,
1 2 ,
1 1 3 , 2 2 3 ,



1 2
z
2
3
2
1

1 3


2 3
2

z=h
1
法向量 y z h( h 0) (0,0,1)
2 2
h

D xy
o
y
2 2 2 1 4 ( x cos y cos z cos ) dS 2 ( x y z ) dv h . 2 1
x
( x 2 cos y 2 cos z 2 cos )dS z 2 dS
2
y z h( h 0)
2 2
h

D xy
o
y
2

x P Q R ( P cos Q cos R cos )dS . ( ) dv x y z
2 2 2 ( x cos y cos z cos )dS ( x y z )dv 1
0,
( x y )dxdy ( y z ) xdydz
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学天才──高斯
高斯(C.F.Gauss,1777.4.30-1855.2.23)是德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。

父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。

迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。

父亲对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生。

高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。

1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。

在成长过程中,幼年的高斯主要是力于母亲和舅舅。

高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。

弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。

他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。

若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。

正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。

罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。

他性格坚强、聪明贤慧、富有幽默感。

高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。

当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。

罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。

然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。

在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是"欧洲最伟大的数学家",为此她激动得热泪盈眶。

7岁那年,高斯第一次上学了。

头两年没有什么特殊的事情。

1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。

数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。

在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案。

不过,这很可能是一个不真实的传说。

据对高斯素有研究的著名数学史家E.T.贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+ (100899)
当然,这也是一个等差数列的求和问题(公差为198,项数为100)。

当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。

E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。

高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。

数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。

一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。

贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。

而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。

高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。

他特意从汉堡买了最好的算术书送给高斯,说:"你已经超过了我,我没有什么东西可以教你了。

"接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。

他们一起学习,互相帮助,高斯由此开始了真正的数学研究。

1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。

经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。

这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。

布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。

不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。

高斯正处于私人资助科学研究与科学研究社会化的转变时期。

1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。

1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大家,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。

1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时─虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。

公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。

所有这一切,令高斯十分感动。

他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。

1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。

他悲痛欲绝,长时间对法国人有一种深深的敌意。

大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。

人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。

在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:"对我来说,死去也比这样的生活更好受些。

"
慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。

由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。

彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。

公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。

现在,高斯又在他的生活中面临着新的选择。

为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。

1807年,高斯赴哥丁根就职,全家迁居于此。

从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。

洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。

同时,这也标志着科学研究社会化的一个良好开端。

高斯的学术地位,历来为人们推崇得很高。

他有"数学王子"、"数学家之王"的美称、被认为是人类有史以来"最伟大的三位(或四位)数学家之一"(阿基米德、牛顿、高斯或加上欧拉)。

人们还称赞高斯是"人类的骄傲"。

天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。

高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。

从研究风格、方法乃至所取得的具体成就方面,他都是18─19世纪之交的中坚人物。

如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。

随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。

作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。

1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。

高斯的一生,是典型的学者的一生。

他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。

他先后结过两次婚,几个孩子曾使他颇为恼火。

不过,这些对他的科学创造影响不太大。

在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。

相关文档
最新文档