信号与系统第二版课后答案
《信号与系统》第二版课后答案_(郑君里)_高等教育出版社

解题过程: (1)方法一:
f (t)
1
f (t − 2)
1
→
-2
-1
f (3t − 2)
0
1
→
1
2
f (−3t − 2)
1
→
3
2/3 1
-1 -2/3
方法二:
f (t)
f (3t )
1
1
→
→
-2
-1
f (3t − 2)
0
1
-2/3
→
1/3
f (−3t − 2)
2/3 1 方法三:
-1 -2/3
1
f (t)
解题过程:
fe
(t)
=
1 2
⎡⎣
f
(t ) +
f
(−t )⎤⎦
fo
(t)
=
1 2
⎡⎣
f
(t)
−
f
(−t )⎤⎦
(a-1)
(a-2)
(a-3)
(a-4)
4
(b) f (t ) 为偶函数,故只有偶分量,为其本身
(c-1)
(c-2)
(c-3)
(c-4)
(d-1)
(d-2)
(d-3)
(d-4)
1-20 分析过程:本题为判断系统性质:线性、时不变性、因果性 (1)线性(Linearity):基本含义为叠加性和均匀性
7
t
(7) r (t ) = ∫ e(τ ) dτ −∞
t
t
线性:设 r1 (t ) = ∫ e1 (τ ) dτ 、 r2 (t ) = ∫ e2 (τ ) dτ ,
−∞
−∞
信号与系统 陈后金 第二版 课后习题答案(完整版)

(1) f (t) = 3sin 2t + 6 sinπ t
(2) f (t) = (a sin t) 2
(8)
f
(k)
=
cos⎜⎛ ⎝
πk 4
⎟⎞ ⎠
+
sin⎜⎛ ⎝
πk 8
⎟⎞ ⎠
−
2
cos⎜⎛ ⎝
πk 2
⎟⎞ ⎠
解:(1)因为 sin 2t 的周期为π ,而 sin πt 的周期为 2 。
显然,使方程
−∞
0
2-10 已知信号 f (t) 的波形如题 2-10 图所示,绘出下列信号的波形。
f (t)
2
1
−1 0
t 2
题 2-10 图
(3) f (5 − 3t) (7) f ′(t) 解:(3)将 f (t) 表示成如下的数学表达式
(5) f (t)u(1 − t)
由此得
⎧2
f
(t)
=
⎪ ⎨ ⎪ ⎩
f (t)u(1− t) 2
1
0.5
t
−1 0
1
(7)方法 1:几何法。由于 f (t) 的波形在 t = −1处有一个幅度为 2 的正跳变,所以 f ′(t) 在 此处会形成一个强度为 2 的冲激信号。同理,在 t = 0 处 f ′(t) 会形成一个强度为 1 的冲激信 号(方向向下,因为是负跳变),而在 0 < t < 2 的区间内有 f ′(t) = −0.5 (由 f (t) 的表达式可
第 1 页 共 27 页
《信号与系统》(陈后金等编)作业参考解答
(2)显然,该系统为非线性系统。 由于
T{f (t − t0 )}= Kf (t − t0 ) + f 2 (t − t0 ) = y(t − t0 )
信号与系统(第二版)电子工业出版社【参考答案】

第一章1.8 系统的数学模型如下,试判断其线性、时不变性和因果性。
其中X (0-)为系统的初始状态。
(2)()()2f t y t e = (5)()()cos2y t f t t = (8)()()2y t f t = 解:(2)()()2f t y t e = ① 线性: 设 ()()()()1122,f t y t f t y t →→,则 ()()()()122212,f t f t y t ey t e==那么 ()()()()()()()112211222221122a f t a f t a f t a f t a f t a f t y t ee e +⎡⎤⎣⎦+→==,显然,()()()1122y t a y t a y t ≠+,所以是非线性的。
② 时不变性设()()11,f t y t →则 ()()()()10122110,f t t f t y t e y t t e-=-=设()()102,f t t y t -→则()()()102210f t t y t e y t t -==-,所以是时不变的。
③ 因果性因为对任意时刻 t 1,()()121f t y t e =,即输出由当前时刻的输入决定,所以系统是因果的。
(5)()()cos2y t f t t = ① 线性: 设 ()()()()1122,f t y t f t y t →→,则 ()()()()1122cos2,cos2y t f t t y t f t t ==那么()()()()()()()112211221122cos 2cos 2cos 2a f t a f t y t a f t a f t t a f t t a f t t +→=+=+⎡⎤⎣⎦, 显然()()()1122y t a y t a y t =+,所以系统是线性的。
② 时不变性设()()11,f t y t →则 ()()()()()1110100cos2,cos2y t f t t y t t f t t t t =-=--设()()102,f t t y t -→则()()()21010cos2y t f t t t y t t =-≠-,所以是时变的。
信号与系统第二版课后答案燕庆明

《信号与系统》(第二版)课后习题解析燕庆明主编高等教育出版社xaqZ 目录第1章习题解析 (2)第2章习题解析 (5)第3章习题解析 (15)第4章习题解析 (22)第5章习题解析 (30)第6章习题解析 (40)第7章习题解析 (48)第8章习题解析 (54)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。
](a) 2 f ( t - 2 ) (b) f ( 2t )(c) f ( 2t )(d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅=;t ti L t u L L d )(d )(=;⎰∞-=tC C i C t u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+= 且 )()(,d )()(t y t x t t x t y '==⎰S RS L S C故有 )()()(t ay t f t y -=' 即 )()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为:)()]([)(t f t f T t y == 不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==; )()()]([222t y t f t f T == 故有 )()()()]([21t y t f t f t f T =+= 显然 )()()()(2121t f t f t f t f +≠+ 即不满足可加性,故为非线性时不变系统。
信号与系统课后答案(第二版)+曾禹村+第二章作业参考答案

i1(t) = i2 (t) + i3 (t) , i2 (t) R2 − L 有 8i2 `(t) + 3i2 (t) = 2e`(t) ˆ ˆ 由 h`(t) + 3h(t) = 2δ (t)
0
h
(−1) t 3
T
t
t 3E − τ E (t) = ∫ δ (τ )dτ − ∫ e 8 u(τ )dτ −∞ 4 −∞ 32
x(t)
1
2 t
yx(t)
1 2 3 4 t
0
1
0
Qh(0) = 0, t ≤ 0, 有 0 ≤ t <1 , h(t) + h(t −1) + h(t − 2) = h(t) = t 时 1≤ t < 2时 h(t) + h(t −1) + h(t − 2) = h(t) + h(t −1) =1 , h(t) =1− h(t −1) =1− (t −1) = 2 −t 2 ≤ t < 3 , h(t) + h(t −1) + h(t − 2) =1 时 h(t) =1− h(t −1) − h(t − 2) =1− (2 − (t −1)) − (t − 2) = 0 3 ≤ t < 4时 h(t) = 4 − t − h(t −1) − h(t − 2) =4 −t − 0 − (2 − (t − 2)) = 0 , t, 0 ≤ t < 1 ∴h(t) = 2 − t, 1 ≤ t ≤ 2 0, t < 0,2 < t
解: (e) 特征方程为 λ2+4λ+4=0 得 λ1=-2, λ2=-2。 则 h(t)= (c1eλ1 t+ c2eλ2t)u(t)=( c1e- 3 t+ c2e-2 t)u(t) h`(t)= (c1+ c2)δ(t)+(-3c1e- 3 t-2c2e- 2t)u(t) h``(t)= (c1+ c2)δ`(t)+(-3c1-2c2) δ(t)+ (9c1e- 3 t+4c2e- 2t)u(t) 将x(t)= δ(t), y(t)=h(t)代入原方程得:
信号与系统第二版课后答案_西安交大_奥本海姆(汉语)

第一章1.3 解:(a). 2401lim(),04Tt T TE x t dt e dt P ∞-∞∞→∞-====⎰⎰(b) dt t x TP T TT ⎰-∞→∞=2)(21lim121lim ==⎰-∞→dt T TTT∞===⎰⎰∞∞--∞→∞dt t x dt t x E TTT 22)()(lim(c).222lim()cos (),111cos(2)1lim()lim2222TT TTTT T TTE x t dt t dt t P x t dt dt TT∞∞→∞--∞∞→∞→∞--===∞+===⎰⎰⎰⎰(d) 034121lim )21(121lim ][121lim 022=⋅+=+=+=∞→=∞→-=∞→∞∑∑N N n x N P N Nn n N N N n N 34)21()(lim202===∑∑-∞=∞→∞nNNn N n x E (e). 2()1,x n E ∞==∞211lim []lim 112121N NN N n N n NP x n N N ∞→∞→∞=-=-===++∑∑ (f) ∑-=∞→∞=+=NNn N n x N P 21)(121lim 2∑-=∞→∞∞===NNn N n x E 2)(lim1.9. a). 00210,105T ππω===; b) 非周期的; c) 00007,,22mN N ωωππ=== d). 010;N = e). 非周期的; 1.12 解:∑∞=--3)1(k k n δ对于4n ≥时,为1即4≥n 时,x(n)为0,其余n 值时,x(n)为1易有:)3()(+-=n u n x , 01,3;M n =-=- 1.15 解:(a)]3[21]2[][][222-+-==n x n x n y n y , 又2111()()2()4(1)x n y n x n x n ==+-, 1111()2[2]4[3][3]2[4]y n x n x n x n x n ∴=-+-+-+-,1()()x n x n = ()2[2]5[3]2[4]y n x n x n x n =-+-+- 其中][n x 为系统输入。
奥本海姆《信号与系统(第二版)》习题参考答案
Charpt 11.21—(a),(b),(c)一连续时间信号 x(t) 如图 original 所示,请画出下列信号并给予标注:a)x(t-1)b)x(2-t)c)x(2t+1)d)x(4-t/2)e)[x(t)=x(-t)]u(t)f)x(t)[ δ(t+3/2)- δ(t-3/2)](d),(e),(f)1.22一离散时间信号 x[n] 如图 original 所示,请画出下列信号并给予标注。
a)x[n-4]b)x[3-n]c)x[3n]e) x[n]u[3-n]f) x[n-2] δ [n-2]1.23确定并画出图 original 信号的奇部和偶部,并给予标注。
1.25判定下列连续时间信号的周期性,若是周期的,确定它的基波周期。
a)x(t)=3cos(4t+ π /3) T=2π/4=π/2;b)x(t)=e j( t 1) T=2π/π=2;2c)x(t)=[cos(2t- π /3)] 2 x(t)=1/2+cos[(cos(4t-2 π/3))]/2, so T=2π/4=π/2;d)x(t)= E v {cos(4 π t)u(t)} 定义 x(0)=1/2, 则 T=1/2;e)E v {sin(4 π t)u(t)}非周期f ) x(t)= e(2t n)n假设其周期为 T 则e (2t n)= e(2t n 2T)= e(2t (n 2T))= e(2t n)n n n n所以 T=1/2( 最小正周期 ) ;1.26判定下列离散时间信号的周期性;若是周期的,确定他们的基波周期。
(a)x[n]=sin(6 π /7+1)N=7(b)x[n]=cos(n/8- π ) 不是周期信号2(c)x[n]=cos( π n /8)假设其周期为 N,则(n N)2/8 n2/8+2k所以易得 N=8(d) x[n]= cos( n) cos( n)24N=8(e) x[n]= 2cos( n) sin( n) 2cos( n )4 8 2 6N=161.31在本题中将要说明线性时不变性质的最重要的结果之一,即一旦知道了一个线性系统或线性时不变系统对某单一输入的响应或者对若干个输入的响应,就能直接计算出对许多其他输入信号的响应。
信号与系统第二版课后答案
则有
相加得
即
可见
即满足可加性,齐次性是显然的。故系统为线性的。
1-8若有线性时不变系统的方程为
若在非零f(t)作用下其响应 ,试求方程
的响应。
解因为f(t) ,由线性关系,则
由线性系统的微分特性,有
故响应
第2章习题解析
2-1如图2-1所示系统,试以uC(t)为输出列出其微分方程。
2-10对图示信号,求f1(t) *f2(t)。
题2-10图
解(a)先借用阶跃信号表示f1(t)和f2(t),即
f1(t)= 2(t)2(t1)
f2(t)=(t)(t2)
故
f1(t) *f2(t) = [2(t)2(t1)] * [(t)(t2)]
因为
(t) *(t)= =t(t)
故有
f1(t) *f2(t) = 2t(t)2(t1)(t1)2(t2)(t2)+ 2(t3)(t3)
解因方程的特征根=3,故有
当h(t) =(t)时,则冲激响应
阶跃响应
2-9试求下列卷积。
(a)(t+ 3 ) *(t5 )
(b)(t) * 2
(c)tet(t)*(t)
解(a)按定义
(t+ 3 ) *(t5 )=
考虑到<3时,(+ 3 )= 0;>t5时,(t5 )= 0,故
(t+ 3 ) *(t5 )=
试证明:
(1)
(2)利用(1)的结果,证明阶跃响应
证(1)因为
y(t)=f(t)h(t)
由微分性质,有
y(t)=f(t)h(t)
再由积分性质,有
(2)因为
奥本海姆《信号与系统》第二版信号与系统答案
4 3
(e)
x 2[n] = e
j(
n
2
) 8
,
x 2[n] =1. therefore, E = x 2[n] = ,
2
Байду номын сангаас
2
P
N = lim 1 N 2 N 1 n N
n
x 2[n]
2
N 1 lim 1 1. N 2 N 1 n N
(d)
1
T
1 COS (2t ) 1 dt 2 2
n
2 1 u[n] . Therefore, E = [n] 2 1 1 u[n] , [ n ] [ n ] x1 x 1 x n0 4 4 2 P =0,because E < .
v 1
1
(b) Since (c)
x1(t) is an odd signal,
x [ n] x
v 2
is zero for all values of t.
1 [ n] v x3 2
n n 1 1 1 [ n ] [ n ] u [ n 3] u [ n 3] x1 x1 2 2 2
1
(b) {x (t )} 2 cos( ) cos(3t 2 ) cos(3t ) e 0t cos(3t 0) 2 (c) {x (t )} e t sin(3 t ) e t sin(3t ) 3 2 (d) 1.9. (a)
Signals & Systems
《信号与系统(第2版》【附录+习题答案】
附 录 A 常 用 数 学 公 式A.1 三角函数公式j e cos jsin t t t ωωω=+ j e e (cos jsin )t t t σωσωω+=+j j 1cos (e e )2t t t ωωω-=+j j 1sin (e e )2jt t t ωωω-=-sin()sin cos cos sin αβαβαβ±=± cos()cos cos sin sin αβαβαβ±=sin22sin cos ααα=2222cos2cos sin 12sin 2cos 1ααααα=-=-=-1sin sin [cos()cos()]2αβαβαβ=--+1cos cos [cos()cos()]2αβαβαβ=-++1sin cos [sin()sin()]2αβαβαβ=-++双曲正弦:e e sh 2x xx --=双曲余弦:e e ch 2x xx -+=A.2 微积分公式d()d Cu C u =,C 为常数(下同)d()d d u v u v ±=±,u 、v 为t 的函数(下同) d()d d uv v u u v =+ 2d d d u v u u v v v -⎛⎫= ⎪⎝⎭d d Cu t C u t =⎰⎰()d d d u v t u t v t ±=±⎰⎰⎰信号与系统288d d u v uv v u =-⎰⎰()d ()()()()d ()bb baaau t v t u t v t v t u t =-⎰⎰A.3 数列求和公式(1)等比数列123,,,,N a a a a 的通项为11n n a a q -=,q 为公比,前n 项的和为 111(1)11NN N N n n a a q a q S a q q =--===--∑(2)等差数列123,,,,N a a a a 的通项为1(1)n a a n d =+-,d 为公差,前n 项的和为111()(1)22NN N n n N a a N N dS a Na =+-===+∑附 录 B 常 用 信 号 与 系 统 公 式B.1 连续时间信号的卷积121221()()()()d ()()d x t x t x x t x x t ττττττ∞∞-∞-∞*=-=-⎰⎰B.2 离散时间信号的卷积121221()()()()()()m m x n x n x m x n m x m x n m ∞∞=-∞=-∞*=-=-∑∑B.3 连续时间三角形式的傅里叶级数0000011()[cos()sin()]cos()kk kkk k x t a ak t b k t A A k t ωωωϕ∞∞===++=++∑∑0000001()d t T t a A x t t T +==⎰000002()cos()d 1,2,t T k t a x t k t t k T ω+==⎰, 000002()sin()d 1,2,t T k t b x t k t t k T ω+==⎰,1,2,k A k = arctan 1,2,k k k b k a ϕ⎛⎫=-=⎪⎝⎭,B.4 连续时间指数形式的傅里叶级数FS000j 01()e d t T k t k t X x t t T ω+-=⎰0j 0()()ek tk x t X k ωω∞=-∞=∑信号与系统290B.5 连续时间傅里叶变换FTj (j )()e d t X x t t ωω∞--∞=⎰j 1()(j )e d 2πt x t X ωωω∞-∞=⎰B.6 双边拉普拉斯变换()()e d st X s x t t ∞--∞=⎰j j 1()()e d 2πjst x t X s s σσ+∞-∞=⎰B.7 单边拉普拉斯变换0()()e d st X s x t t ∞--=⎰j j 1()()e d 2πjst x t X s s σσ+∞-∞=⎰,0t ≥B.8 离散时间傅里叶级数DFS2πj 1()()ekn NN N n N X k x n N -=<>=∑,0,1,2,k =±±2πj()()ekn NN N k N x n X k =<>=∑,0,1,2,n =±±B.9 离散时间傅里叶变换DTFTj j (e )()enn X x n ΩΩ∞-=-∞=∑j j 2π1()(e )e d 2πn x n X ΩΩΩ=⎰B.10 离散傅里叶变换DFT1()()01N knNn X k x n Wk N -==-∑≤≤,附 录 B 常 用 信 号 与 系 统 公 式29111()()01N kn Nk x n X k Wn N N--==-∑≤≤,B.11 双边Z 变换b ()()nn X z x n z∞-=-∞=∑11()()2n cx n X z z dzj π-=⎰B.12 单边Z 变换s 0()()nn X z x n z∞-==∑11()()2n cx n X z z dzj π-=⎰习题参考答案第1章1.1(a)确定信号、连续时间信号、非周期信号、能量信号、非因果信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)
(2)利用(1)的结果,证明阶跃响应
证(1)因为
y(t)=f(t)h(t)
由微分性质,有
y(t)=f(t)h(t)
再由积分性质,有
(2)因为
s(t)=(t)h(t)
由(1)的结果,得
3-1求题3-1图所示周期信号的三角形式的傅里叶级数表示式。
题3-1图
解对于周期锯齿波信号,在周期( 0,T)内可表示为
所以输出
即y(t)包含了f(t)的全部信息F(),故恢复了f(t)。
5-1求下列函数的单边拉氏变换。
(1)
(2)
(3)
解(1)
(2)
(3)
5-2求下列题5-2图示各信号的拉氏变换。
题5-2图
解(a)因为
而
故
(b)因为
又因为
故有
5-3利用微积分性质,求题5-3所示信号的拉氏变换。
题5-3图
解先对f(t)求导,则
证明不失一般性,设输入有两个分量,且
则有
相加得
即
可见
即满足可加性,齐次性是显然的。故系统为线性的。
1-8若有线性时不变系统的方程为
若在非零f(t)作用下其响应 ,试求方程
的响应。
解因为f(t) ,由线性关系,则
由线性系统的微分特性,有
故响应
第2章习题解析
2-1如图2-1所示系统,试以uC(t)为输出列出其微分方程。
图p2-6
2-7如题2-7图一阶系统,对(a)求冲激响应i和uL,对(b)求冲激响应uC和iC,并画出它们的波形。
题2-7图
解由图(a)有
即
当uS(t) =(t),则冲激响应
则电压冲激响应
对于图(b)RC电路,有方程
即
当iS=(t)时,则
同时,电流
2-8设有一阶系统方程
试求其冲激响应h(t)和阶跃响应s(t)。
(t)s(t),(t)s(t)
故有
y1(t)=yzi(t)+s(t)= 3e3t(t)
y2(t)=yzi(t)s(t)= e3t(t)
从而有
y1(t)y2(t)= 2s(t)= 2e3t(t)
即
s(t)= e3t(t)
故冲激响应
h(t)=s(t)=(t)3e3t(t)
2-16若系统的零状态响应
y(t)=f(t)*h(t)
题2-14图
解由KCL和KVL,可得电路方程为
代入数据得
特征根
1,2=1j1
故冲激响应uC(t)为
2-15一线性时不变系统,在某起始状态下,已知当输入f(t)=(t)时,全响应y1(t)= 3e3t(t);当输入f(t)=(t)时,全响应y2(t)= e3t(t),试求该系统的冲激响应h(t)。
解因为零状态响应
2-10对图示信号,求f1(t) *f2(t)。
题2-10图
解(a)先借用阶跃信号表示f1(t)和f2(t),即
f1(t)= 2(t)2(t1)
f2(t)=(t)(t2)
故
f1(t) *f2(t) = [2(t)2(t1)] * [(t)(t2)]
因为
(t) *(t)= =t(t)
故有
f1(t) *f2(t) = 2t(t)2(t1)(t1)2(t2)(t2)+ 2(t3)(t3)
解因
故
幅度频谱见图p3-12。
图p3-12
4-1如题4-1图示RC系统,输入为方波u1(t),试用卷积定理求响应u2(t)。
题4-1图
解因为RC电路的频率响应为
而响应
u2(t) =u1(t) *h(t)
故由卷积定理,得
U2() =U1() *H(j)
而已知 ,故
反变换得
4-2一滤波器的频率特性如题图4-2所示,当输入为所示的f(t)信号时,求相应的输出y(t)。
解(1)
(2)
3-6对于如题3-6图所示的三角波信号,试证明其频谱函数为
题3-6图
证因为
0,|t| >
则
3-7试求信号f(t) = 1 + 2cost+ 3cos3t的傅里叶变换。
解因为
12()
2cost2[(1)+(+ 1)]
3cos3t3[(3)+(+ 3)]
故有
F() = 2[() +(1)+(+ 1)]+3[(3)+(+ 3)]
则有
即F3()是F2()的再频移。进而得响应的频谱为
其结果仅截取20 << 20的部分。以上过程的频谱变化如图p4-9所示。
图p4-9
4-10设信号f(t)的频谱F()如题4-10图(a)所示,当该信号通过图(b)系统后,证明y(t)恢复为f(t)。
题4-10图
证明因为
故通过高通滤波器后,频谱F1()为
(b)因为 ,故
2-12设有二阶系统方程
试求零状态响应
解因系统的特征方程为
2+3+ 2 =0
解得特征根
1=1,2=2
故特征函数
零状态响应
=
2-13如图系统,已知
试求系统的冲激响应h(t)。
题2-13图
解由图关系,有
所以冲激响应
即该系统输出一个方波。
2-14如图系统,已知R1=R2=1,L= 1H,C=1F。试求冲激响应uC(t)。
3-8试利用傅里叶变换的性质,求题3-8图所示信号f2(t)的频谱函数。
题3-8图
解由于f1(t)的A= 2,= 2,故其变换
根据尺度特性,有
再由调制定理得
3-9试利用卷积定理求下列信号的频谱函数。
(1)f(t) =Acos(0t)(t)
(2)f(t) =Asin(0t)(t)
解(1)因为
所以由时域卷积定理
所以阶跃响应
4-4如题图4-4所示是一个实际的信号加工系统,试写出系统的频率特性H(j)。
题4-4图
解由图可知输出
取上式的傅氏变换,得
故频率特性
4-5设信号f(t)为包含0 ~m分量的频带有限信号,试确定f( 3t)的奈奎斯特采样频率。
解由尺度特性,有
即f( 3t)的带宽比f(t)增加了3倍,即=3m。从而最低的抽样频率s=6m。故采样周期和采样频率分别为
(2)
(3)
(4)
解(1)t(t1 )=(t1 )
(2)
(3)
(4)
2-6设有题2-6图示信号f(t),对(a)写出f(t)的表达式,对(b)写出f(t)的表达式,并分别画出它们的波形。
题2-6图解(ຫໍສະໝຸດ )f(t) =(t2 ),t= 2
2(t4 ),t= 4
(b)f(t) =2(t)2(t1)2(t3)+ 2(t4)
题4-2图
解因为输入f(t)为周期冲激信号,故
所以f(t)的频谱
当n= 0,1,2时,对应H(j)才有输出,故
Y() =F()H(j)
= 2[2() +(2) +(+ 2)]
反变换得
y(t) = 2( 1 + cos2t)
4-3设系统的频率特性为
试用频域法求系统的冲激响应和阶跃响应。
解冲激响应,故
而阶跃响应频域函数应为
解因方程的特征根=3,故有
当h(t) =(t)时,则冲激响应
阶跃响应
2-9试求下列卷积。
(a)(t+ 3 ) *(t5 )
(b)(t) * 2
(c)tet(t)*(t)
解(a)按定义
(t+ 3 ) *(t5 )=
考虑到<3时,(+ 3 )= 0;>t5时,(t5 )= 0,故
(t+ 3 ) *(t5 )=
故对应的变换
所以
5-4用部分分式法求下列象函数的拉氏反变换。
(1)
(2)
(3)
(4)
解(1)
故有
所以
(2)
可得
又
可得
B= 0,C= 1
所以
题1-3图
解各系统响应与输入的关系可分别表示为
; ;
1-4如题1-4图示系统由加法器、积分器和放大量为a的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
题1-4图
解系统为反馈联接形式。设加法器的输出为x(t),由于
且
故有
即
1-5已知某系统的输入f(t)与输出y(t)的关系为y(t) = |f(t)|,试判定该系统是否为线性时不变系统?
ad?e12tttt???????betde3tttt?????解a因为tttt?????????故?e1?e1?e1222ttttttttt???????????????b因为ettt????故tttttttttt333e3eedde???????????????212设有二阶系统方程4??23ttytyty??????试求零状态响应解因系统的特征方程为?23?20解得特征根?1?1?2?2故特征函数?eeee2221ttxtttt????????零状态响应?ee4?4?22tttxttytt??????????4ee82ttt???213如图系统已知121tthtth?????试求系统的冲激响应ht
解设T为系统的运算子,则可以表示为:
不失一般性,设f(t) =f1(t) +f2(t),则
;
故有
显然
即不满足可加性,故为非线性时不变系统。
1-6判断下列方程所表示的系统的性质。
(1) (2)
(3) (4)
解(1)线性;(2)线性时不变;(3)线性时变;(4)非线性时不变。
1-7试证明方程 所描述的系统为线性系统。式中a为常量。