轮式压路机液压系统毕业设计

合集下载

挖机液压系统设计(毕业论文)

挖机液压系统设计(毕业论文)
在搜集了国内外挖掘机液压系统相关资料的基础上,了解了挖掘机液压系统的发展历史,并对挖掘机液压系统的技术发展动态进行了分析总结。本次毕业设计课题是液压挖掘机。挖掘机由多个系统组成,包括液压系统,传动系统,操纵系统,工作装置,底架,转台,油箱,发动机安装等。本人的设计主要致力于分析和设计中型液压挖掘机液压系统的液压元件。以液压元件和液压回路为主。
1.1
液压挖掘机是一种多功能机械,目前被广泛应用于水利工程,交通运输,电力工程和矿山采掘等机械施工中,它在减轻繁重的体力劳动,保证工程质量。加快建设速度以及提高劳动生产率方面起着十分重要的作用。根据建筑施工部门统计,几十个工人一天的工作量。因此,大力发展液压挖掘机,对于提高劳动生产率和加速国民经济的发展具有重要意义。由于液压挖掘机具有多品种,多功能,高质量及高效率等特点,因此受到了广大施工作业单位的青睐。液压挖掘机的生产制造业也日益蓬勃发展。
(3)重视采用新技术、新工艺、新结构,加快标准化、系列化、通用化发展速度。例如,德国阿特拉斯公司生产的挖掘机装有新型的发动机转速调节装置,使挖掘机按最适合其作业要求的速度来工作;美国林肯贝尔特公司新C系列LS-5800型液压挖掘机安装了全自动控制液压系统,可自动调节流量,避免了驱动功率的浪费。还安装了CAPS(计算机辅助功率系统),提高挖掘机的作业功率,更好地发挥液压系统的功能;日本住友公司生产的FJ系列五种新型号挖掘机配有与液压回路连接的计算机辅助功率控制系统,利用精控模式选择系统,减少燃油、发动机功率和液压功率的消耗,并处长了零部件的使用寿命;德国奥加凯(O&K)公司生产的挖掘机的油泵调节系统具有合流特性,使油泵具有最大的工作效率;日本神钢公司在新型的904、905、907、909型液压挖掘机上采用智能型控制系统,即使无经验的驾驶员也能进行复杂的作业操作;德国利勃海尔公司开发了ECO(电子控制作业)的操纵装置,可根据作业要求调节挖掘机的作业性能,取得了高效率、低油耗的效果;美国卡特匹勒公司在新型B系统挖掘机上采用最新的3114T型柴油机以及扭矩载荷传感压力系统、功率方式选择器等,进一步提高了挖掘机的作业效率和稳定性。韩国大宇公司在DH280型挖掘机上采用了EPOS——电子功率优化系统,根据发动机负荷的变化,自动调节液压泵所吸收的功率,使发动机转速始终保持在额定转速附近,即发动机始终以全功率运转,这样既充分利用了发动机的功率、提高挖掘机的作业效率,又防止了发动机因过载而熄火。

YZ12压路机液压系统设计

YZ12压路机液压系统设计

YZ12压路机液压系统设计YZ12压路机液压系统设计摘要YZ12单钢轮振动型压路机是一种前置钢轮,后置轮胎,利用其自身的重力、钢轮振动和轮胎揉搓压实的压实机械,主要用于道路与工程结构物的土石方基础的压实作业,世界上土方工程压实工作量的85%是用单钢轮振动型压路机完成的。

本文在分析国内外单钢轮振动压路机液压行走系统基础上,以国内外应用最为广泛的12t单钢轮振动型压路机为研究对象,查阅压路机及其液压系统相关的资料,设计了YZ压路机液压系统的设计方案,实现了液压双驱动与全液压无级变速。

以现有的机型参数作为参考,同时结合相关理论进行分析与计算,对高速压路机的参数进行了计算选择,对液压系统元件进行了计算选型与校核。

最后,利用AMESim 搭建了压路机的行驶系统与振动系统的液压仿真模型,针对压路机的起步、加速、停车工况,进行了仿真,并对仿真结果进行了分析。

结合传统单钢轮压路机液压系统的仿真结果,对两种起步方式进行了分析比较,结果表明,本文设计的液压系统方案理论上是可行的,从而为单钢轮型振动压路机进一步研究提供一定的指导意义。

关键词:压路机,单钢轮,液压系统,AMESim 仿真YZ12 roller hydraulic system designAbstractsingle drum vibratory roller is a front drum , rear tire , using its own gravity , vibratory compaction and tire rub compaction machinery, mainly for road and earthwork foundation of engineering structures compaction operations, 85 percent of the world earthworks compaction effort is to use single drum vibratory roller completed .In this paper, domestic hydraulic single drum vibratory forroller system, based on the analysis traveling to the most widely used at home and abroad 12t single drum vibratory roller for the study, access to roller and hydraulic systems information about single drum vibratory roller, roller hydraulic system designed YZ design programs to achieve the double drive with full hydraulic hydraulic CVT . Existing models as a reference parameter , combined with the theory analysis and calculation, the high-speed roller parameters were calculated choice of hydraulic system components were calculated Selection and checked.Finally, build a roller hydraulic travel system with vibration system simulation model base on AMESim, for the compactor started to accelerate , parking conditions, simulation, and the simulation results are analyzed . The simulation results combined with traditional single drum roller hydraulic system , the two methods were analyzed and compared the initial results show that the designed hydraulic system solution is theoretically feasible , so as to single drum vibratory roller to provide some further research guidance.Keywords : roller, single drum , hydraulic systems , AMESim simulation目录摘要 (I)Abstract...................................................... I I 1 绪论 (1)1.1 研究背景 (2)1.2 国内外单钢轮振动压路机行驶系统研究现状 (3)1.2.1 国内单钢轮压路机机行驶系统研究现状 (3)1.2.2 国外单钢轮压路机行驶系统研究现状 (4)1.3 压路机的发展趋势 (5)2 YZ12单钢轮压路机参数统计与液压系统方案研究 (7)2.1 国内外12t单钢轮振动型全液压压路机性能参数统计 (7)2.1.1 行驶速度与档位 (7)2.1.2 装机功率 (9)2.2 振动压路机行走液压系统方案研究 (9)2.2.3 变量泵辅助泵一双变量马达并联行走液压系统 (10)2.2.4 行走液压系统方案研究结论 (11)3 液压系统的方案设计 (12)3.1 液压系统功能要求 (12)3.2 行走液压系统工作原理 (13)3.3振动液压系统工作原理 (13)3.4转向系统液压系统工作原理 (14)3.5 机罩升降液压系统工作原理 (14)4 液压系统设计与计算 (16)4.1 YZ12压路机基本参数 (16)4.2 发动机的功率计算及选型 (17)4.2.1 整机功率计算 (17)4.2.2 发动机选型 (22)4.3液压系统中液压马达的功率的计算及选型 (23)4.3.1 行走泵的计算选型 (23)4.3.2 行走马达的计算选型 (24)4.3.3 行走马达最小排量确定 (25)4.3.4振动系统液压泵选型与计算 (26)4.3.5振动液压泵工作压力计算 (28)4.3.6 振动液压泵最大工作流量计算 (28)4.3.7振动液压泵排量计算 (28)4.4 转向液压油缸与升降液压缸油缸的设计及计算 (29)4.4.1 转向液压油缸与升降液压油缸的内径与活塞杆直径计算.. 29 4.4.2转向油缸与升降油缸的缸底厚度计算 (30)4.4.3 转向油缸与升降油缸的缸筒长度的计算 (31)4.4.4 转向油缸与升降油缸的缸筒壁厚计算 (32)4.4.5液压缸油口直径的计算 (32)4.4.6 缸筒壁厚校核 (33)4.4.7 活塞杆直径校核计算 (33)4.4.8 液压缸稳定性校核 (34)4.4.9 辅助油泵的设计计算 (36)5 液压控制元件与辅助装置的计算与选择 (37)5.1液压阀的选择 (37)5.2液压元件成品件列表 (37)5.3油箱的设计 (38)6 液压系统的建模与仿真 (40)6.1 液压仿真技术概况 (40)6.2 AMESim 仿真软件简介 (40)6.3 仿真模型的建立 (42)6.3.1 建立仿真模型 (42)6.4 单钢轮振动型压路机行走系统与振动系统的仿真与分析 (44) 总结 (46)参考文献 (47)致谢 (49)。

完整的液压系统设计毕业设计

完整的液压系统设计毕业设计

完整的液压系统设计毕业设计1. 引言液压系统在工程领域中具有广泛的应用,特别是在机械制造、航空航天、汽车制造等领域中。

本文档旨在设计一个完整的液压系统作为毕业设计,并提供系统设计的详细说明。

2. 设计目标本设计的目标是创建一个可靠、高效的液压系统,满足以下需求:•传递大量的力和动力;•控制和调节工作负载;•提供良好的工作稳定性;•实现节能和环保。

3. 系统设计3.1 系统结构我们的液压系统将包含以下主要组件:1.液压泵:负责将液体加压并输送到液压马达或液压缸;2.液压马达或液压缸:负责将液压能转化为机械能,实现力的传递及工作载荷控制;3.液体储存装置:用于储存液体并平衡系统压力;4.液压阀门:用于控制液体流动和压力,实现系统工作的调节和控制;5.传感器和仪表:用于监测和测量液压系统的压力、流量、温度等参数。

3.2 液体选择在设计液压系统时,我们需要选择合适的液体作为工作介质。

一般情况下,液压系统常采用液体油作为工作介质,因为它具有良好的润滑性、稳定性和耐高温性能。

对于不同的应用场景,需要考虑液体的黏度、温度范围、氧化稳定性以及环境友好程度等因素。

3.3 液压元件选型为了实现液压系统的设计目标,我们需要对液压元件进行合理的选型。

液压泵、液压马达或液压缸、液压阀门等元件都有不同的类型和规格可供选择。

在选型过程中,需要考虑力的传递要求、流量和压力范围、工作稳定性以及适应特定工况的能力等因素。

3.4 系统控制在液压系统设计中,系统的控制是十分重要的。

通过合理的控制方法和策略,可以实现对液体流动、压力和工作负载的准确控制。

常用的液压系统控制方法有手动控制、自动控制和比例控制等。

根据具体需求,选择适合的控制方式可以提高系统的稳定性和性能。

4. 系统优化为了提高液压系统的工作效率和节能性,我们可以进行进一步的优化。

以下是一些常见的系统优化方法:•使用高效节能的液压泵和液压马达;•优化液体流动路径,减小能量损失;•采用高效的液压阀门和控制系统,减小能量损耗;•合理设计系统布局和管路,减小摩擦损失;•控制液压系统的工作温度,在适当的范围内减小能量损失。

轮式挖掘机工作装置及液压系统设计

轮式挖掘机工作装置及液压系统设计

摘要挖掘机在国民经济建设的许多行业被广泛地采用, 如在工业与民用建筑、交通运输、水利电气工程、农田改造、矿山采掘以及现代化军事工程等等行业的机械化施工。

对于此,我们也应该针对一定的工况范围来设计出最适合工作的挖掘机种类及型号。

因此,挖掘机的设计是很重要的。

我选的设计机型为轮胎式挖掘机,主要设计其中的工作装置及液压系统部分。

工作装置作为挖掘机的重要组成部分,对其研究和控制是对整机开发的基础。

工作装置选择反铲式,对其进行运动学分析并用比例法和经验公式计算选择出工作装置各部分的基本尺寸。

挖掘机的发展与液压技术密不可分,二者相互促进。

液压系统设计力求做到设计出的系统重量轻、体积小、效率高、工作可靠、结构简单、操作和维护保养方便、经济性好。

本设计突出适应性,结合生产实际多举实例,又翻查国内外有关挖掘机工作装置和液压技术方面的书籍,在实例和理论中通过比较分析来设计选用布置合理及工作效率高的工作装置和良好性能的液压系统。

关键词:挖掘机;工作装置;液压系统张瑞:轮式挖掘机工作装置及液压系统设计AbstractExcavators in national economic construction is widely used in many sectors, such as in industrial and civil construction, transportation, water conservancy electrical engineering,farmla- nd transformation, mining and extractive industries modern military engineering, and so on the mechanized construction. For this, we should also address the status of certain workers to design the most appropriate work types and models of excavators. Therefore, the excavator design is very important.I voted for the tire excavator as the design models, and mainly design the work device and the hydraulic system part. Excavators working device as an important part of excavator, the research and control for it is the basis for the development of the whole machine. The work device choice backhoe type, carries on the cinematic analysis and to it chooses the work with the ratio method and the empirical formula computation to install various part of basic size. The excavator development and the hydraulic pressure technology are inseparable, the two promote mutually. The hydraulic system design endeavor achieves the system weight which designs light, the volume small, the efficiency high, the work reliable, the structure simple, the operation and the maintenance convenient, the efficiency is good.This design prominent compatibility, with progress of production much gives the example actually, also peruses the domestic and foreign related excavator work device and the hydraulic pressure technology aspect books, designs in the example and in the theory through the comparative analysis selects the arrangement reasonable and the working efficiency high work device and the good performance hydraulic system.Key word: Excavator; Work device; Hydraulic system2前言轮胎式液压挖掘机是一种应用广泛的多功能的建设施工机械,并作为工程机械的主力机种。

压力机液压系统设计毕业设计论文

压力机液压系统设计毕业设计论文

诚信声明本人郑重声明:本设计及其研究工作是本人在指导教师的指导下独立完成的,在完成设计时所利用的一切资料均已在参考文献中列出。

本人签名:年月日压力机液压系统CAD摘要:本系统借助Auto CAD的二次开发系统和其提供的下拉菜单、图像显示菜单等控制模块程序,建立了一个液压元件图形符号库,从而解决了设计人员在绘制液压系统图时存在大工作量、重复性劳动及图形不规范等问题,大大提高了绘图效率。

同时,系统利用VisualLISP 程序来进行设计计算,所有计算操作都在对话框中进行,操作方便快捷,大大缩短了设计周期。

而且系统还具有文档文件处理功能,用户在设计中可以把计算文档文件存入系统,以备查看。

关键词:液压CAD系统,液压元件图形符号,VisualLISPThe Press Machine Hydraulic System CAD Abstract:This system uses the second development systems and pull –down menu and icon menu in AutoCAD, establishes a warehouse of hydraulic parts’ marks , thereby resolved the problem that the designers must do many repetition jobs, and they dr aw many informal diagrams , increases painting efficiency consumedly. At the same time, t he system makes use of the procedure ofVisualLISPto process the design calculation. All ca lculations the operations are proceeding in dialog box, this is convenient and fast, shortened to design the period consumedly. And the system still has function of text file handle, custo mer can deposit the text file into the compute. The system has the feature such as convenien t using and good developing character.Key words: CAD system for hydraulic systems; warehouse ofhydraulic parts’ marks; VisualLISP目录1 前言 (1)2 压力机液压系统分析 (2)2.1典型压力机液压系统 (2)2.2 压力机液压系统中的液压回路 (5)2.3 YB32-200型液压压力机液压系统的特点 (6)3 液压CAD (6)3.1液压CAD的发展 (6)3.2液压系统原理图CAD系统的构成与功能 (8)3.3液压系统原理图CAD系统的特点 (10)3.4程序开发流程 (10)4 液压元件数据库的建立 (10)4.1 数据库系统 (10)4.1.1 数据库的特点 (10)4.1.2 Access数据库概述 (11)4.2 数据库设计过程 (12)4.2.1 液压元件数据库 (12)4.2.2 液压元件数据库的建立 (12)5 液压元件符号库的建立 (19)5.1液压元件绘制及图形库的建立 (19)5.1.1液压元件的绘制 (19)5.1.2 WBLOCK命令建立内部符号库 (20)5.1.3 WBLOCK命令建立外部符号库 (21)5.2图形符号库的管理和应用 (21)5.2.1设计中心管理和应用符号库 (21)5.2.2工具选项板管理和应用符号库 (22)6 VisualLISP在CAD中的应用 (23)6.1 VisualLISP概述 (23)6.2 VisualLISP的主要组成部分和功能 (23)6.3 VisualLISP的启动和界面 (24)6.4文本编辑器概述 (25)6.5运行VisualLISP程序 (25)6.6 VisualLISP的调试功能 (26)6.7控制台操作 (28)6.8程序的编写 (29)7 结论 (31)参考文献 (32)致谢 (33)附录 (34)图2.2 YB32-200型液压压力机液压系统图基于基本回路的液压系统原理图CAD系统的构成如图3.2所示。

YZJ13型全液压振动压路机液压液压系统设计

YZJ13型全液压振动压路机液压液压系统设计

YZJ13型全液压振动压路机液压液压系统设计YZJ13型全液压振动压路机是一种专用于压实土壤、沥青混合料及砾石等材料的工程机械设备。

其液压系统设计是为了实现高效、稳定的工作性能和可靠的工作安全而进行的。

以下将对YZJ13型全液压振动压路机的液压系统设计进行详细介绍。

一、液压系统的基本原理1.液压系统采用异常闭路系统,通过主泵将液体压力转换成机械能。

液压泵将液体从低压区域吸入,通过油泵内部的机械装置转换成高压区域的压力,然后将液体送入系统中的工作装置中,实现工作装置的运动。

2.液压系统中的液压油具有传递能量、润滑、密封等多种功能,可以承受各种工况下的高压、高温和高速。

3.液压系统中采用液压控制阀来控制液压油的流量,通过改变液压控制阀的开启程度,可以实现对工作装置的调整和控制。

二、液压系统的组成及设计要点1.液压泵2.液压控制阀液压控制阀是液压系统中的核心部件,起到控制流量和压力的作用。

在YZJ13型全液压振动压路机中,液压系统采用多路换向阀、溢流阀、调节阀等多种控制元件组成。

3.液压缸液压缸是液压系统中的执行元件,将液压油的能量转换成机械能,实现工作装置的运动。

4.液压油箱液压油箱是液压系统中的储油装置,具有冷却、滤油、沉淀等功能,确保液压油的质量和性能。

5.油液回路液压系统中的油液回路是通过液压控制阀控制液压油的流向,将压力油送入液压缸中实现工作装置的运动,完成压路机的压实工作。

三、液压系统的优势和特点1.高效性:液压系统具有较高的工作效率和压路机的工作速度,能够快速完成压实任务。

2.稳定性:液压系统的压力和流量可以根据工况的需求进行调整和控制,保证压路机的稳定工作。

3.可靠性:液压系统的控制元件采用优质的材料和先进的制造工艺,具有较高的可靠性和使用寿命。

4.安全性:液压系统具有过载保护功能,当系统压力超过设定值时可以自动切断供油,避免系统损坏和事故发生。

综上所述,YZJ13型全液压振动压路机的液压系统设计是为了满足高效、稳定、可靠和安全的工作要求而进行的。

机车轮对轴承压装机液压系统毕业设计

机车轮对轴承压装机液压系统毕业设计

机车轮对轴承压装机液压系统设计摘要轮对轴承压装机是用于铁路车辆滚动轴承压装的专用设备,适用于铁路车辆新造及检修时压装轴承,被广泛应用于各个路局车辆维修、车辆制造厂生产,其对国民生产有着重要的意义。

现如今的铁路速度越来越快,对轴承的要求越来越高,而轴承的压装是铁路安全的关键。

为了达到使原有轮对轴承压装机能够获得更可靠更优秀的性能,本次设计主要针对轮对轴承压装机进行设计,通过对轮对轴承压装机原有技术的改进(主要是液压系统的改进),实现对轮对轴承压装机轴承的准确压装,以便更进一步提高行车的安全性与平稳性。

关键词:滚动轴承;压装;液压系统Loader hydraulic system design of locomotive wheelsetbearing pressureAbstractWheel axle pressure installed special equipment for railway vehicles pressing the bearing press-fit bearings suitable for new-building and maintenance of railway vehicles. Widely used in various railway administrations of its gross national product of great significance . It is widely used , and widely used in vehicle factories, vehicle sections, vehicle overhauling factories and mine railcar companies etc. In this thesis, it is aimed to design and improve the original while axle pressure installed (improve the original design of hydraulic pressure system)to get a new device has reliable and excellent property. To get a accurate push mounting with the wheel axle pressure installed, in order to further increase the security and smooth.Keywords:Taper rolling bearing;Push mounting;Hydraulic pressure system目录1 绪论 (1)1.1 背景及研究意义 (1)1.2 轴承简介 (2)1.3 研究现状 (2)1.4 本文研究内容 (3)2 轮对轴承压装机工作原理 (4)2.1 轮对轴承压装机的工作原理 (4)3 液压系统的设计 (6)3.1 液压回路设计和回路工作原理分析 (6)3.1.1 顶对回路 (6)3.1.2 送对回路 (7)3.1.3 锁紧回路 (7)3.1.4 伸套压装回路 (8)3.1.5 液压系统原理图 (9)3.1.6 该液压系统技术特点 (11)3.2 液压系统工作要求 (11)3.2.1 液压传动系统的型式 (11)3.2.3 轴承压装机的液压传动特点 (12)3.3 确定液压缸的几何参数 (13)3.3.1 伸套压装缸尺寸计算 (13)3.3.2 压装缸壁厚和外径的计算 (14)3.3.3 辅助缸(顶对缸,送对缸,锁紧缸)壁厚和外径的计算 (15)3.3.4 计算在各阶段液压缸所需的流量 (15)3.4 液压系统的压力损失计算 (16)3.5 液压泵和电机的相关计算 (17)3.5.1 确定液压泵的流量 (17)3.5.2 选择液压泵的规格 (17)3.5.3 与液压泵匹配的电动机的选择 (18)3.6 液压阀的选择 (18)3.6 液压缸结构设计 (20)3.7 其他附件说明 (21)4 轮对轴承压装机结构设计 (22)4.1 轮对轴承压装机的布置 (22)4.2 床身设计 (22)4.2.1 底座设计 (22)4.2.2 支座设计 (23)5 油箱和其它液压辅助元件的设计 (24)5.1 液压油箱有效容积的计算 (24)5.2 液压油箱的外形尺寸 (24)5.3 液压油 (25)5.3.1 液压油的品种 (25)5.3.2 液压油的粘度 (25)5.4 过滤器 (26)6 液压站的设计 (27)6.1 液压泵的安装方式 (27)6.2电动机与液压泵的连接方式 (27)6.3液压站结构设计的注意事项 (28)总结 (29)致谢 (30)参考文献 (31)毕业设计(论文)知识产权声明.................................... 错误!未定义书签。

毕业设计(论文)-YZJ13型全液压振动压路机液压液压系统设计

毕业设计(论文)-YZJ13型全液压振动压路机液压液压系统设计

第 II 页
目录
摘 要..................................................................................................................... I Abstract................................................................................................................ II 1.绪论.................................................................................................................. 1 1.1 引言........................................................................................................ 1 1.2 压路机的用途及分类............................................................................ 1 1.3 国内外双钢轮振动压路机发展现状.................................................... 3 1.4 双钢轮振动压路机发展趋势................................................................ 5 1.5 课题提出的背景与意义........................................................................ 7 1.6 本文的研究内容.................................................................................... 7 2.振动压实理论.................................................................................................. 9 3.振动压路机动力学模型及运动方程............................................................ 12 3.1 研究振动压路机动力学模型的意义.................................................. 12 3.2 两个自由度系统振动压路机的运动方程......................................... 12 3.3 运动方程中各参数的取值.................................................................. 15 4. 液压系统总体结构设计............................................................................... 17 4.1 行走液压系统的设计.......................................................................... 18 4.1.1 全轮驱动液压压路机的优点.................................................. 18 4.1.2 全轮驱动液压压路机的缺点.................................................. 19 4.2 振动液压系统设计.............................................................................. 19 4.2.1 开式液压震动系统................................................................... 19 4.2.2 闭式液压振动系统................................................................... 20 4.2.3 工作装置液压振动系统形式的选用....................................... 21 4.3 转向液压系统设计.............................................................................. 22 4.4 液压系统原理图.................................................................................. 23 5. 液压系统计算与选型................................................................................... 25 5.1 液压系统............................................................................................. 25 5.1.1 行走液压系统.......................................................................... 25 5.1.2 振动液压系统.......................................................................... 25 5.1.3 转向液压系统.......................................................................... 26 5.2 各液压系统所需功率计算.................................................................. 26 5.2.1 行驶液压系统所需功率计算................................................... 26 5.2.2 转向液压系统所需功率计算................................................... 27 5.2.3 振动液压系统所需功率计算................................................... 27 5.3 主要液压元件计算选型..................................................................... 28
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要设计中介绍了结晶器液压振动系统,系统通过输入正弦电信号给伺服阀,进而控制液压缸的正弦振动。

设计过程中系统的分析了系统的工作状况,以及在该工作状况下所系统所要达到的工作要求。

设计中针对系统中的液压泵,伺服阀,液压缸等主要元件的选型经行了详细的计算与校核。

在泵站的设计中,核心部分是泵,油箱以及蓄能器的设计计算与选型,三者的关系是相互影响的,同时,液压系统也受外在因素的诸如工作环境和工作温度的影响,这些影响对系统的影响是非常大的,这个因素考虑的不全面直接影响到系统的工作性能。

在系统的各个参数计算中,根据设计内容所给出的条件,计算出系统液压缸的位移振动曲线。

根据振动曲线方程可以求解出系统所需的最大流量,根据计算的结果确定整个系统的工作状况。

系统泵的驱动功率的计算,按照在系统振动过程中各个工况条件下所需功率的平均值,正弦振动的平均速度可以通过正弦振动方程计算出。

设计中的大部分元件都是通过相关参数的计算,根据产品的样本经行选型,以达到系统的要求。

关键词:结晶器;液压伺服系统;激振;正弦振动AbstractThe system of hydraulic vibration system for crystallizer was introduced in the design,To control the sinusoidal vibration of the cylinder, the sinusoidal signal is input into the servo valve by the computer .In the design, the working conditions is analysed,and the requirements of the system under this conditions is also analysed. For the design of the hydraulic system, the pump,servo valves, hydraulic cylinders and other major components of the Selection are detailed calculated and checked.In the design of the pumping station, the core are calculation of the pump, storage tank of the design and selection, the relations among each other are impacted, at the same time, The hydraulic systems are also impacted by external factors such as the working environment and temperature The impact of these effects on the system is very great, if this factor is not taken into consideration, There will be direct impact on the performances of the system.The various parameters of the system is calculated according to the contents of the conditions, and we can calculate the displacement vibration curve of the hydraulic cylinder of the system. According to vibration curve equation,we can work out the most flow of the system , And determine the working conditions according to the results of the whole system. The calculation of the pump-driven power of the system is the average of the power required in the vibration of the system under the working conditions. And the sine vibration equation can be calculated.The most components are selected through the calculation of the relevant parameters, based on a sample of the products selection, to meet the system requirements.Key words: Crystallizer; Hydraulic servo system; Exciting vibration; Sinusoidal vibration目录前言 (1)1 系统设计方案确定 (2)1.1 伺服系统设计要求 (2)1.2 控制方案 (2)1.3 主要技术参数 (2)1.4 系统工作情况分析 (3)2 设计计算 (3)2.1 系统振动 (3)2.2 液压缸设计计算 (4)2.2.1 油缸的设计原则 (4)2.2.2 油缸的选型 (4)2.2.3 油缸参数计算 (5)2.3 泵的选择计算 (6)2.3.1 泵的选择计算原则 (6)2.3.2 系统流量计算 (6)2.3.3 流量计算 (6)2.3.4 泵的参数计算 (7)2.4 液压泵的驱动功率及电机的选择 (7)2.4.1 驱动功率计算 (7)2.4.2 电动机的选择 (8)2.5 阀的选择计算 (8)2.5.1 伺服阀的选取 (8)2.5.2 液控单向阀的选取 (9)2.5.3 电磁换向阀的选取 (9)3 辅助元件的选择计算 (10)3.1 管路 (10)3.1.1 壁厚的计算 (10)3.1.2 内径计算 (11)3.1.3 软管 (12)3.1.4 管接头 (12)3.2 油箱的设计计算 (12)3.2.1 油箱设计原则 (12)3.2.2 油箱参数设计计算 (13)3.2.3 油箱容量的计算 (13)3.2.4 油箱内工作介质体积估算 (14)3.3 系统发热功率计算 (14)3.3.1 液压泵的功率损失 (14)3.3.2 阀的损失功率 (14)3.3.3 管路以及其它功率损失 (15)3.3.4 系统总的功率损失 (15)4 溢流阀的选取 (15)4.1 溢流阀的作用 (15)5 过滤器的选择 (16)5.1 过滤器的配置 (16)5.2 压油过滤器 (16)5.3 回油过滤器 (16)6 循环冷却系统的设计计算 (17)6.1 各个参数计算 (17)6.2 动力源螺杆泵的选取 (17)6.3 驱动电机的选择 (18)6.4 循环过滤器的选择 (18)6.5 热交换器的选择 (18)6.5.1 计算散热面积 (18)6.5.2 冷却水量的计算 (19)6.6 加热器 (19)6.8 压力表的选择 (20)7 液压工作介质的选取 (20)8 控制阀阀块的设计 (20)结束语 (22)参考文献 (23)致谢 (24)前言随着高效连铸技术在冶金工业生产中的快速发展和应用,结晶器的振动技术便成了连铸生产过程中的关键技术之一,结晶器的振动参数,直接影响连铸坯的质量。

目前国内还主要以凸轮机构驱动为主,这种方式存在一系列的不足,例如:结晶器振动频率,幅度,波形等不可调等现象。

而国外大多采用液压伺服振动方式,振动的参数可根据钢种,拉速等工艺条件而进行改变。

与传统的直流式电机或交流电机驱动的偏心凸轮的结晶器激振系统相比,电液伺服驱动的连铸结晶器激振系统具有能实现非正弦振动,可明显改善结晶器保护渣的润滑,有效地减少铸坯与结晶器之间的摩擦力,从而减少铸坯振痕,提高铸坯质量和金属的收得率。

因此,开发可靠性好、控制精度高和响应速度快的电液伺服控制系统具有重要的现实意义。

结晶器电液伺服控制系统主要由电液伺服阀、伺服油缸、液压泵站等几部分组成。

结晶器是通过阀控缸液压动力元件驱动振动机构实现其往复振动,将液压缸的位置通过位移传感器反馈到比较端与指令信号比较,得到误差信号,然后通过运算放大器放大后驱动电液伺服阀构成闭环控制系统。

利用计算机可非常方便地产生各种指令波形,通过模糊PID控制可以使系统输出跟踪指令信号从而获得所需要的振动规律。

伺服控制器内有两路独立的伺服放大器和将这两路独立的伺服放大器关联在一起的同步控制回路。

每路伺服放大器控制1 台伺服缸,它将指令电压信号转换成电流信号经输出端驱动电液伺服阀来使液压缸移动,装在活塞杆上的位移传感器的反馈信号在反馈端输入后与指令信号进行比较,形成位置系统的闭环控制。

每1 路都设有开环增益调整、反馈增益调整、零位调整和输入与反馈相位调整,并有电流表显示通过伺服阀的电流状态。

同步控制回路是对两台伺服缸出现不同步时的一种补偿,同步控制的原理是对两个单独的反馈信号进行比较,两缸同步,则比较后的差值为零,差值不为零时,这个差值以相反的极性分别送入两个回路各自的输入信号加法点,使“快缸降速,慢缸升速”,进行同步调节。

1 系统设计方案确定1.1 伺服系统设计要求结晶器做正弦振动,采用双缸同步驱动方式,并且要求每个振动缸控制伺服阀一备一用,能在线切换。

根据设计要求,液压伺服激振系统为双缸同步振动过程。

系统主要由电液伺服阀,液压缸,液压泵站等几部分组成。

双缸同步振动由两个两个电液伺服阀由电信号精准控制,可以实现两个油缸的同步激振运动,设计要求每个振动缸控制伺服阀都有一个备用阀,两个备用阀经液控单向阀连接到系统,可以随时进行在线切换。

1.2 控制方案工作中指令信号同时给两个伺服阀,伺服阀通过电信号控制两个液压缸进行振动,输入流量输出位移,同时将位移误差进行反馈控制阀芯处于工作状态,液压油经由单向分流阀同时供给两个伺服阀,经阀芯开口进入液压缸驱动其运动,计算机将传感器采集的数据进行比对,校正后在将调节后的信号送入伺服阀,控制双缸的正弦振动。

1.3 主要技术参数(1)液压系统最大工作压力:max 31.5p MPa=;(2)结晶器作正弦振动,最大振幅:7mm±,振动频率范围:1~6Hz;(3)结晶器静态重量为:100KN;(4)采用双缸同步振动方式,要求每个振动缸控制伺服阀一备一用,能在线切换。

相关文档
最新文档