第一章 晶体学基础
合集下载
《结晶学基础》

在离子晶体结构中,每个正离子周围都形成 一个负离子配位多面体;正负离子间距离取决 于离子半径之和,正离子配位数取决于正负离 子半径之比,与离子电价无关。
.
2.鲍林第二规则---静电价规则
在一个稳定的晶体结构中,从所有相邻接的阳离 子到达一个阴离子的静电键的总强度,等于阴离子 的电荷数。
静电键强度
S= Z+ CN+
• 在离子晶体中,配位数指的是最紧邻的异号离子数,所以正、 负离子的配位数不一定是相等的。阳离子一般处于阴离子紧密堆 积阳的离空子隙还中可,能其出配现位其数 它一 的般 配为 位数4或。6. 。如果阴离子不作紧密堆积,
配位数
阴离子作正八 面体堆积,正、 负离子彼此都能 相互接触的必要
条件为r+/r=0.414。
凸几何多面体倾向。
❖ 4.对称性--晶体的物理化学性质能够在不同方
向或位置上有规律地出现,也称周期性 .
晶体的性质
❖ 5.均匀性(均一性)--一个晶体的各个部分性
质都是一样的。 这里注意:均匀性与各向异性不同,前者是指晶
体的位置,后者是指观察晶体的方向。
❖ 6. 固定熔点 ❖ 7.晶面角守恒定律--晶面(或晶棱)间的夹角
宏观晶体中对称性只有32种,根据对称型中是否存在 高次轴及数目对晶体分类
❖ 存在高次轴(n>2)且多于一个―――高级晶族 ――包括:等轴(立方)晶系
❖ 存在高次轴(n>2)且只有一个―――中级晶族 ――包括:三方、四方、六方晶系
❖ 不存在高次轴(n>2)―――低级晶族――包括: 三斜、单斜、正交晶系
第一章 结晶学基础
.
1-1 晶体的基本概念与性质
一、晶体的基本概念
➢ 人们对晶体的认识,是从石英开始的。 ➢ 人们把外形上具有规则的几何多面体形态的
.
2.鲍林第二规则---静电价规则
在一个稳定的晶体结构中,从所有相邻接的阳离 子到达一个阴离子的静电键的总强度,等于阴离子 的电荷数。
静电键强度
S= Z+ CN+
• 在离子晶体中,配位数指的是最紧邻的异号离子数,所以正、 负离子的配位数不一定是相等的。阳离子一般处于阴离子紧密堆 积阳的离空子隙还中可,能其出配现位其数 它一 的般 配为 位数4或。6. 。如果阴离子不作紧密堆积,
配位数
阴离子作正八 面体堆积,正、 负离子彼此都能 相互接触的必要
条件为r+/r=0.414。
凸几何多面体倾向。
❖ 4.对称性--晶体的物理化学性质能够在不同方
向或位置上有规律地出现,也称周期性 .
晶体的性质
❖ 5.均匀性(均一性)--一个晶体的各个部分性
质都是一样的。 这里注意:均匀性与各向异性不同,前者是指晶
体的位置,后者是指观察晶体的方向。
❖ 6. 固定熔点 ❖ 7.晶面角守恒定律--晶面(或晶棱)间的夹角
宏观晶体中对称性只有32种,根据对称型中是否存在 高次轴及数目对晶体分类
❖ 存在高次轴(n>2)且多于一个―――高级晶族 ――包括:等轴(立方)晶系
❖ 存在高次轴(n>2)且只有一个―――中级晶族 ――包括:三方、四方、六方晶系
❖ 不存在高次轴(n>2)―――低级晶族――包括: 三斜、单斜、正交晶系
第一章 结晶学基础
.
1-1 晶体的基本概念与性质
一、晶体的基本概念
➢ 人们对晶体的认识,是从石英开始的。 ➢ 人们把外形上具有规则的几何多面体形态的
结晶学基础

晶体中如果存在对称中心,则所有晶面必
然两两反向平行而且相等。用它可以作为判 断晶体有无对称中心的依据。
4、旋转反伸轴(Lin)
旋转反伸轴是一根假想的直线,当晶体围 绕此直线旋转一定角度后,再对此直线上 的一个点进行反伸,才能使晶体上的相等 部分重复。 相应的对称操作是围绕一根直线的旋转和 对此直线上一个点反伸的复合操作。
只有晶体才能称为真正的固体。
5、准晶体
1985年在电子显微镜研究中,发现了一种新 的物态,其内部结构的具体形式虽然仍在探 索之中,但从其对称性可见,其质点的排列 应是长程有序,但不体现周期重复,不存在 格子构造,人们把它称为准晶体。
二、晶体的基本性质
一切晶体所共有的,并且是由晶体的格子构造所决定的性 质,称为晶体的基本性质。
晶体中对称轴举例
横截面形状
晶体对称定律:在晶体中不可能存在五次 及高于六次的对称轴。因为不符合空间格 子规律,其对应的网孔不能毫无间隙地布 满整个平面。
在一个晶体中,除L1外,可以无、也可有
一或多种对称轴,而每一种对称轴也可有一 或多个。
表示方法为3L4、4L3、6L2等。 对称轴在晶体中可能出露的位置: ⑴通过晶面的中心; ⑵通过晶棱的中点;
⑵行列:结点在直线上的排列即构成行列。
行列中相邻结点间的距离称为该行列的结点间距。 同一行列或彼此平行的行列上结点间距相等; 不同方向的行列,其结点间距一般不等。
行
列
⑶ 面网:结点在平面上的分布构成面网。 面网上单位面积内结点的数目称为网面密 度。 互相平行的面网,网面密度相同;不平行 的面网,网面密度一般不等。 相互平行的相邻两面网之间的垂直距离称 为面网间距。
然两两反向平行而且相等。用它可以作为判 断晶体有无对称中心的依据。
4、旋转反伸轴(Lin)
旋转反伸轴是一根假想的直线,当晶体围 绕此直线旋转一定角度后,再对此直线上 的一个点进行反伸,才能使晶体上的相等 部分重复。 相应的对称操作是围绕一根直线的旋转和 对此直线上一个点反伸的复合操作。
只有晶体才能称为真正的固体。
5、准晶体
1985年在电子显微镜研究中,发现了一种新 的物态,其内部结构的具体形式虽然仍在探 索之中,但从其对称性可见,其质点的排列 应是长程有序,但不体现周期重复,不存在 格子构造,人们把它称为准晶体。
二、晶体的基本性质
一切晶体所共有的,并且是由晶体的格子构造所决定的性 质,称为晶体的基本性质。
晶体中对称轴举例
横截面形状
晶体对称定律:在晶体中不可能存在五次 及高于六次的对称轴。因为不符合空间格 子规律,其对应的网孔不能毫无间隙地布 满整个平面。
在一个晶体中,除L1外,可以无、也可有
一或多种对称轴,而每一种对称轴也可有一 或多个。
表示方法为3L4、4L3、6L2等。 对称轴在晶体中可能出露的位置: ⑴通过晶面的中心; ⑵通过晶棱的中点;
⑵行列:结点在直线上的排列即构成行列。
行列中相邻结点间的距离称为该行列的结点间距。 同一行列或彼此平行的行列上结点间距相等; 不同方向的行列,其结点间距一般不等。
行
列
⑶ 面网:结点在平面上的分布构成面网。 面网上单位面积内结点的数目称为网面密 度。 互相平行的面网,网面密度相同;不平行 的面网,网面密度一般不等。 相互平行的相邻两面网之间的垂直距离称 为面网间距。
《晶体学基础》课件

《晶体学基础》ppt课件
CONTENTS
目录
• 晶体学简介 • 晶体结构 • 晶体性质 • 晶体缺陷 • 晶体生长与制备 • 晶体应用
CHAPTER
01
晶体学简介
晶体学定义
晶体学是一门研究晶体材料、 晶体结构和晶体性能的科学。
晶体是由原子、分子或离子按 照一定的规律周期性排列而成 的固体。
晶体学的研究内容包括晶体的 几何结构、物理性质、化学性 质以及晶体生长、相变等。
观结构和应力分布有关。
疲劳强度
断裂韧性是衡量物质抵抗脆性断裂的能力的物理量。 不同晶体的断裂韧性不同,与晶体的缺陷类型和扩散 机制有关。
CHAPTER
04
晶体缺陷
点缺陷
01
晶体中一个或多个原子离开其平 衡位置,形成局部的、小的原子 排列异常。
02
点缺陷的形成与温度、压力、杂 质等因素有关。在晶体中,点缺 陷可以移动、聚集和消失,对晶 体的物理性质产生影响。
线缺陷
晶体中沿某一特定方向,原子排列出 现异常。
线缺陷通常表现为晶体的裂纹或位错 ,对晶体的力学性质有显著影响。位 错是晶体中常见的线缺陷,其运动和 相互作用会影响材料的加工和性能。
面缺陷
晶体中沿某一平面的原子排列出现异常。
面缺陷包括晶界、相界和表面等。晶界是晶体内部不同晶粒之间的界面,相界是 晶体中不同相之间的界面。这些面缺陷会影响晶体的光学、电学和热学性质。
19世纪,X射线和电子显微镜的发明 为晶体学的研究提供了新的手段,推 动了晶体学的发展。
17世纪,随着显微镜技术的发展,人 们开始对晶体进行更深入的研究,发 现了晶体的对称性和空间格子。
21世纪,随着计算机技术和材料科学 的快速发展,晶体学在理论和实验方 面都取得了重要进展,为新材料的研 发和应用提供了有力支持。
CONTENTS
目录
• 晶体学简介 • 晶体结构 • 晶体性质 • 晶体缺陷 • 晶体生长与制备 • 晶体应用
CHAPTER
01
晶体学简介
晶体学定义
晶体学是一门研究晶体材料、 晶体结构和晶体性能的科学。
晶体是由原子、分子或离子按 照一定的规律周期性排列而成 的固体。
晶体学的研究内容包括晶体的 几何结构、物理性质、化学性 质以及晶体生长、相变等。
观结构和应力分布有关。
疲劳强度
断裂韧性是衡量物质抵抗脆性断裂的能力的物理量。 不同晶体的断裂韧性不同,与晶体的缺陷类型和扩散 机制有关。
CHAPTER
04
晶体缺陷
点缺陷
01
晶体中一个或多个原子离开其平 衡位置,形成局部的、小的原子 排列异常。
02
点缺陷的形成与温度、压力、杂 质等因素有关。在晶体中,点缺 陷可以移动、聚集和消失,对晶 体的物理性质产生影响。
线缺陷
晶体中沿某一特定方向,原子排列出 现异常。
线缺陷通常表现为晶体的裂纹或位错 ,对晶体的力学性质有显著影响。位 错是晶体中常见的线缺陷,其运动和 相互作用会影响材料的加工和性能。
面缺陷
晶体中沿某一平面的原子排列出现异常。
面缺陷包括晶界、相界和表面等。晶界是晶体内部不同晶粒之间的界面,相界是 晶体中不同相之间的界面。这些面缺陷会影响晶体的光学、电学和热学性质。
19世纪,X射线和电子显微镜的发明 为晶体学的研究提供了新的手段,推 动了晶体学的发展。
17世纪,随着显微镜技术的发展,人 们开始对晶体进行更深入的研究,发 现了晶体的对称性和空间格子。
21世纪,随着计算机技术和材料科学 的快速发展,晶体学在理论和实验方 面都取得了重要进展,为新材料的研 发和应用提供了有力支持。
晶体学基础

单斜
abc
abc
90
90
三斜
abc
3. 点阵类型
7大晶系 包含14 种空间 点阵— —布拉 菲 (A.Brav ais)点阵
§1-2晶面指数、晶向指数——Miller指数
晶面——穿过晶体的原子平面。 晶向——晶体中任意原子列的直线方向。 不同的晶面和晶向具有不同的原子排列和取向。这就是 晶体具有各向异性的原因。
( 1 00), (0 1 0), (00 1 )
思考: {111}包含多少个等价面?
三、 晶向指数与晶面指数的关系
在立方晶系中(包括密排六方):
[u v w] // (h k l) 时,一定满足:hu+kv+lw = 0 [u v w] (h k l) 时,一定满足:h=u, k=v, l=w
同一直线上,方向相反的晶向其指数加负号;
原子排列相同但空间位向不同的所有晶向称为晶向族, 用< >括号表示。 例如<100>包含:[100],[010],[001 ],[1 00],[0 1 0],[001] z [011] 不通过原点的晶向: (x2-x1):(y2-y1):(z2-z1) =u:v:w
一、晶向指数
确定晶向指数的步骤: 建立坐标系:oxyz, 晶格长度作为单位长度,原点o在待定晶向上;
找出该晶向上除原点外的任意一点的坐标:x,y,z; 将x,y,z 按比例划成互质(最小)整数u,v,w;
将u,v,w 三个数放在方括号内,就得到晶向指数[uvw]。
[说明]: 晶向指数表示的是一族平行的晶向,即相互平行的晶向 具有相同的晶向指数;
[0 1 0]
o x
[1 0 1] [010] y
abc
abc
90
90
三斜
abc
3. 点阵类型
7大晶系 包含14 种空间 点阵— —布拉 菲 (A.Brav ais)点阵
§1-2晶面指数、晶向指数——Miller指数
晶面——穿过晶体的原子平面。 晶向——晶体中任意原子列的直线方向。 不同的晶面和晶向具有不同的原子排列和取向。这就是 晶体具有各向异性的原因。
( 1 00), (0 1 0), (00 1 )
思考: {111}包含多少个等价面?
三、 晶向指数与晶面指数的关系
在立方晶系中(包括密排六方):
[u v w] // (h k l) 时,一定满足:hu+kv+lw = 0 [u v w] (h k l) 时,一定满足:h=u, k=v, l=w
同一直线上,方向相反的晶向其指数加负号;
原子排列相同但空间位向不同的所有晶向称为晶向族, 用< >括号表示。 例如<100>包含:[100],[010],[001 ],[1 00],[0 1 0],[001] z [011] 不通过原点的晶向: (x2-x1):(y2-y1):(z2-z1) =u:v:w
一、晶向指数
确定晶向指数的步骤: 建立坐标系:oxyz, 晶格长度作为单位长度,原点o在待定晶向上;
找出该晶向上除原点外的任意一点的坐标:x,y,z; 将x,y,z 按比例划成互质(最小)整数u,v,w;
将u,v,w 三个数放在方括号内,就得到晶向指数[uvw]。
[说明]: 晶向指数表示的是一族平行的晶向,即相互平行的晶向 具有相同的晶向指数;
[0 1 0]
o x
[1 0 1] [010] y
晶体学基础

晶带定律 :
晶体多面体上任一晶面至少同属于两个晶带(在晶体多面 体上,彼此相交于平行晶棱的一组晶面,称为晶带 )。
晶体几何理论发展简况
二.最早提出的晶体结构几何理论
布拉菲于1855年确定了晶体结构 有14种布拉菲格子即14种布拉菲 点阵
费多洛夫于1889年第一个推导出 230种空间群(费多洛夫群)
晶胞
维格纳—赛兹晶胞作为一个初基晶胞只包含一个点阵点 当它沿点阵的任一平移矢量平移时,必然充满整个空间而
没有重迭 因为维格纳—赛兹晶胞没有涉及任何基矢的选择,所以这
种晶胞具有和点阵相同的对称性
图1-9 体心立方点阵的维格纳-赛 兹晶胞
图1-10 面心立方点阵的维格纳-赛 兹晶胞
第七节 典型晶体结构举例 一、铜(Cu)型晶体结构(面心立方结构)
结构基元:点阵结构中被平移 重复的结构单元称为该点阵结 构的结构基元
点阵结构=点阵+结构基元 点阵结构的特点是具有周期性
晶体的点阵结构
二.晶体的点阵结构
晶体:凡原于、分子、离子或基 团按点阵结构作周期性地排列而 成的物质都叫晶体。
特点:
• 晶体的最大特点就是其空间点阵结 构(它决定了晶体的许多共同的基 本特征)
Tmnp ma nb pc, m, n, p 0,1,2 (1.3)
图1-5 空间点阵单位
点阵
空间格子:空间点阵按确定的 平行六面体单位划分后所形成 的格子称为空间格子 。
基本单位:每个平行六面体格 子单位只分摊到1个点阵点, 称为空间点阵的基本单位 。
我们把所有阵点可用位矢(1.1)、(1.2)或(1.3) 来描述的点阵称为布拉菲点阵。
图1-11 fcc结构的初基晶胞 是惯用晶胞内的一个平行六
晶体多面体上任一晶面至少同属于两个晶带(在晶体多面 体上,彼此相交于平行晶棱的一组晶面,称为晶带 )。
晶体几何理论发展简况
二.最早提出的晶体结构几何理论
布拉菲于1855年确定了晶体结构 有14种布拉菲格子即14种布拉菲 点阵
费多洛夫于1889年第一个推导出 230种空间群(费多洛夫群)
晶胞
维格纳—赛兹晶胞作为一个初基晶胞只包含一个点阵点 当它沿点阵的任一平移矢量平移时,必然充满整个空间而
没有重迭 因为维格纳—赛兹晶胞没有涉及任何基矢的选择,所以这
种晶胞具有和点阵相同的对称性
图1-9 体心立方点阵的维格纳-赛 兹晶胞
图1-10 面心立方点阵的维格纳-赛 兹晶胞
第七节 典型晶体结构举例 一、铜(Cu)型晶体结构(面心立方结构)
结构基元:点阵结构中被平移 重复的结构单元称为该点阵结 构的结构基元
点阵结构=点阵+结构基元 点阵结构的特点是具有周期性
晶体的点阵结构
二.晶体的点阵结构
晶体:凡原于、分子、离子或基 团按点阵结构作周期性地排列而 成的物质都叫晶体。
特点:
• 晶体的最大特点就是其空间点阵结 构(它决定了晶体的许多共同的基 本特征)
Tmnp ma nb pc, m, n, p 0,1,2 (1.3)
图1-5 空间点阵单位
点阵
空间格子:空间点阵按确定的 平行六面体单位划分后所形成 的格子称为空间格子 。
基本单位:每个平行六面体格 子单位只分摊到1个点阵点, 称为空间点阵的基本单位 。
我们把所有阵点可用位矢(1.1)、(1.2)或(1.3) 来描述的点阵称为布拉菲点阵。
图1-11 fcc结构的初基晶胞 是惯用晶胞内的一个平行六
晶体学基础

2020/3/3
3
1.1 晶体及其基本性质
晶体结构 = 点阵 + 结构基元
2020/3/3
4
空间点阵的四要素
1. 阵点: 空间点阵中的点; 2. 阵列: 结点在直线上的排列; 3. 阵面: 阵点在平面上的分布。
2020/3/3
5
空间点阵的四要素
4. 阵胞: 结点在三维空间形成的平行六面体。
原胞:最小的平行六面体,只考虑周期性,不考虑对称性; 晶胞:通常满足对称性的前提下,选取体积最小的平行六面体。
ur b/k
P
a/h A
v
a
2020/3/3
25
倒易点阵的应用
uur dhkl 1/ r *hkl
1、计算面间距
1
d2 hkl
r rhkl
r .rhkl
h
k
av*
l
r bcv**
av*
r b*
h
cv*
k
l
h
h
k
l
G
*
k
2020/3/3
3
c
28
倒易点阵的应用
2、计算晶面夹角
• 两晶面之间的夹角,可以用各自法线之间的夹角来表示, 或用它们的倒易矢量的夹角来表示:
c((ohhs21kk12ll12)c)osrvrv(hh2rv1kk2h1l1l21k1l1 ,hhrv21hav2avk*2*l+2+)kk21bvbv*rvv*+h+1kl12ll11cvcv*vrv*h2k2l2
4. 若已知两个晶带面,则晶带轴;
5. 已知两个不平行的晶向,可以求出过这两个晶向的晶面;
材料科学基础 第1章 晶体学基础

人类使用的材料中大多为晶态(Crystalline),包括单晶、 多晶、微晶和液晶等。那么什么是晶体? 晶体有何特点?
金刚石
Nacl
水晶
CaF2
MoS2
闪锌矿
高分辨率电镜-High Resolution Electron Microscopy (HREM)
The surface of a gold specimen, was taken with a atomic force microscope (AFM). Individual atoms for this (111) crystallographic surface plane are resolved.
底心正方和简单 正方点阵的关系
例:结构对性能的影响-Sn 1850 in Russia. The winter that year was particularly cold, and record low temperatures persisted for extended periods of time. The uniforms of some Russian soldiers had tin buttons, many of which crumbled due to these extreme cold conditions, as did also many of the tin church organ pipes. This problem came to be known as the “tin disease.”
组平行的晶面应当包含点阵所有的阵点。 ● 2、晶向(lattice or crystal directions) 通过两阵点之间的直线。 ● 3、定量表示晶面和晶向的意义 各向异性,结构分析(需要表征晶体结构内部的不同
金刚石
Nacl
水晶
CaF2
MoS2
闪锌矿
高分辨率电镜-High Resolution Electron Microscopy (HREM)
The surface of a gold specimen, was taken with a atomic force microscope (AFM). Individual atoms for this (111) crystallographic surface plane are resolved.
底心正方和简单 正方点阵的关系
例:结构对性能的影响-Sn 1850 in Russia. The winter that year was particularly cold, and record low temperatures persisted for extended periods of time. The uniforms of some Russian soldiers had tin buttons, many of which crumbled due to these extreme cold conditions, as did also many of the tin church organ pipes. This problem came to be known as the “tin disease.”
组平行的晶面应当包含点阵所有的阵点。 ● 2、晶向(lattice or crystal directions) 通过两阵点之间的直线。 ● 3、定量表示晶面和晶向的意义 各向异性,结构分析(需要表征晶体结构内部的不同
第一章晶体学基础

2. 非晶体 非晶体在整体上是无序的 ;近程有序 。实际为一种过 冷液体。具有各向同性。
隋性气体无规则排列
表示有些材料包括水蒸气和玻璃的短程有序
表示有些材料包括水蒸气和玻璃的短程有序 金属及其他许多材料的长程有序排列
图 材料中原子的排列
二氧化硅结构示意图
a)晶态
b)非晶态
3. 晶体的特征
(1)周期性(不论沿晶体的哪个方向看去,总是相隔一定 的距离就出现相同的原子或原子集团。这个距离称为周期 ) 液体和气体都是非晶体。 (2)有固定的凝固点和熔点. (3)各向异性(沿着晶体的不同方向所测得的性能通常是 不同的 :晶体的导电性、导热性、热膨胀性、弹性、强度、 光学性质 )。
(a)
Z
βα
Xb
(b) 简单立方晶体 (a) 晶体结构 (b) 晶格 (c) 晶胞
γ (c)
c aY
2.晶胞的选取原则:
(1)晶胞几何形状能够充分反映空间点阵的对称性; (2)平行六面体内相等的棱和角的数目最多; (3)当棱间呈直角时,直角数目应最多; (4)满足上述条件,晶胞体积应最小。
图 晶胞的选取
立方晶系 ( Cubic)
Simple
Body centered
Face centered
a
a
a
a a
a a
a a
a = b = c, a = b = = 90
正方晶系 ( Tetragonal )
Simple
Body centered
c
c
a a
a a
a = b c, a = b = = 90
1.2 晶体学基础 Fundamentals of crystallogphy
隋性气体无规则排列
表示有些材料包括水蒸气和玻璃的短程有序
表示有些材料包括水蒸气和玻璃的短程有序 金属及其他许多材料的长程有序排列
图 材料中原子的排列
二氧化硅结构示意图
a)晶态
b)非晶态
3. 晶体的特征
(1)周期性(不论沿晶体的哪个方向看去,总是相隔一定 的距离就出现相同的原子或原子集团。这个距离称为周期 ) 液体和气体都是非晶体。 (2)有固定的凝固点和熔点. (3)各向异性(沿着晶体的不同方向所测得的性能通常是 不同的 :晶体的导电性、导热性、热膨胀性、弹性、强度、 光学性质 )。
(a)
Z
βα
Xb
(b) 简单立方晶体 (a) 晶体结构 (b) 晶格 (c) 晶胞
γ (c)
c aY
2.晶胞的选取原则:
(1)晶胞几何形状能够充分反映空间点阵的对称性; (2)平行六面体内相等的棱和角的数目最多; (3)当棱间呈直角时,直角数目应最多; (4)满足上述条件,晶胞体积应最小。
图 晶胞的选取
立方晶系 ( Cubic)
Simple
Body centered
Face centered
a
a
a
a a
a a
a a
a = b = c, a = b = = 90
正方晶系 ( Tetragonal )
Simple
Body centered
c
c
a a
a a
a = b c, a = b = = 90
1.2 晶体学基础 Fundamentals of crystallogphy
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体的线缺陷的主要形式是各种形式的位错。 从而导致晶体中点阵结构的不严格。线缺陷严重 时可使实际晶体变为多晶,即晶体是由许多微小 的晶块组成。
面缺陷和体缺陷是涉及平面点阵和空间点阵的 缺陷。面缺陷是指晶体中可能缺少某一层的粒子, 形成了层错现象。体缺陷则指在晶体中出现空洞、 气泡、包裹物和沉积物等。
1.1 晶体结构的周期性
•1.1.1 晶体结构的周期性与点阵 1、晶体的周期性:晶体是一种内部粒子或 粒子集团在空间按一定规律周期性重复排 列而成的固体。结构基元和大小方向为二个要
素。
2、点阵结构与点阵:将晶体结构中的每个 结构基元抽象成一个点,将这些点按照周 期性重复的方式排列,就可构成点阵。
3、点阵的基本性质:凡是能够抽取出点阵的结 构可称为点阵结构;点阵结构可以被与它相对 应的平移群所重复。
点阵和平移群之间的联系:1)连接任意两点阵点 所得的向量必属于平移群;2)属于平移群的任一 向量的一端落在与其对应的点阵点时,其另一端必 落在此点阵中的另一点阵点上。
因此,点阵、点阵结构及晶体之间存在着一一对 应的关系:点阵中每一点阵点对应着点阵结构中的 一个结构基元,在晶体中则是一些组成晶体的实物 微粒,即原子、分子或离子等,或是这些微粒的集 团;空间点阵中的基本单位是一个个小的平行六面 体,在点阵结构中就是把每个点阵点恢复了它代表 的结构基元后的实体单位,在晶体中即为晶胞。相 应的,素单位和复单位则分别对应着素晶胞和复晶 胞。
同一种晶体中的两部分或几部分相互之间不 是由同一点阵所贯穿,但它们却是规则地连生在 一起而形成晶体,称为双晶,又称孪晶。 有些晶体是由许多不同的单晶体以不同的取 向聚集而成,称为多晶体。最常见的多晶体就是 金属及合金。
3、同质多晶和类质多晶
一些组成固定的化合物,由于其内部微粒可以以不 同的方式堆积,因而产生不同种类的晶体,我们把这种 同一化合组成存在两种或两种以上晶体结构形式的现象 为同质多晶现象。 同种化合物的不同晶型,在其物理、化学性质上可 能差别很大,如金刚石与石墨。 就物理性质熔点与硬度来看,通常晶体的熔点由结 构中最强的键决定,而晶体的硬度则由晶体中最弱的相 互作用力来决定。
现代科学技术赖以发展的各种光学、电学、 磁学材料,主要的存在形式是固体物质。固体 物质可以按照其组成粒子排列程度分为晶态、 准晶态和非晶态。 晶态固体具有长程有序的点阵结构,即其中 组成单元是处于一定格式空间排列的状态。 非晶态固体的内部结构类似液体,只在几个 原子间距的范围内或者在短程范围内处于有序 状态,而长程范围原子的排列没有一定的格式。
实际晶体偏离理想晶体的原因: (1)实际晶体中的微粒数量是有限的;
(2)晶体中所有的微粒并非处在晶格中 相应位置静止不动,而是在其平衡位置附 近不停的振动;
(3)实际晶体中多少存在一定的缺陷。 这些缺陷是指偏离理想的点阵结构情况。 晶体的结构缺陷包括点缺陷、线缺陷、 面缺陷和体缺陷等情况。
晶体的点缺陷包括空位、杂质原子、间隙原子、 错位原子和变价原子。
层错现象
在实际晶体中缺陷和畸变的存在使正常 的点阵结构受到了一定程度的破坏或扰乱, 对晶体的生长,晶体的力学性能、电学性 能、磁学性能和光学性能等到都有很大的 影响,在生产和科研中非常重要,是固体 物理、固体化学和材料科学等领域的重要 内容。
2、单晶体、多晶体与微晶体
若一个固体基本上为一个空间点阵结构所贯 穿,则称之为单晶;
一个点阵点 中只有一个基 本结构的点阵 称为素单元点 阵。如上述直 线点阵。 一个点阵点 中含有二个或 二个以上基本 结构的点阵你 复合点阵,如 石墨晶体。
3.点阵的基本性质:
按连接任意两点所得的向量平移拮能够复原的一组点为 点阵。
点阵的二个必要条件: (1)点数无限多;
(2)各点所处环境完全相同。
在两个或多个化合物中,如果化学式相似, 晶体结构形式相同,并能互相置换的现象,我们 称之为类质同晶现象。
1.2 晶体结构的对称性内体的一般特点是什么?点阵和晶体的结构有 何关系?
2、什么是同质多晶?什么是类质同晶? 3、产生晶体缺陷的原因是什么?晶体缺陷对晶体 的物理化学性质的影响如何?
1.1.2 晶体的结构参数
1.1.3 晶体缺陷
• 1、理想晶体与实际晶体 晶体的基本特征是具有周期性的点阵结构。因 此可以认为,按照点阵式的周期性在空间无限伸 展的晶体就是理想晶体。但这种理想晶体在自然 界中同一切完全理想的事物一样,是不可能存在 的,真正存在的实际晶体,并不具有理想的、完 整的、无限的理想结构,往往存在偏离理想晶体 的状况存在。
晶体在一定温度下原子在振动过程中可能克服其 势垒,离开其平衡位置而挤入间隙位置,形成一对 空位和间隙原子的缺陷,这类缺陷称为Frenkel缺陷。 而一对正负离子同时离开其平衡位置在而迁移到晶 体表面,出现了正负离子空位并存的现象称为 Schottky缺陷。 晶体中含有微量杂质原子时,当杂质原子取代了 正常原子的位置时,则形成杂质原子缺陷。