空间向量与立体几何知识点和知识题(含答案解析)

空间向量与立体几何知识点和知识题(含答案解析)
空间向量与立体几何知识点和知识题(含答案解析)

§1-3 空间向量与立体几何

【知识要点】

1.空间向量及其运算:

(1)空间向量的线性运算:

①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.

②空间向量的线性运算的运算律:

加法交换律:a+b=b+a;

加法结合律:(a+b+c)=a+(b+c);

分配律:(+)a=a+a;(a+b)=a+b.

(2)空间向量的基本定理:

①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.

②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.

③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.

(3)空间向量的数量积运算:

①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;

②空间向量的数量积的性质:

a·e=|a|c os<a,e>;a⊥b a·b=0;

|a|2=a·a;|a·b|≤|a||b|.

③空间向量的数量积的运算律: (

a )·

b =(a ·b );

交换律:a ·b =b ·a ;

分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:

①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +

a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).

②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则

a +

b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);

a =(

a 1,

a 2,

a 3);a ·

b =a 1b 1+a 2b 2+a 3b 3.

③空间向量平行和垂直的条件:

a ∥

b (b ≠0)?a =b ?a 1=

b 1,a 2=b 2,a 3=b 3(∈R );

a ⊥

b ?a ·b =0?a 1b 1+a 2b 2+a 3b 3=0.

④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则

;||,||232

221232221b b b a a a ++==++==??b b b a a a

;||||,cos 23

2221232221332211b b b a a a b a b a b a ++++++=>=

a b a

在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是

.)()()(||233222211b a b a b a -+-+-=

2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:

①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.

由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面

,取直线l 的方向向量a ,则向量a 叫做平面

的法向量.

由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.

(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,

的法向量分别是u ,v ,则

①l ∥m ?a ∥b ?a =k b ,k ∈R ; ②l ⊥m ?a ⊥b ?a ·b =0; ③l ∥?a ⊥u ?a ·u =0; ④l ⊥?a ∥u ?a =k u ,k ∈R ;

⑤∥?u ∥v ?u =k v ,k ∈R ; ⑥

?u ⊥v ?u ·v =0.

(3)用空间向量解决线线、线面、面面的夹角问题:

①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,

则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.

设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为

,显然],2

π

,0(∈θ则

?=

>

||||

||,cos |212121v v v v v v

②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.

设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面

的夹角为

,显

]2

π,0[∈θ,则?=

>

||||

||,cos |v u v u v u

③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -

在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB

叫做二面角

-l -

的平面角.

利用向量求二面角的平面角有两种方法: 方法一:

如图,若AB ,CD 分别是二面角-l -

的两个面内与棱l 垂直的异面直线,则

二面角

-l -

的大小就是向量CD AB 与的夹角的大小.

方法二:

如图,m 1,m 2分别是二面角的两个半平面,

的法向量,则〈m 1,m 2〉与该

二面角的大小相等或互补.

(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】

1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.

2.掌握空间向量的线性运算及其坐标表示.

3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.

5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】

例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱

AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中

点,求证:PQ ∥RS .

【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ

解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).

∵AP =2PA 1, ∴),3

4,0,0()2,0,0(32321===AA AP ∴?)3

4

,0,3(P

同理可得:Q (0,2,2),R (3,2,0),?)3

2,4,0(S

,)3

2

,2,3(RS PQ =-=

∴RS PQ //,又R ?PQ ,

∴PQ ∥RS .

【评述】1、证明线线平行的步骤: (1)证明两向量共线;

(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.

2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.

例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,

B 1

C 1的中点,求证:平面AMN ∥平面EFB

D .

【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.

解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,

0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).

取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).

MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),=(-1,1,4),

∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .

解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是

b =(b 1,b 2,b 3).

由,0,0==??AN AM a a 得??

?=+=+-,

042,

0423231a a a a 取a 3=1,得a =(2,-2,1).

由,0,0==??BF DE b b

得?

??=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).

∵a ∥b ,∴平面AMN ∥平面EFBD .

注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线

AM 和CN 所成角的余弦值.

解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).

∴),1,0,2(),2,1,0(

==CN AM

设AM 和CN 所成的角为

,则,5

2||||cos ==

?CN AM CN

AM θ

∴异面直线AM 和CN 所成角的余弦值是

?5

2 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,

∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+==

=QC PC PQ Q B P B

∴,5

2

2cos 11221211=-+=?Q B P B PQ Q B P B Q PB

∴异面直线AM 和CN 所成角的余弦值是

?5

2

【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角

(锐角).

例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.

【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.

解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A

?-

)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2

,0(a a

D ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,2

3(1a AA a AB a

DC ==-

= ,0,0111==??DC DC

∴DC 1⊥平面ABB 1A 1,

∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.

),2,2

,0(),2,2,23(1a a

a a a AC =-

= 2

3

|

|||cos 111=

=

∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.

解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),

)2,2,23(1a a a C -

,从而?-===)2,2

,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==??AA AB a a 得??

?==,

02,0ar aq 取p =1,得a =(1,0,0).

设直线AC 1与平面ABB 1A 1所成的角为],2

π

,0[,∈θθ

.30,2

1

|||||,cos |sin 111 ===

??=?θθa a AC AC AC

【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.

例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,

求二面角A -PB -C 的平面角的余弦值.

解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,

∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.

如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),

由D 是PB 的中点,得D ?)2

1

,22,

21( 由,3122==AB AP EB PE 得

E 是PD 的中点,从而

?)43

,42,43(E ∴)21

,22,21(),43,42,41(---=--=DC EA

∴?=

>=

3

|

|||,cos DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是

?3

3 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),

).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====

设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==??AB AP a a

得?????=+=,

02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==??CP CB b b 得?????=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).

∴?-=>=

|||,cos b a b a b a

∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是?=-

3

3|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.

2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.

例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .

(Ⅰ)求证:BC ⊥平面PAC ;

(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;

(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出

PE ∶EC 的值;若不存在,说明理由.

解:如图建立空间直角坐标系.

设PA =a ,由已知可得A (0,0,0),).,0,0(),0,2

3,0(),0,23,2

1(a P a C a a B - (Ⅰ)∵),0,0,2

1

(),,0,0(a a ==

∴,0=?BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .

∴BC ⊥平面PAC .

(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴?-)2

1,43,0(),21,43,

41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),2

1,43,0(),21,43,

41(a a AE a a a AD =-= ∴,4

14

cos =

=

∠DAE 即直线AD 与平面PAC 所成角的余弦值是

?4

14 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,

这时,∠AEP =90°,且

?==3

4

22AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.

练习1-3

一、选择题:

1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2

(B)2

(C)5

(D)22

2.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°

(B)45°

(C)60°

(D)90°

3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)

3

1 (B)3

2 (C)

3

3 (D)

3

2 4.如图,⊥,

=l ,A ∈

,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,

所成的角分别是

和?,AB 在

内的射影分别是m 和

n ,若a >b ,则下列结论正确的是( )

(A)>?,m >n (B)>?,m <n (C)

<?,m <n

(D)

<?,m >n

二、填空题:

5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.

6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为3

3

,则该正四棱柱的体积等于______.

7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.

8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,=

=BC AB AD 2

1

,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则

cos

=______.

三、解答题:

9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .

(Ⅰ)证明:A 1C ⊥平面BED ;

(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.

10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4

π

=

∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.

(Ⅰ)证明:直线MN∥平面OCD;

(Ⅱ)求异面直线AB与MD所成角的大小.

11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.

(Ⅰ)证明:BC⊥PQ;

(Ⅱ)求二面角B-AC-P平面角的余弦值.

习题1

一、选择题:

1.关于空间两条直线a、b和平面,下列命题正确的是( )

(A)若a ∥b ,b ?,则a ∥ (B)若a ∥,b ?,则a ∥b (C)若a ∥

,b ∥

,则a ∥b

(D)若a ⊥

,b ⊥

,则a ∥b

2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8

(B)

3

8 (C)6 (D)2

3.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)

4

6 (B)

4

10 (C)

2

2 (D)

2

3 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )

(A)

3

cm 3

4000 (B)

3

cm 3

8000 (C)2000cm 3

(D)4000cm 3

5.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2

(B)22

(C)23

(D)24

二、填空题:

6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.

7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线

AB 1和BC 1所成角的余弦值是______.

8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于

3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.

10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕

使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是

.24

23

a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:

11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.

(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;

(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.

12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.

(Ⅰ)求证:平面PCB⊥平面MAB;

(Ⅱ)求三棱锥P-ABC的表面积.

13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.

(Ⅰ)求证:BC1⊥平面A1B1C;

(Ⅱ)求证:MN∥平面A1ABB1;

(Ⅲ)求三棱锥M -BC 1B 1的体积.

14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2

AD ,DC =SD

=2.点M 在侧棱SC 上,∠ABM =60°.

(Ⅰ)证明:M 是侧棱SC 的中点;

(Ⅱ)求二面角S -AM -B 的平面角的余弦值.

练习1-3

一、选择题:

1.B 2.A 3.B 4.D 二、填空题:

5.60° 6.2 7.5

4 8.42

三、解答题:

9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .

高中数学空间向量与立体几何测试题及答案

一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++ D.11111 ()2 AB CD AC ++ 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-, ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C 7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,,

的中点,则2a 等于( ) A.2BA AC · B.2AD BD · C.2FG CA · D.2EF CB · 答案:B 8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122 -,, C.51122 --,, D.51122 ,, 答案:A 9.若向量(12)λ=,,a 与(212)=-, ,b 的夹角的余弦值为8 9,则λ=( ) A.2 B.2- C.2-或 255 D.2或255 - 答案:C 10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412??- ???,, B.(241),, C.(2141)-,, D.(5133)-,, 答案:D 11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos 3 D.3arccos 6 答案:D 12.给出下列命题: ①已知⊥a b ,则()()a b c c b a b c ++-=···; ②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面; ③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( ) A.1 B.2 C.3 D.4 答案:C 二、填空题 13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055?? - ??? ,,

空间解析几何与向量代数论文

空间解析几何与向量代数 呼伦贝尔学院 计算机科学与技术学院 服务外包一班 2013级 2014.5.4 小组成员: 宋宝文 柏杨白鸽 李强白坤龙

空间解析几何与向量代数 摘要:深入了解空间解析几何与向量代数的概念,一一讲述他们的区别和用途。向量的集中加减乘法和运算规律,还有空间直线与平面的关系。 关键词:向量;向量代数;空间几何 第一部分:向量代数 第一节:向量 一.向量的概念: 向量:既有大小,又有方向的量成为向量(又称矢量)。 表示法:有向线段a 或a 。 向量的模:向量的打小,记作|a |。 向径(矢径):起点为原点的向量。 自由向量:与起点无关的向量。 单位向量:模为1的向量。 零向量:模为0的向量,记作.0或0 若向量a 与b 大小相等,方向相同,则称a 与b 相等,记作a =b ; 若向量a 与b 方向相同或相反,则称a 与b 平行,记作a //b 规定:零向量与任何向量平行;与a 的模相同,但方向相反的向量称为a 的负向量, 记作-a ;因平行向量可平移到同一直线上,故两向量平行又称两向量共线。若K 3 个向量经平移可移到同一平面上,则称此K 个向量共面。 二.向量的线性运算 1.向量的加法 平行四边形法则: b a +b a 三角形法则: a + b b

a 运算规律:交换律a + b =b +a a 与b 结合律:(a +b )+c =a +(b +c ) 三角形法则可推广到多个向量相加。 2.向量的减法 b -a =b +(a ) a b -a b b -a a 特别当b =a 时,有a -a =a (a )=0 ; 三角不等式:|b +a |; |a -b |; 3.向量与数的乘法是一个数,与a 的乘积是一个新向量,记作a 。 规定: a 与a 同向时,|a |=|a |; 总之:|a | | |a | 三.向量的模、方向角 1.向量的模与两点间的距离公式 设r (x,y,z ),作om r ,则有r op oq or R Z Q O Y P X 由勾股定理得: |r | |OM| B A 对两点A ()与B ()因AB OB OA () 得两点间的距离公式: |AB| |AB | 第二节:数量积 向量积

空间向量与立体几何教案(强烈推荐)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处

理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 2.向量运算和运算率 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量 叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当 我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a 同向, 当λ<0时与a 反向的所有向量。 (3)若直线l ∥a ,l A ∈,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导的表达式。

立体几何中的向量方法

立体几何中的向量方法(二)——求空间角和距离 1. 空间向量与空间角的关系 (1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|. (2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小 1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉. 2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 2. 点面距的求法 如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到 平面α的距离d =|AB → ·n | |n | . 1. 判断下面结论是否正确(请在括号中打“√”或“×”)

(1)两直线的方向向量所成的角就是两条直线所成的角. ( × ) (2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角. ( × ) (3)两个平面的法向量所成的角是这两个平面所成的角. ( × ) (4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π 2],二面角的 范围是[0,π]. ( √ ) (5)直线l 的方向向量与平面α的法向量夹角为120°,则l 和α所成角为30°. ( √ ) (6)若二面角α-a -β的两个半平面α、β的法向量n 1,n 2所成角为θ,则二面角α- a -β的大小是π-θ. ( × ) 2. 已知二面角α-l -β的大小是π 3 ,m ,n 是异面直线,且m ⊥α,n ⊥β,则m ,n 所成 的角为 ( ) A.2π3 B.π 3 C.π 2 D. π6 答案 B 解析 ∵m ⊥α,n ⊥β, ∴异面直线m ,n 所成的角的补角与二面角α-l -β互补. 又∵异面直线所成角的范围为(0,π 2], ∴m ,n 所成的角为π 3 . 3. 在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),

空间向量与立体几何知识点归纳总结52783

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1 )向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。 (3)三点共线:A 、B 、C 三点共线<=>λ= <=>)1(=++=y x OB y OA x OC 其中 (4)与共线的单位向量为a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数 ,x y 使p xa yb =+。 (3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一 个唯一的有序实数组,,x y z ,使p xa yb zc =++。

空间解析几何与向量代数习题

第七章 空间解析几何与向量代数习题 (一)选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( ) A )5 B ) 3 C ) 6 D )9 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ; A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( ) A )2 π B )4 π C )3 π D )π 5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( ) A )5焦耳 B )10焦耳 C )3焦耳 D )9焦耳 6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( ) A )2 π B )4 π C )3 π D )π 7. 求点)10,1,2(-M 到直线L :12 21 3+=-=z y x 的距离是:( ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ? 是:( ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k 9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( ) A ) 3 62 B ) 3 64 C )3 2 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( ) A )2x+3y=5=0 B )x-y+1=0

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式 cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求 两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的范围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补. 7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距

空间解析几何与向量代数

空间解析几何与向量代 数 -CAL-FENGHAI.-(YICAI)-Company One1

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -== 若b a //,则 B (A )、x= y=6 (B)、x= y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){04404=--=--y x z x (D )?? ???==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3 0 1)且与平面3x 7y 5z 120平行的平面方程 解 所求平面的法线向量为n (3 7 5) 所求平面的方程为 3(x 3)7(y 0)5(z 1)0 即3x 7y 5z 40 2. 求过点(2 3 0)且以n (1 2 3)为法线向量的平面的方程 解 根据平面的点法式方程 得所求平面的方程为

空间几何中的向量方法

第一讲:空间几何中的向量方法---------坐标运算与法向量 一、空间向量的坐标运算 1. 若123(,,)a a a a =r ,123(,,)b b b b =r ,则 (1)112233(,,)a b a b a b a b +=+++; (2)112233(,,)a b a b a b a b -=---; (3)123(,,),a a a a R λλλλλ=∈; (4)112233a b a b a b a b ?=++; (5)112233//,,,(0,)a b a b a b a b b R λλλλ?===≠∈; (6)1122330a b a b a b a b ⊥?++=; (7 )a == (8 )cos ,a b a b a b ?<>= = ?. 例1 已知(2,3,5),(3,1,4),a b =-=--r r 求,,8,,a b a b a a b +-?r r r r r r r 的坐标. 2.若111222(,,),(,,),A x y z B x y z 则212121(,,)AB x x y y z z =---u u u r 练习1: 已知PA 垂直于正方形ABCD 所在的平面,M 、N 分别是AB,PC 的中点,且PA=AD=1, 求向量MN u u u u r 的坐标. 二、空间直角坐标系中平面法向量的求法 1、 方程法 利用直线与平面垂直的判定定理构造三元一次方程组,由于有三个未知数,两个方程,要设定一个变量的值才能求解,这是一种基本的方法,容易接受,但运算稍繁,要使法向量简洁,设值可灵活,法向量有无数个,他们是共线向量,取一个就可以。 例1 已知(2,2,1),(4,5,3),AB AC ==u u u r u u u r 求平面ABC 的法向量。 解:设(,,)n x y z =r ,则由,,n AB n AC ⊥⊥r u u u r r u u u r 得=0=0n AB n AC ???????r u u u r r u u u r 即220453=0x y z x y z ++=?? ++? 不妨设1z =,得12=-1 x y ?=? ???, 取1(,1,1)2n =-r

立体几何中的向量方法总结

立体几何中的向量方法基础篇一(几何证明) 一.求直线方向向量 1.已知()()4,2,2,2,1,1B A -且),,6(y x a =为直线AB 的方向向量,求y x ,。 二.平面的法向量 2.在空间中,已知()()()0,1,1,1,1,0,1,0,1C B A ,求平面ABC 的一个法向量。 3.如图,在四棱锥ABCD P -中,底面ABCD 为正方形, 2,==⊥DC PD ABCD PD 平面,E 为PC 中点 (1)分别写出平面PDC ABCD PAD ,,的一个法向量; (2)求平面EDB 的一个法向量; (3)求平面ADE 的一个法向量。 三.向量法证明空间平行与垂直 1.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,M AF AB ,1,2== 为EF 的中点,求 证:BDE AM 平面//

2. 如图,正方体''''D C B A ABCD -中,F E ,分别为CD BB ,'的中点,求证:ADE F D 平面⊥'。 3. 如图,在四棱锥ABCD E -中,BCE CD BCE AB 平面平面⊥⊥, 0120,22=∠====BCE CD CE BC AB ,求证:平面ABE ADE 平面⊥。 巩固练习: 1. 如图,在正方体''''D C B A ABCD -中,P 是'DD 的中点,O 是底面ABCD 的中心, (1)求证:O B '为平面PAC 的一个法向量;(2)求平面CD B A ''的一个法向量。

2. 如图,在直棱柱'''C B A ABC -中,4',5,4,3====AA AB BC AC (1)求证:'BC AC ⊥ (2)在AB 上是否存在点D ,使得'//'CDB AC 平面,若存在,确定D 点位置,若不存在,说明理由。 3. 如图,已知长方体''''D C B A ABCD -中,2==BC AB ,E AA ,4'=为'CC 的上的点,C B BE '⊥, 求证:BED C A 平面⊥' 4. 在三棱柱'''C B A ABC -中,1',2,,'===⊥⊥AA BC AB BC AB ABC AA 平面,E 为'BB 的中点,求证:C C AA AEC '''平面平面⊥

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则B (A )、x=0.5y=6(B)、x=-0.5y=6 (C)、x=1y=-7(D)、x=-1y=-3 2.平面x-2z=0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1(B)、x+2z+3y+4=0(C)、3(x-1)-y+(y+3)=0(D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x+y-11=0,π2:3x+8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是B 。 (A )、L 1⊥L 2(B )、L 1//L 2(C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题

1.点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l =-4,及m=3时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1·求过点(301)且与平面3x 7y 5z 120平行的平面方程 解所求平面的法线向量为n (375)所求平面的方程为 3(x 3)7(y 0)5(z 1)0即3x 7y 5z 40 2.求过点(230)且以n (123)为法线向量的平面的方程 解根据平面的点法式方程得所求平面的方程为 (x 2)2(y 3)3z 0 即x 2y 3z 80 3·求过三点M 1(214)、M 2(132)和M 3(023)的平面的方程 解我们可以用→→3121M M M M ?作为平面的法线向量n 因为→)6 ,4 ,3(21--=M M →)1 ,3 ,2(31--=M M 所以 根据平面的点法式方程得所求平面的方程为 14(x 2)9(y 1)(z 4)0 即14x 9yz 150 4·求过点(413)且平行于直线51123-==-z y x 的直线方程 解所求直线的方向向量为s (215)所求的直线方程为 5·求过两点M 1(321)和M 2(102)的直线方程 解所求直线的方向向量为s (102)(321)(421)所求的直线方程为

(完整版)空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、平行于向量)6,7,6(-=a 的单位向量为______________. 2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及; 及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量. 3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程02422 2 2 =++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22 =绕x 轴旋转一周,生成的曲面方程为__ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 22 2 =+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的36942 2 =-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(42 2 2 y x z += (2))(42 2 y x z += 四、

空间向量与立体几何教材分析

《空间向量与立体几何》教材分析 一、内容安排 本章是选修2-1的第3章,包括空间向量的基本概念和运算,以及用空间向量解决直线、平面位置关系的问题等内容。通过本章的学习,要使学生体会向量方法在研究几何图形中的作用,并进一步培养学生的空间想象力。 空间向量为处理立体几何问题提供了新的视角,它是解决空间中图形的位置关系和度量问题的非常有效的工具。本章以平面向量的学习为基础,通过类比的方法,引导学生经历向量及其运算由平面向空间推广的过程,然后通过典型例题引导学生学习用向量方法处理空间几何问题的基本思想方法。 二、主要特点 1. 强调类比、推广、特殊化、化归等思想方法。充分利用空间向量与平面向量之间的内在联系,通过类比,引导学生自己将平面向量中的概念、运算以及处理问题的方法推广到空间,既使相关内容相互沟通,又使学生学习类比、推广、特殊化、化归等思想方法,促使他们体会数学探索活动的基本规律,提高他们对向量的整体认识水平。空间向量的引进、运算、正交分解、坐标表示、用空间向量表示空间中的几何元素等,都是通过与平面向量的类比完成的。在空间向量运算中,还注意了与数的运算的对比。另外,通过适当的例子,对解决空间几何问题的三种方法,即向量方法、解析法、综合法进行了比较,引导学生对各自的优势以及面临问题时应当如何做出选择进行认识。 2. 突出用空间向量解决立体几何问题的基本思想。根据问题的特点,以适当的方式把问题中涉及的点、线、面等元素用空间向量表示出来,建立起空间图形与空间向量的联系;然后通过空间向量的运算,研究相应元素之间的关系(距离和夹角等问题);最后对运算结果的几何意义作出解释,从而解决立体图形的问题。 3. 用恰时恰点的问题引导学生的数学思维。使用了大量的“探究”、“思考”等,引导学生对相应的数学内容进行深入研讨。例如,在对空间向量的各种运算与相应的平面向量运算的异同的比较与证明、空间向量的正交分解定理的推导及向空间向量基本定理的推广、如何对各种几何元素及其关系进行恰当的向量表示和坐标表示、如何根据具体问题的需要选择恰当的方法等,都用“探究”、“思考”等方式提出问题,帮助学生形成积极主动的学习态度,转变学生的学习方式。 三、背景分析

空间向量与立体几何讲义

高 二 年级 数学 学科 一、空间向量的数量积坐标运算 1.空间向量的坐标表示:给定一个空间直角坐标系O -xyz 和向量a ,且设i 、j 、k 为 x 轴、y 轴、z 轴正方向的单位向量,则存在有序实数组{,,}x y z ,使得a xi y j zk =++ ,则称有序实数组{,,}x y z 为 向量a 的坐标,记着p = . 2.空间向量的直角坐标运算 (1)若123(,,)a a a a = ,123(,,)b b b b = ,则112233(,,)a b a b a b a b +=+++ , 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈ , (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =--- . 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 2.数量积:即 ?=332211b a b a b a ++ 3 .夹角:cos ||||a b a b a b ??==? 4.模长公式:若123(,,)a a a a = ,则||a == . 5.平行与垂直: 112233//,,()a b a b a b a b R λλλλ?===∈ 00332211=++?=??⊥b a b a b a 6.距离公式:若111(,,)A x y z ,222(,,)B x y z , 则||AB == , 或,A B d = 【典型例题】例1 如图,空间四边形OABC 中,,OA a OB b == , OC c = ,点M 在OA 上,且OM =2MA ,点N 为BC 的中点,则MN = .

高中数学空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ????ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a ρ 平行于b ρ,记作 b a ρ ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ (b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ =λb ρ。 (3)三点共线:A 、B 、C 三点共线<=>λ= <=>)1(=++=y x y x 其中 (4)与共线的单位向量为a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在实数 ,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x z y x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在一 个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。

空间解析几何与向量微分

第七章:空间解析几何与向量微分 本章内容简介 在平面解析几何中,通过坐标把平面上的点与一对有序实数对应起来,把平面上的图形和方程对应起来,从而可以用代数方法来研究几何问题,空间解析几何也是按照类似的方法建立起来的。 7.1空间直角坐标系 一、空间点的直角坐标 为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。 过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。(如下图所示) 三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。 取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。 例:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一的确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标。(如下图所示)

坐标为x,y,z的点M通常记为M(x,y,z). 这样,通过空间直角坐标系,我们就建立了空间的点M和有序数组x,y,z之间的一一对应关系。 注意:坐标面上和坐标轴上的点,其坐标各有一定的特征. 例:如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点, 则x=y=z=0,等。 二、空间两点间的距离 设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d我们有公式: 例题:证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形△ABC是一等腰三角形. 解答:由两点间距离公式得: 由于,所以△ABC是一等腰三角形 7.2 方向余弦与方向数 解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。 方向角与方向余弦 设有空间两点,若以P1为始点,另一点P2为终点的线段称为有 向线段.记作.通过原点作一与其平行且同向的有向线段.将与Ox,Oy,Oz三个 坐标轴正向夹角分别记作α,β,γ.这三个角α,β,γ称为有向线段的方向角.其中

空间解析几何与向量代数复习题

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面和的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点到直线L :的距离是:( A ) A 138 B 118 C 158 D 1 7. 设,23,a i k b i j k =-=++r r r r r r r 求a b ?r r 是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) B 364 C 3 2 D 3 9. 求平行于轴,且过点和的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b

空间向量与立体几何

2020-2021学年选修2-1《第3章空间向量与立体几何》一.选择题(共21小题) 1.已知点A(﹣3,1,﹣4),则点A关于x轴的对称点的坐标为()A.(﹣3,﹣1,4)B.(﹣3,﹣1,﹣4)C.(3,1,4)D.(3,﹣1,﹣4)【分析】根据在空间直角坐标系中关于x轴对称的点的坐标是横标不变,纵标和竖标变为原来的相反数,写出点A关于x轴对称的点的坐标. 【解答】解:∵在空间直角坐标系中关于x轴对称的点的坐标横标不变,纵标和竖标变为原来的相反数, ∵点A(﹣3,1,﹣4), ∴关于x轴对称的点的坐标是(﹣3,﹣1,4), 故选:A. 【点评】本题是一个空间直角坐标系中坐标的变化特点,关于三个坐标轴对称的点的坐标特点,关于三个坐标平面对称的坐标特点,我们一定要掌握,这是一个基础题.2.如图:在平行六面体ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点.若,,,则下列向量中与相等的向量是() A.B.C.D. 【分析】利用向量的运算法则:三角形法则、平行四边形法则表示出. 【解答】解:∵ = = = =

故选:A. 【点评】本题考查利用向量的运算法则将未知的向量用已知的基底表示从而能将未知向量间的问题转化为基底间的关系解决. 3.直三棱柱ABC﹣A1B1C1中,若=,=,=,则=()A.+﹣B.﹣+C.﹣++D.﹣+﹣ 【分析】将向量分解成+,然后将利用相等向量和向量的三角形法则将与化成用、、表示即可. 【解答】解:=+ =﹣+﹣ =﹣+﹣ 故选:D. 【点评】本题主要考查了空间向量的加减法,解题的关键是利用向量的三角形法则,属于基础题. 4.已知A(4,1,3),B(2,﹣5,1),C是线段AB上一点,且=,则C点的坐标为() A.(,,)B.(,﹣3,2) C.(,﹣1,)D.(,,) 【分析】利用向量的线性运算即可得出.

相关文档
最新文档