空间向量与立体几何知识点和知识题(含答案解析)
空间向量与立体几何练习题(带答案)

空间向量与立体几何练习题(带答案)一、选择题1.若空间向量a与b不相等,则a与b一定()A.有不同的方向B.有不相等的模C.不可能是平行向量D.不可能都是零向量【解析】若a=0,b=0,则a=b,这与已知矛盾,故选D.【答案】D图2-1-72.如图2-1-7所示,已知平行六面体ABCD-A1B1C1D1,在下列选项中,CD→的相反向量是()A.BA→B.A1C1→C.A1B1→D.AA1→【解析】由相反向量的定义可知,A1B1→是CD→的相反向量.【答案】C图2-1-83.在如图2-1-8所示的正三棱柱中,与〈AB→,AC→〉相等的是() A.〈AB→,BC→〉B.〈BC→,CA→〉C.〈C1B1→,AC→〉D.〈BC→,B1A1→〉【解析】∵B1A1→=BA→,∴〈BA→,BC→〉=〈AB→,AC→〉=〈BC→,B1A1→〉=60°,故选D.【答案】D4.在正三棱锥A-BCD中,E、F分别为棱AB,CD的中点,设〈EF→,AC→〉=α,〈EF→,BD→〉=β,则α+β等于()A.π6B.π4C.π3D.π2【解析】如图,取BC的中点G,连接EG、FG,则EG∥AC,FG∥BD,故∠FEG=α,∠EFG=β.∵A-BCD是正三棱锥,∴AC⊥BD.∴EG⊥FG,即∠EGF=π2.∴α+β=∠FEG+∠EFG=π2.【答案】D5.如图2-1-9所示,正方体ABCD-A1B1C1D1中,以顶点为向量端点的所有向量中,直线AB的方向向量有()图2-1-9A.8个B.7个C.6个D.5个【解析】与向量AB→平行的向量就是直线AB的方向向量,有AB→,BA→,A1B1→,B1A1→,C1D1→,D1C1→,CD→,DC→,共8个,故选A.【答案】A二、填空题6.在正方体ABCD-A1B1C1D1中,若E为A1C1的中点,则向量CE→和BD→的夹角为________.【解析】∵BD→为平面ACC1A1的法向量,而CE在平面ACC1A1中,∴BD→⊥CE→.∴〈BD→,CE→〉=90°.【答案】90°7.下列命题正确的序号是________.①若a∥b,〈b,c〉=π4,则〈a,c〉=π4.②若a,b是同一个平面的两个法向量,则a=B.③若空间向量a,b,c满足a∥b,b∥c,则a∥c.【解析】①〈a,c〉=π4或3π4,①错;②a∥b;②错;③当c=0时,推不出a∥c,③错;④由于异面直线既不平行也不重合,所以它们的方向向量不共线,④对.【答案】④8.在棱长为1的正方体中,S表示所有顶点的集合,向量的集合P={a|a =P1P2→,P1,P2∈S},则在集合P中模为3的向量的个数为________.【解析】由棱长为1的正方体的四条体对角线长均为3知:在集合P 中模为3的向量的个数为8.【答案】8三、解答题图2-1-109.如图2-1-10所示,在长、宽、高分别为AB=3、AD=2、AA1=1的长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中,(1)单位向量共有多少个?(2)试写出模为5的所有向量;(3)试写出与AB→相等的所有向量.【解】(1)由于长方体的高为1,所以长方体4条高所对应的AA1→,A1A→,BB1→,B1B→,CC1→,C1C→,DD1→,D1D→这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左右两侧的对角线长均为5,故模为5的向量有AD1→,D1A→,A1D→,DA1→,BC1→,C1B→,B1C→,CB1→共8个.(3)与向量AB→相等的所有向量(除它自身之外)共有A1B1→,DC→及D1C1→3个.图2-1-1110.如图2-1-11所示,正四棱锥S-ABCD中,O为底面中心,求平面SBD的法向量与AD→的夹角.【解】∵正四棱锥底面为正方形,∴BD⊥AC,SO⊥AC又∵BD∩SO=O∴AC⊥平面SBD.∴AC→为平面SBD的一个法向量.∴〈AC→,AD→〉=45°.图2-1-1211.如图2-1-12,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD 为正方形且PD=AD,E、F分别是PC、PB的中点.(1)试以F为起点作直线DE的一个方向向量;(2)试以F为起点作平面PBC的一个法向量.【解】(1)取AD的中点M,连接MF,连接EF,∵E、F分别是PC、PB的中点,∴EF綊12BC,又BC綊AD,∴EF綊12AD,则由EF綊DM知四边形DEFM是平行四边形,∴MF∥DE,∴FM→就是直线DE的一个方向向量.(2)∵PD⊥平面ABCD,∴PD⊥BC,又BC⊥CD,∴BC⊥平面PCD,∵平面PCD,∴DE⊥BC,又PD=CD,E为PC中点,∴DE⊥PC,从而DE⊥平面PBC,∴DE→是平面PBC的一个法向量,由(1)可知FM→=ED→,∴FM→就是平面PBC的一个法向量.。
高二数学空间向量与立体几何试题答案及解析

高二数学空间向量与立体几何试题答案及解析1.长方体中,,,,则与所成角的余弦值为.【答案】【解析】以D为空间原点,DA为x轴,D为z轴,DC为y轴,建立空间直角坐标系则=(-1,2,0),=(-1,-2,3)||=,|'|=,·=-3cos<,>==,即为所求。
【考点】本题主要考查空间向量的应用,向量的数量积,向量的坐标运算。
点评:简单题,通过建立空间直角坐标系,将求异面直线的夹角余弦问题,转化成向量的坐标运算。
2.正方体的棱长为1,是底面的中心,则到平面的距离为.【答案】【解析】因为O是A1C1的中点,求O到平面ABC1D1的距离,就是A1到平面ABC1D1的距离的一半,就是A1到AD1的距离的一半.所以,连接A1D与AD1的交点为P,则A1P的距离是:O到平面ABC1D1的距离的2倍O到平面ABC1D1的距离【考点】本题主要考查空间距离的计算。
点评:本题也可以通过建立空间直角坐标系,将求角、求距离问题,转化成向量的坐标运算,是高考典型题目。
3.已知={-4,3,0},则与垂直的单位向量为= .【答案】(,,0)【解析】设与垂直的向量与垂直的向量=(x,y,0),则-4x+3y=0,,解得x= ,y=,所以=(,,0)。
【考点】本题主要考查向量的坐标运算、向量垂直的充要条件、单位向量的概念。
点评:利用向量垂直的充要条件及单位向量的概念。
4.已知向量与向量平行,则()A.B.C.D.【答案】C【解析】因为向量与向量平行,所以,,故选C。
【考点】本题主要考查平行向量及向量的坐标运算。
点评:简单题,按向量平行的充要条件计算。
5.已知点,为线段上一点,且,则的坐标为()A.B.C.D.【答案】C【解析】设C的坐标为(x,y,z)则向量=(x-4,y-1,z-3)向量=(-2,-6,-2),而即=所以x-4=-,y-1=-2,Z-3=-所以x=,y=-1,z=,C的坐标为,选C。
数学第一章空间向量与立体几何1-1第1课时空间向量及其线性运算练习含解析新人教A版选择性必修第一册

第1课时 空间向量及其线性运算学习目标 1.理解空间向量的有关概念.2.类比平面向量,会用平行四边形法则、三角形法则作出向量的和与差.3.理解向量运算的交换律、结合律和分配律.知识点一 空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量. 2.长度或模:向量的大小. 3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作AB →,其模记为|a |或|AB →|. 4.几类特殊的空间向量名称 定义及表示零向量 长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量 与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为 -a 共线向量(平行向量) 如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a ,都有0∥a相等向量 方向相同且模相等的向量称为相等向量思考 空间中的两个向量是不是共面向量?答案 是,空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量. 知识点二 空间向量的线性运算空间向量的线性运算加法a +b =OA →+ AB → =OB →减法a -b =OA →-OC →=CA →数乘当λ>0时,λa =λOA →=PQ →; 当λ<0时,λa =λOA →=MN →;当λ=0时,λa =0运算律 交换律:a +b =b +a ;结合律:a +(b +c )=(a +b )+c ,λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb .思考1 怎样作图表示三个向量的和,作出的和向量是否与相加的顺序有关?答案 可以利用三角形法则和平行四边形法则作出三个向量的和.加法运算是对有限个向量求和,交换相加向量的顺序,其和不变. 思考2 由数乘λa =0,可否得出λ=0? 答案 不能.λa =0⇔λ=0或a =0.1.两个有公共终点的向量,一定是共线向量.( × ) 2.在空间中,任意一个向量都可以进行平移.( √ )3.空间两非零向量相加时,一定可以用平行四边形法则运算.( × ) 4.向量AB →与AC →是共线向量,则A ,B ,C 三点必在一条直线上.( √ )一、向量概念的应用例1 (1)下列关于空间向量的说法中正确的是( ) A .方向相反的两个向量是相反向量 B .空间中任意两个单位向量必相等C .若向量AB →,CD →满足|AB →|>|CD →|,则AB →>CD →D .相等向量其方向必相同 答案 D解析 A 中,方向相反,长度相等的两个向量是相反向量;B 中,单位向量模都相等而方向不确定;C 中,向量作为矢量不能比较大小,故选D. (2)(多选)下列说法中正确的是( )A .若|a |=|b |,则a ,b 的长度相同,方向相同或相反B .若向量a 是向量b 的相反向量,则|a |=|b |C .空间向量的加法满足结合律D .任一向量与它的相反向量不相等 答案 BC解析 |a |=|b |,说明a 与b 模相等,但方向不确定;对于a 的相反向量b =-a ,故|a |=|b |,从而B 正确;空间向量的加法满足结合律,C 正确;零向量的相反向量仍是零向量.故选BC.反思感悟 空间向量的概念问题在空间中,向量、向量的模、相等向量的概念和平面中向量的相关概念完全一致,两向量相等的充要条件是两个向量的方向相同、模相等.两向量互为相反向量的充要条件是大小相等,方向相反.跟踪训练1 下列关于空间向量的命题中,正确的命题的序号是________. ①长度相等、方向相同的两个向量是相等向量; ②平行且模相等的两个向量是相等向量; ③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同. 答案 ①解析 根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点和终点无关,④不正确.综上可知只有①正确. 二、空间向量的加减运算例2 如图,已知长方体ABCD -A ′B ′C ′D ′,化简下列向量表达式,并在图中标出化简结果的向量.(1)AA ′—→-CB →; (2)AA ′—→+AB →+B ′C ′———→.解 (1)AA ′—→-CB →=AA ′—→-DA →=AA ′—→+AD →=AA ′—→+A ′D ′———→=AD ′—→. (2)AA ′—→+AB →+B ′C ′——→=(AA ′—→+AB →)+B ′C ′———→=AA ′—→+A ′B ′———→+B ′C ′———→ =AB ′—→+B ′C ′———→=AC ′—→. 向量AD ′—→,AC ′—→如图所示.延伸探究试把本例中的体对角线所对应向量AC ′—→用向量AA ′—→,AB →,AD →表示. 解 在平行四边形ACC ′A ′中,由平行四边形法则可得AC ′—→=AC →+AA ′—→, 在平行四边形ABCD 中,由平行四边形法则可得AC →=AB →+AD →. 故AC ′—→=AB →+AD →+AA ′—→.反思感悟 空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.跟踪训练2 (多选)如图,在正方体ABCD -A 1B 1C 1D 1中,下列各式运算结果为BD 1—→的是( )A.A 1D 1—→-A 1A —→-AB →B.BC →+BB 1—→-D 1C 1—→C.AD →-AB →-DD 1—→D.B 1D 1—→-A 1A —→+DD 1—→ 答案 AB解析 A 中,A 1D 1—→-A 1A —→-AB →=AD 1—→-AB →=BD 1—→; B 中,BC →+BB 1—→-D 1C 1—→=BC 1—→+C 1D 1—→=BD 1—→;C 中,AD →-AB →-DD 1—→=BD →-DD 1—→=BD →-BB 1—→=B 1D —→≠BD 1—→;D 中,B 1D 1—→-A 1A —→+DD 1—→=BD →+AA 1—→+DD 1—→=BD 1—→+AA 1—→≠BD 1—→.故选AB. 三、空间向量的线性运算例3 在空间四边形ABCD 中,G 为△BCD 的重心,E ,F ,H 分别为边CD ,AD 和BC 的中点,化简下列各表达式. (1)AG →+13BE →+12CA →;(2)12(AB →+AC →-AD →).解 (1)因为G 是△BCD 的重心,所以|GE →|=13|BE →|,所以13BE →=GE →,又因为12CA →=EF →,所以由向量的加法法则,可知AG →+13BE →+12CA →=AG →+GE →+EF →=AE →+EF →=AF →.从而AG →+13BE →+12CA →=AF →.(2)如图所示,分别取AB ,AC 的中点P ,Q ,连接PH ,QH ,则四边形APHQ 为平行四边形,且有12AB →=AP →,12AC →=AQ →,而AP →+AQ →=AH →,12AD →=AF →,所以12(AB →+AC →-AD →)=AP →+AQ →-AF →=AH →-AF →=FH →.反思感悟 利用数乘运算进行向量表示的注意点(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙利用线段的中点进行解题.跟踪训练3 在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点.若A 1B 1—→=a ,A 1D 1—→=b ,A 1A —→=c ,则下列向量中与B 1M —→相等的向量是( )A .-12a +12b +cB.12a +12b +c C.12a -12b +c D .-12a -12b +c答案 A解析 B 1M —→=B 1B —→+BM →=A 1A —→+12(BA →+BC →)=c +12(-a +b )=-12a +12b +c .1.“两个非零空间向量的模相等”是“两个空间向量相等”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件 答案 B2.向量a ,b 互为相反向量,已知|b |=3,则下列结论正确的是( ) A .a =bB .a +b 为实数0C .a 与b 方向相同D .|a |=3答案 D解析 向量a ,b 互为相反向量,则a ,b 模相等,方向相反,故选D. 3.设A ,B ,C 是空间任意三点,下列结论错误的是( ) A.AB →+BC →=AC → B.AB →+BC →+CA →=0 C.AB →-AC →=CB → D.AB →=-BA → 答案 B4.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( ) A .平行四边形 B .空间四边形 C .等腰梯形 D .矩形答案 A解析 ∵AO →+OB →=DO →+OC →, ∴AB →=DC →.∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.5.化简:5(3a -2b )+4(2b -3a )=________. 答案 3a -2b1.知识清单: (1)向量的概念.(2)向量的线性运算(加法、减法和数乘). (3)向量的线性运算的运算律. 2.方法归纳:三角形法则、平行四边形法则、数形结合思想. 3.常见误区:对空间向量的理解应抓住向量的“大小”和“方向”两个要素,并注意它是一个“量”,而不是一个数.1.(多选)下列说法中,正确的是( ) A .模为0是一个向量方向不确定的充要条件B .若向量AB →,CD →满足|AB →|=|CD →|,AB →与CD →同向,则AB →>CD →C .若两个非零向量AB →,CD →满足AB →+CD →=0,则AB →,CD →互为相反向量 D.AB →=CD →的充要条件是A 与C 重合,B 与D 重合 答案 AC解析 A 正确,模不为0的向量方向是确定的. B 错误,向量的模可以比较大小,但向量不能比较大小. C 正确,由AB →+CD →=0,得AB →=-CD →,所以AB →,CD →互为相反向量.D 错误,AB →=CD →的充要条件是|AB →|=|CD →|,且AB →,CD →同向.但A 与C ,B 与D 不一定重合. 2.化简PM →-PN →+MN →所得的结果是( ) A.PM → B.NP → C .0 D.MN →答案 C解析 PM →-PN →+MN →=NM →+MN →=NM →-NM →=0,故选C. 3.在空间四边形OABC 中,OA →+AB →-CB →等于( ) A.OA → B.AB → C.OC →D.AC →答案 C4.在正方体ABCD -A 1B 1C 1D 1中,下列选项中化简后为零向量的是( ) A.AB →+A 1D 1—→+C 1A 1—→ B.AB →-AC →+BB 1—→ C.AB →+AD →+AA 1—→ D.AC →+CB 1—→答案 A解析 在A 选项中,AB →+A 1D 1—→+C 1A 1—→=(AB →+AD →)+CA →=AC →+CA →=0. 5.如果向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC →|,则( ) A.AB →=AC →+BC → B.AB →=-AC →-BC → C.AC →与BC →同向 D.AC →与CB →同向 答案 D6.设A ,B ,C ,D 为空间任意四点,则AC →-BC →+BD →=________. 答案 AD →解析 AC →-BC →+BD →=AC →+CB →+BD →=AD →.7.在正方体ABCD -A 1B 1C 1D 1中,化简AB →-CD →+BC →-DA →的结果是________. 答案 2AC →解析 AB →-CD →+BC →-DA →=AB →+BC →+DC →-DA →=AC →+AC →=2AC →.8.已知向量a ,b ,c 互相平行,其中a ,c 同向,a ,b 反向,|a |=3,|b |=2,|c |=1,则|a +b +c |=________. 答案 29.如图所示的是平行六面体ABCD -A 1B 1C 1D 1,化简下列各式:(1)AB →+AD →+AA 1→; (2)DD 1—→-AB →+BC →.解 (1)AB →+AD →+AA 1—→=AC →+AA 1—→=AC 1—→.(2)DD 1—→-AB →+BC →=AA 1—→-AB →+BC →=BA 1—→+BC →=BD 1—→.10.如图所示,已知空间四边形ABCD ,连接AC ,BD ,E ,F ,G 分别是BC ,CD ,DB 的中点,请化简:AB →+BC →+CD →,AB →+GD →+EC →,并标出化简结果的向量.解 AB →+BC →+CD →=AC →+CD →=AD →.因为E ,F ,G 分别为BC ,CD ,DB 的中点, 所以BE →=EC →,EF →=GD →.所以AB →+GD →+EC →=AB →+EF →+BE →=AF →. 故所求向量为AD →,AF →,如图所示.11.已知空间中任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A.DB → B.AB → C.AC → D.BA →答案 D解析 方法一 DA →+CD →-CB →=(CD →+DA →)-CB →=CA →-CB →=BA →. 方法二 DA →+CD →-CB →=DA →+(CD →-CB →)=DA →+BD →=BA →.12.在三棱锥A -BCD 中,E 是棱CD 的中点,且BF →=23BE →,则 AF →等于( )A. 12AB →+34AC →-34AD →B. AB →+34AC →-34AD →C .-5AB →+3AC →+3AD →D.13AB →+13AC →+13AD → 答案 D解析 因为 E 是棱 CD 的中点,BF →=23BE →,所以 AF →=AB →+BF →=AB →+23BE →=AB →+23(AE →-AB →)=23AE →+13AB →=13(AC →+AD →)+13AB →=13AB →+13AC →+13AD →. 13.在直三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B →=________. 答案 -c -a +b 解析 如图,A 1B —→=B 1B —→-B 1A 1—→=B 1B —→-BA →=-CC 1—→-(CA →-CB →) =-c -(a -b )=-c -a +b .14.如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.(1)化简A 1O —→-12AB →-12AD →=________.(2)用AB →,AD →,AA 1—→表示OC 1—→,则OC 1—→=________. 答案 (1)A 1A —→ (2)12AB →+12AD →+AA 1—→解析 (1)A 1O —→-12AB →-12AD →=A 1O —→-12(AB →+AD →)=A 1O —→-AO →=A 1O —→+OA →=A 1A —→.(2)因为OC →=12AC →=12(AB →+AD →),所以OC 1—→=OC →+CC 1—→=12(AB →+AD →)+AA 1—→=12AB →+12AD →+AA 1—→.15.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′——→=xAB →+y 2BC →+z 3CC ′——→,则x +y +z =________.答案 6解析 在平行六面体ABCD -A ′B ′C ′D ′中,AC ′——→=AB →+BC →+CC ′——→,又AC ′——→=xAB →+y 2BC →+z 3CC ′——→, ∴⎩⎪⎨⎪⎧ x =1,y 2=1,z 3=1,∴⎩⎪⎨⎪⎧ x =1,y =2,z =3,∴x +y +z =6.16.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1—→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N —→;(3)MP →.解 (1)∵P 是C 1D 1的中点,∴AP →=AA 1—→+A 1D 1——→+D 1P —→=a +AD →+12D 1C 1——→ =a +c +12AB →=a +c +12b . (2)∵N 是BC 的中点,∴A 1N —→=A 1A —→+AB →+BN →=-a +b +12BC → =-a +b +12AD →=-a +b +12c . (3)∵M 是AA 1的中点,∴MP →=MA →+AP →=12A 1A —→+AP → =-12a +⎝⎛⎭⎪⎫a +c +12b =12a +12b +c .。
高二选必一数学人教B版章节第一章空间向量与立体几何(2)+答案解析(附后)

bbgxxbj高二选必一数学人教B版章节第一章空间向量与立体几何1.2空间向量在立体几何中的应用1.2.4二面角第1课时二面角及其度量一、单选题(本大题共6小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.已知平面内有一个以AB为直径的圆,,点C在圆周上异于点A,,点D,E分别是点A在PC,PB上的射影,则 ( )A. 是二面角的平面角B. 是二面角的平面角C. 是二面角的平面角D. 是二面角的平面角2.如果一个二面角的两个半平面分别平行于另一个二面角的两个半平面,则这两个二面角的大小关系是 ( )A. 相等B. 互补C. 相等或互补D. 不能确定3.已知和均为边长为a的等边三角形,且,则二面角的大小为 ( )A. B. C. D.4.如图所示,点P是二面角棱上的一点,分别在,平面内引射线PM,PN,若,,则二面角的大小为 ( )A. B. C. D.5.正方形ABCD所在平面外有一点P,平面ABCD,若,则平面PBC与平面ABCD的夹角为 ( )A. B. C. D.6.如图,在正方体ABCD中,棱长为1,过AB作平面交棱,分别为E,若平面与底面ABCD所成的角为,则截面ABEF的面积为 ( )A. B. C. D.二、填空题(本大题共3小题,共15分)7.若P是所在平面外一点,且和都是边长为2的正三角形,,则二面角的大小为__________.8.四边形ABCD是边长为2的正方形,MA和PB都与平面ABCD垂直,且,则平面PMD 与平面ABCD所成角的余弦值为__________.9.在正方体中,截面与底面ABCD所成的二面角的正切值为__________.三、解答题(本大题共1小题,共12分。
解答应写出文字说明,证明过程或演算步骤)10.本小题12分已知在三棱锥中,平面ABC,,求二面角的余弦值.答案和解析1.【答案】B【解析】【分析】本题考查二面角,线面垂直的判定,属于中档题;根据题意做出图形,证明平面PAC继而证明平面PBC,所以有平面ADE即可得结果.【解答】解:因为,,所以,因为AB为圆的直径,所以,,所以平面PAC,所以,因为D为A在PC上的射影,所以,又,所以平面PBC,所以,又,,所以平面ADE,所以是二面角的平面角 .故选2.【答案】C【解析】【分析】本题考查二面角的概念,属于基础题.根据二面角的概念可知,当这两个二面角的两个面均同向或均异向时,它们相等;当这两个二面角的两个面中,一组同向,另一组异向时,它们互补,即可求解.【解答】解:当这两个二面角的两个面均同向或均异向时,它们相等;当这两个二面角的两个面中,一组同向,另一组异向时,它们互补.故选3.【答案】C【解析】【分析】本题主要考查了二面角的大小计算,属于基础题.取BC的中点E,连结EA,ED,得到,,得到二面角的平面角,利用等边三角形的性质计算即可.【解答】解:如图,取BC的中点E,连接、,根据等边三角形的性质得,,即为所求,又,,所以是等边三角形,则故选4.【答案】D【解析】【分析】本题考查的知识点是二面角及其度量,属于基础题,我们要根据二面角的定义,在两个平面的交线上取一点Q,然后向两个平面引垂线,构造出二面角的平面角,然后根据平面几何的性质,求出含二面角的平面角的三角形中相关的边长,解三角形即可得到答案.【解答】解:过AB上一点Q分别在,内做AB的垂线,交PM,PN于M点和N点,则即为二面角的平面角,如下图所示:设,,,,又由,易得为等边三角形,则,解三角形QMN易得,故答案为5.【答案】B【解析】【分析】本题主要考查线面垂直的判定及性质,利用空间向量求二面角,属于中档题.以A点为原点,建立空间直角坐标系,不妨设,写出各点的坐标,由线面垂直的判定及性质得到为平面PAB的法向量,过A作,可证明平面PCD,故为平面PCD的法向量,利用〈,〉可得平面PAB与平面PCD所成的二面角的大小.【解答】解:由题意可以A点为原点,建立如图所示的空间直角坐标系,不妨设,则,,,平面ABCD,平面ABCD,,又,,面PAB,平面PAB,为平面PAB的法向量,即,过A作,,则E为PD中点,由题意,,,PA,面PAD,面PAD,面PAD,,,PD,面PCD,则平面PCD,故为平面PCD的法向量,且,,平面PAB与平面PCD所成的二面角的大小为故答案选6.【答案】D【解析】【分析】本题考查二面角与空间几何体的截面问题,为基础题.【解答】解:由图可知,平面与底面ABCD所成的角等同于,可得,且截面ABEF为矩形,可得截面面积为7.【答案】【解析】【分析】本题主要考查了二面角及其度量,考查空间想象能力、运算能力和推理论证能力,属于基础题.取BC的中点D,连接PD、AD,根据二面角的平面角的定义可知为二面角的平面角,在三角形PDA中求出此角即可.【解答】解:取BC的中点D,连接PD、AD,、均为正三角形,,,为二面角的平面角.又,,故答案为8.【答案】或【解析】【分析】本题考查二面角的求法,解题时要认真审题,注意面积法的合理运用.考虑在平面ABCD同侧或异侧,结合,能求出【解答】解:设平面PMD与平面ABCD所成角的大小为,在平面ABCD上的射影为,易得当在平面ABCD同侧时,如图所示:,,当在平面ABCD异侧时,如图所示:,,,,所以平面PMD与平面ABCD所成角的余弦值为或故答案为或9.【答案】【解析】【分析】本题考查了二面角的求法,考查了转化思想,属于基础题.连接AC交BD于点O,连接,根据条件可知为所求的角,再求出即可.【解答】解:如图所示,连接AC交BD于点O,连接,则,,为二面角的平面角,设,则,所以10.【答案】方法一:如图,过点B作于点E,则E为AC的中点,过点E作于点F,连接因为平面ABC,平面PAC,所以平面平面又因为,平面ABC,平面平面,所以平面由三垂线定理有,所以是二面角的平面角.设,由E是AC的中点,得,,所以,所以方法二:利用射影面积公式如图,过点B作于点E,连接因为平面ABC,平面PAC,所以平面平面ABC,又因为,平面ABC,平面平面,所以平面PAC,所以是在平面PAC上的射影.设,则,,所以在中,AB边上的高,所以又设二面角的大小为,由射影面积公式有【解析】本题考查二面角的求解,为一般题.。
高考数学压轴专题(易错题)备战高考《空间向量与立体几何》知识点总复习含答案解析

新数学高考《空间向量与立体几何》专题解析一、选择题1.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A.2对B.3对C.4对D.5对【答案】C【解析】【分析】-,易证平面PAD⊥平面ABCD,平面PCD⊥平面画出该几何体的直观图P ABCDPAD,平面PAB⊥平面PAD,平面PAB⊥平面PCD,从而可选出答案.【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面PAD⊥平面ABCD,作PO⊥AD于O,则有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面PCD⊥平面PAD,同理可证:平面PAB⊥平面PAD,由三视图可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面PAB⊥平面PCD,所以该多面体各表面所在平面互相垂直的有4对.【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题.2.《乌鸦喝水》是《伊索寓言》中一个寓言故事,通过讲述已知乌鸦喝水的故事,告诉人们遇到困难要运用智慧,认真思考才能让问题迎刃而解的道理,如图2所示,乌鸦想喝水,发现有一个锥形瓶,上面部分是圆柱体,下面部分是圆台,瓶口直径为3厘米,瓶底直径为9厘米,瓶口距瓶颈为23厘米,瓶颈到水位线距离和水位线到瓶底距离均为332厘米,现将1颗石子投入瓶中,发现水位线上移3厘米,若只有当水位线到达瓶口时乌鸦才能喝到水,则乌鸦共需要投入的石子数量至少是( )A .2颗B .3颗C .4颗D .5颗【答案】C 【解析】 【分析】利用图形中的数据,分别算出石子的体积和空瓶的体积即可. 【详解】如图,9,3,33AB cm EF GH cm LO cm ====所以60A ∠=︒,原水位线直径6CD cm =,投入石子后,水位线直径5IJ cm = 则由圆台的体积公式可得石子的体积为:()2231913324MN CN IM CN IM cm ππ⋅⋅++⋅= 空瓶的体积为:()22213LN CN EL CN EL EL KL ππ⋅++⋅+⋅⋅888 =+=()2973,491=∈所以至少需要4颗石子故选:C【点睛】本题考查的是圆台和圆柱体积的算法,掌握其公式是解题的关键.3.设α、β是两个不同的平面,m、n是两条不同的直线,下列说法正确的是()A.若α⊥β,α∩β=m,m⊥n,则n⊥βB.若α⊥β,n∥α,则n⊥βC.若m∥α,m∥β,则α∥βD.若m⊥α,m⊥β,n⊥α,则n⊥β【答案】D【解析】【分析】根据直线、平面平行垂直的关系进行判断.【详解】由α、β是两个不同的平面,m、n是两条不同的直线,知:在A中,若α⊥β,α∩β=m,m⊥n,则n与β相交、平行或n⊂β,故A错误;在B中,若α⊥β,n∥α,则n与β相交、平行或n⊂β,故B错误;在C中,若m∥α,m∥β,则α与β相交或平行,故C错误;在D中,若m⊥α,m⊥β,则α∥β,∴若n⊥α,则n⊥β,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的益关系等基础知识,考查运算求解能力,是中档题.4.《九章算术》是中国古代的数学瑰宝,其第五卷商功中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何?”翻译成现代汉语就是:今有三面皆为等腰梯形,其他两侧面为直角三角形的五面体的隧道,前端下宽6尺,上宽一丈,深3尺,末端宽8尺,无深,长7尺(注:一丈=十尺).则该五面体的体积为()A .66立方尺B .78立方尺C .84立方尺D .92立方尺【答案】C 【解析】 【分析】如图,在DC ,EF 上取G ,H ,使得DG EH AB ==,连接BG ,BH ,GH ,CH ,ADE BGH B CGHF V V V --=+,计算得到答案.【详解】如图,在DC ,EF 上取G ,H ,使得DG EH AB ==,连接BG ,BH ,GH ,CH ,故多面体的体积11()7332ADE BGH B CGHF V V V S AB CG HF --=+=⋅+⨯+⨯⨯直截面 111736(42)7384232=⨯⨯⨯+⨯⨯⨯⨯=, 故选:C .【点睛】本题考查了几何体体积的计算,意在考查学生的计算能力和空间想象能力.5.如图,在直三棱柱111ABC A B C -中,4AC BC ==,AC BC ⊥,15CC =,D 、E 分别是AB 、11B C 的中点,则异面直线BE 与CD 所成的角的余弦值为( )A .3 B .13C .58 D .387【答案】C 【解析】 【分析】取11A C 的中点F ,连接DF 、EF 、CF ,推导出四边形BDFE 为平行四边形,可得出//BE DF ,可得出异面直线BE 与CD 所成的角为CDF ∠,通过解CDF V ,利用余弦定理可求得异面直线BE 与CD 所成的角的余弦值. 【详解】取11A C 的中点F ,连接DF 、EF 、CF .易知EF 是111A B C △的中位线,所以11//EF A B 且1112EF A B =. 又11//AB A B 且11AB A B =,D 为AB 的中点,所以11//BD A B 且1112BD A B =,所以//EF BD 且EF BD =.所以四边形BDFE 是平行四边形,所以//DF BE ,所以CDF ∠就是异面直线BE 与CD 所成的角.因为4AC BC ==,AC BC ⊥,15CC =,D 、E 、F 分别是AB 、11B C 、11A C 的中点, 所以111122C F AC ==,111122B E BC ==且CD AB ⊥. 由勾股定理得224442AB =+=,所以2242AC BC CD AB ⋅===. 由勾股定理得2222115229CF CC C F =+=+=,2222115229DF BE BB B E ==+=+=.在CDF V 中,由余弦定理得())()22229222958cos 22922CDF +-∠==⨯⨯.故选:C. 【点睛】本题考查异面直线所成角的余弦值的计算,一般利用平移直线法找出异面直线所成的角,考查计算能力,属于中等题.6.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .8(6623)+B .6(8823)+C .8(632)+D .6(8832)+ 【答案】A 【解析】 【分析】该鲁班锁玩具可以看成是一个正方体截去了8个正三棱锥所余下来的几何体,然后按照表面积公式计算即可. 【详解】由题图可知,该鲁班锁玩具可以看成是一个棱长为222+的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为2,侧棱长为2,则该几何体的表面积为2116(222)42282322S ⎡⎤=⨯+-⨯⨯⨯+⨯⨯⨯⎢⎥⎣⎦8(6623)=++.故选:A. 【点睛】本题考查数学文化与简单几何体的表面积,考查空间想象能力和运算求解能力.7.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163【答案】D 【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.8.已知ABC V 的三个顶点在以O 为球心的球面上,且22cos 3A =,1BC =,3AC =,三棱锥O ABC -的体积为14,则球O 的表面积为( ) A .36π B .16πC .12πD .163π【答案】B 【解析】 【分析】根据余弦定理和勾股定理的逆定理即可判断三角形ABC 是直角三角形,根据棱锥的体积求出O 到平面ABC 的距离,利用勾股定理计算球的半径OA ,得出球的面积. 【详解】由余弦定理得22229122cos 263AB AC BC AB A AB AC AB +-+-===g ,解得22AB =, 222AB BC AC ∴+=,即AB BC ⊥.AC ∴为平面ABC 所在球截面的直径.作OD ⊥平面ABC ,则D 为AC 的中点, 11114221332O ABC ABC V S OD OD -∆==⨯⨯⨯⨯=Q g , 7OD ∴=. 222OA OD AD ∴=+=. 2416O S OA ππ∴=⋅=球.故选:B .【点睛】本题考查了球与棱锥的关系,意在考查学生对这些知识的理解掌握水平,判断ABC ∆的形状是关键.9.已知某几何体的三视图如图所示,则该几何体的体积为A.273B.276C.274D.272【答案】D【解析】【分析】先还原几何体,再根据锥体体积公式求结果.【详解】几何体为一个三棱锥,高为33,底为一个直角三角形,直角边分别为333,,所以体积为1127=33333=322V⨯⨯⨯⨯,选D.【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.10.设,为两条不同的直线,,为两个不同的平面,下列命题中,正确的是()A.若,与所成的角相等,则B.若,,则C.若,,则D.若,,则【答案】C【解析】试题分析:若,与所成的角相等,则或,相交或,异面;A错.若,,则或,B错. 若,,则正确. D.若,,则,相交或,异面,D错考点:直线与平面,平面与平面的位置关系11.圆锥SD(其中S为顶点,D为底面圆心)的侧面积与底面积的比是2:1,则圆锥SD与它外接球(即顶点在球面上且底面圆周也在球面上)的体积比为()A .9:32B .8:27C .9:22D .9:28【答案】A 【解析】 【分析】根据已知条件求得圆锥母线与底面圆半径r 的关系,从而得到圆锥的高与r 关系,计算圆锥体积,由截面图得到外接球的半径R 与r 间的关系,计算球的体积,作比即可得到答案. 【详解】设圆锥底面圆的半径为r,圆锥母线长为l ,则侧面积为πrl , 侧面积与底面积的比为2πrl 2lr rπ==,则母线l=2r,圆锥的高为h=223l r r -=, 则圆锥的体积为2313πh 3r r π=, 设外接球的球心为O,半径为R,截面图如图,则OB=OS=R,OD=h-R=3r R -,BD=r, 在直角三角形BOD 中,由勾股定理得222OB OD BD =+,即()2223R r r R =+-,展开整理得R=,3r 所以外接球的体积为33344333393R r ππ=⨯=, 故所求体积比为33393323293rr ππ=故选:A【点睛】本题考查圆锥与球的体积公式的应用,考查学生计算能力,属于中档题.12.某四面体的三视图如图所示,正视图,俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为( )A .22B .23C .4D .26【答案】B【解析】 解:如图所示,该几何体是棱长为2的正方体中的三棱锥P ABC - ,其中面积最大的面为:1232232PAC S V =⨯⨯= . 本题选择B 选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.13.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A 3B 6C 3D .36【答案】B【解析】【分析】 设1AA c=u u u v v ,AB a =u u u v v ,AC b =u u u v v ,根据向量线性运算法则可表示出1AB u u u v 和1BC u u u u v ;分别求解出11AB BC ⋅u u u v u u u u v 和1AB u u u v ,1BC u u u u v ,根据向量夹角的求解方法求得11cos ,AB BC <>u u u v u u u u v ,即可得所求角的余弦值.【详解】 设棱长为1,1AA c =u u u v v ,AB a =u u u v v ,AC b =u u u v v 由题意得:12a b ⋅=v v ,12b c ⋅=v v ,12a c ⋅=v v 1AB a c =+u u u v v v Q ,11BC BC BB b a c =+=-+u u u u v u u u v u u u v v v v()()22111111122AB BC a c b a c a b a a c b c a c c ∴⋅=+⋅-+=⋅-+⋅+⋅-⋅+=-++=u u u v u u u u v v v v v v v v v v v v v v v v 又()222123AB a c a a c c =+=+⋅+=u u u v v v v v v v ()222212222BC b a c b a c a b b c a c =-+=++-⋅+⋅-⋅=u u u u v v v v v v v v v v v v v 1111116cos ,6AB BC AB BC AB BC ⋅∴<>===⋅u u u v u u u u v u u u v u u u u v u u u v u u u u v 即异面直线1AB 与1BC 所成角的余弦值为:66本题正确选项:B【点睛】 本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.14.如图长方体中,过同一个顶点的三条棱的长分别为2、4、6,A 点为长方体的一个顶点,B 点为其所在棱的中点,则沿着长方体的表面从A 点到B 点的最短距离为( )A 29B .35C 41D .213【答案】C【解析】【分析】 由长方体的侧面展开图可得有3种情况如下:①当B 点所在的棱长为2;②当B 点所在的棱长为4;③当B 点所在的棱长为6,分别再求出展开图AB 的距离即可得最短距离.【详解】由长方体的侧面展开图可得:(1)当B 点所在的棱长为2,则沿着长方体的表面从A 到B 的距离可能为()22461101++=()2241661++=()2246165++= (2)当B 点所在的棱长为4,则沿着长方体的表面从A 到B 的距离可能为()22226213++=()22262217++=()22262217++= (3)当B 点所在的棱长为6,则沿着长方体的表面从A 到B 的距离可能为()2223441++=()2224335++=()2223453++= 综上所述,沿着长方体的表面从A 点到B 41.故选:C .【点睛】本题考查长方体的展开图,考查空间想象与推理能力,属于中等题.15.在正方体1111ABCD A B C D -中,E 为棱1CC 上一点且12CE EC =,则异面直线AE 与1A B 所成角的余弦值为( ) A .1144 B 11 C .1144 D .1111【答案】B【解析】【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AE 与1A B 所成角的余弦值.【详解】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设3AB =,则()3,0,0A ,()0,3,2E ,()13,0,3A ,()3,3,0B ,()3,3,2AE =-u u u r ,()10,3,3A B =-u u u r ,设异面直线AE 与1A B 所成角为θ,则异面直线AE 与1A B 所成角的余弦值为: 1111cos 222218AE A B AE A Bθ⋅===⋅⋅u u u r u u u r u u u r u u u r . 故选:B .【点睛】本题考查利用向量法求解异面直线所成角的余弦值,难度一般.已知1l 的方向向量为a r ,2l 的方向向量为b r ,则异面直线12,l l 所成角的余弦值为a b a b⋅⋅r r r r .16.已知直三棱柱111ABC A B C -的底面为直角三角形,且两直角边长分别为13,此三棱柱的高为23A .323πB .163πC .83πD .643π 【答案】A【解析】【分析】求得该直三棱柱的底面外接圆直径为2221(3)2r =+=,再根据球的性质,求得外接球的直径2R =,利用球的体积公式,即可求解.【详解】 由题意可得该直三棱柱的底面外接圆直径为2221(3)21r r =+=⇒=,根据球的性质,可得外接球的直径为22222(2)2(23)4R r h =+=+=,解得2R =,所以该三棱柱的外接球的体积为343233V R ππ==,故选A. 【点睛】 本题主要考查了球的体积的计算,以及组合体的性质的应用,其中解答中找出合适的模型,合理利用球的性质求得外接球的半径是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.17.等腰三角形ABC 的腰5AB AC ==,6BC =,将它沿高AD 翻折,使二面角B AD C --成60︒,此时四面体ABCD 外接球的体积为( )A .7πB .28πC .1919πD .287π 【答案】D【解析】分析:详解:由题意,设BCD ∆所在的小圆为1O ,半径为r ,又因为二面角B AD C --为060,即060BDC ∠=,所以BCD ∆为边长为3的等边三角形, 又正弦定理可得,03223sin 60r ==,即23BE =, 设球的半径为R ,且4=AD , 在直角ADE ∆中,()22222244(23)28R AD DE R =+⇒=+=,所以7R =,所以球的体积为3344287(7)333V R πππ==⨯=,故选D .点睛:本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径.18.已知直线和不同的平面,下列命题中正确的是A .//m m αβαβ⊥⎫⇒⎬⊥⎭B .m m αββα⊥⎫⇒⊥⎬⊂⎭C .//////m m ααββ⎫⇒⎬⎭D .////m m αββα⎫⇒⎬⊂⎭【答案】D【解析】【分析】对各个选项逐一进行分析即可【详解】 A ,若αβ⊥,m β⊥,则有可能m α⊂,故A 错误B ,若αβ⊥,m α⊂,则m 与β不一定垂直,可能相交或平行,故B 错误C ,若//m α,//m β则推不出//αβ,面面平行需要在一个面内找出两条相交线与另一个平面平行,故C 错误D ,若//αβ,m α⊂,则有//m β,故D 正确故选D【点睛】本题考查了线面平行与面面平行的判断和性质,在对其判定时需要运用其平行的判定定理或者性质定理,所以要对课本知识掌握牢固,从而判断结果19.某多面体的三视图如图所示,则该多面体的各棱中,最长棱的长度为( )A 6B 5C .2D .1【答案】A【解析】 由三视图可知该多面体的直观图为如图所示的四棱锥P ABCD -:其中,四边形ABCD 为边长为1的正方形,PE ⊥面ABCD ,且1AE =,1PE =. ∴222AP AE PE =+=2BE AB AE =+=,222DE AD AE =+= ∴225CE BE BC =+=225PB BE PE =+223PD PE DE =+=∴226PC CE PE =+=∴最长棱为PC故选A.点睛: 思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:①首先看俯视图,根据俯视图画出几何体地面的直观图;②观察正视图和侧视图找到几何体前、后、左、右的高度;③画出整体,然后再根据三视图进行调整.20.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( )A 15B 5C 6D 10 【答案】D【解析】【分析】取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,在1BNC ∆中,利用余弦定理,即可求解.【详解】由题意,取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,设正三棱柱的各棱长为2,则115,22,3C N BC BN ===设直线AM 与1C N 所成角为θ,在1BNC ∆中,由余弦定理可得222(5)(22)(3)10cos 42522θ==⨯⨯,即异面直线AM 与1BC 所成角的余弦值为104,故选D .【点睛】本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.。
(完整)空间向量与立体几何知识点和习题(含答案),推荐文档

由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.,取直线l的方向向量a,则向量及一个向量a,那么经过点A以向量用空间向量刻画空间中平行与垂直的位置关系:的方向向量分别是a,b,平面α ,β 的法向量分别是,k∈R;0;0;,k∈R;k∈R;=0.用空间向量解决线线、线面、面面的夹角问题:,b是两条异面直线,过空间任意一点分别是二面角的两个半平面α ,β 的法向量,则〈根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分.掌握空间向量的线性运算及其坐标表示..掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂.理解直线的方向向量与平面的法向量..能用向量语言表述线线、线面、面面的垂直、平行关系..能用向量方法解决线线、线面、面面的夹角的计算问题.建立空间直角坐标系,设法证明存在实数k ,使得RS k PQ =如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,1(3,0,2),B 1(0,4,2),E (3,4,0).PA 1, ∴),34,0,0()2,00(32321===AA AP ⋅)同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(2要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0)N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,,2,0),=(2,2,0),=(-1,1,4),=(-1,EF AK OG 本文下载后请自行对内容编辑修改删除,:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0)C (0,2,0),N (2,2,1).),1,0,2(),2,1,0(=CN 所成的角为θ ,则CN ,52||||cos ==⋅CN AM CN AM θ∴异面直线AM 和CN 所成角的余弦值是⋅52取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .B P ∥MA ,B Q ∥NC ,所成的角.6,522=+==QC PC PQ Q空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成ABC -A 1B 1C 1的底面边长为a ,侧棱长为利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),取A 1B 1的中点D ,则,连接AD ,C ⋅))2,2,0(a a D ),2,0,0(),0,,0(),0,0,231a AA a AB a ==,011=⋅AA DC 本文下载后请自行对内容编辑修改删除,PB的中点D,连接CD,作AE⊥PB于E.,PA⊥AC,2,∴CD⊥PB.DC夹角的大小就是二面角A-PB-C的大小.,0(),0,0,2(),0,-==CP CB =(a 1,a 2,a 3),(b 1,b 2,b 3).=1,得).0,2,1(-=a 得取b 3=1,得⎪⎩⎪⎨⎧=+-=,0,02321b b b 3如图建立空间直角坐标系.,由已知可得A (0,0,0),),0,23,0(),0,23,21(a C a a B -),0,0,21(),,0,0a BC a =∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .,0PAC .的中点,DE ∥BC ,∴E 为PC 的中点.⋅)21,43,0(),21,3a a E a a ⊥平面PAC ,(B)θ >ϕ(D)θ <ϕ中,E,F,G,H分别为所成角的大小是______.6,且对角线与底面所成角的余弦值为D1中,AA1=2AB,则异面直线1本文下载后请自行对内容编辑修改删除,的底面是直角梯形,∠BAD=90°,,PA⊥底面ABCD,PD所成的角为θ ,则cosθ =______.C1D1中,AA1=2AB=4,点平面角的余弦值.中,底面ABCD是边长为OA的中点,N为BC的中点.OCD;所成角的大小.平面角的余弦值.习题1和平面α ,下列命题正确的是( α (B)若a ∥α (B)38000(D)4000cm 2的正方形,另外两个侧面都是有一个内角为( )(C)223本文下载后请自行对内容编辑修改删除,C11;平面角的余弦值.PA⊥AB,PA⊥AC,AB⊥AC MAB;C ;ABB 1;的体积.中,底面ABCD 为矩形,SD ⊥底面SD =2.点M 在侧棱SC 上,∠的中点;的平面角的余弦值.练习1-3D .42本文下载后请自行对内容编辑修改删除,,0),E (0,2,1),A 1).4∴A 1C ⊥BD ,A 1C ,0=⊥平面DBE .是平面DA 1E 的法向量,则,得n =(4,1,-2).14,,22(),0,22,0(-D P =-=),2,22,0(OD OP n =(x ,y ,z ),则⋅OP n 本文下载后请自行对内容编辑修改删除,是CA 和平面α 所成的角,则∠,CO =1.3=AO ABO =∠BAO =45°,∴=AO BO ).1,0,0(),0,3,0(),C A ).1,3,0(-=AC 是平面ABC 的一个法向量,取x =1,得=+=-,03,033z y y x 1=n 是平面β 的一个法向量.AB 1=E ,连接DE .四边形A 1ABB 1是正方形,是BC 的中点,∴DE ∥A 平面A 1BD ,∴A 1C ∥平面⊄解:建立空间直角坐标系,设AB =AA 1=1,⋅-)1,0,21(),01B 是平面A 1BD 的一个法向量,,01=D B 取r =1,得n 1=(2,0,1).0=1234是直三棱柱,∴BB 1⊥平面A 1B 1C 1⊥平面BCC 1B 1,∴BC 1⊥A 1⊥B 1C ,∴BC 1⊥平面A 1B 1C 分别为A 1C 1、BC 1的中点,得MN 平面A 1ABB 1,∴MN ⊄MH .MH ∥A 1B 1,,∴MH ⊥平面BCC 1B 1,∴的体积==⋅⋅∆3111MH S V B BC A (,0,0),则B (22,),12,12,2(λλ++--=BM 故.60 >=BM |.BA BM =解得λ =,)12()1222λλ+++-的中点.,0,0)得AM 的中点22(G 本文下载后请自行对内容编辑修改删除,。
空间向量与立体几何(含答案)

空间向量与立体几何例1(08年)四棱锥A BCDE-中,底面BCDE为矩形,侧面ABC⊥底面BCDE,2BC=,CD=AB AC=.(Ⅰ)证明:AD CE⊥;(Ⅱ)设CE与平面ABE所成的角为45,求二面角C AD E--的余弦值.例2 (2010年)(19)如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB//DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC .(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.CE AB例3 (2011年)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成的角的正弦值.例4(2012年大纲)1如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC P A=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.例5 (2013大纲全国,理19)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△P AB和△P AD都是等边三角形.(1)证明:PB⊥CD;(2)求二面角A-PD-C的余弦值.例6.[2014·北京卷] 如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P -ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H. (1)求证:AB∥FG;(2)若P A⊥底面ABCDE,且P A=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.例7.[2014·四川卷] 三棱锥A -BCD及其侧视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A -NP -M的余弦值.例8 [2014·安徽卷] 如图,四棱柱ABCD -A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC.过A1,C,D三点的平面记为α,BB1与α的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.空间向量与立体几何 参考答案例1 解:(Ⅰ)作AO ⊥BC ,垂足为O 。
空间向量与立体几何知识点归纳总结

奎屯 新疆
OB OA AB a b ; BA OA OB a b ; OP a( R) 运算律:⑴加法交换律: a b b a
① (a) b (a b ) a (b ) 。② a b b a (交换律) 。
③ a (b c ) a b a c (分配律) 。
④不满足乘法结合率: (a b)c a(b c)
A.2 B.
D. C. 或-2
或2
例 2、在空间直角坐标系中,点 A(1,﹣1,1)与点 B(﹣1,﹣1,﹣1)关于(
C.z 轴
B )对称
A.x 轴
B.y 轴
D.原点
例 3、已知向量
试题分析:由题可知:
,
,且
,则
的值为
,且
,有
,即 m=5.例 4、源自知,则向量的夹角为
(
C
)
A.30°
B.45°
C.60°
cos cos n1 , n2
PQ n n
4. 点面距离 h : 求点 P x0 , y0 到平面 的距离: 在平面 上去一点 Q x, y , 得向量 PQ ;; 计算平面 的法向量 n ;. h
4-1 线面距离(线面平行) :转化为点面距离
线向量或平行向量, a 平行于 b ,记作
a // b 。
(2)共线向量定理:空间任意两个向量 a 、 b ( b ≠ 0 ) , a // b 存在实数 λ ,使 a = λ b。 (3)三点共线:A、B、C 三点共线<=> AB AC <=> OC xOA yOB(其中x y 1) (4)与
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。