钢筋与混凝土粘结性能的分析

合集下载

混凝土与钢筋粘结性能的试验

混凝土与钢筋粘结性能的试验

混凝土与钢筋粘结性能的试验
在进行混凝土与钢筋粘结性能的试验时,需要考虑多种因素,包括混凝土的强度、钢筋的直径和表面处理方式、粘结剂的性能等。

以下是一篇关于混凝土与钢筋粘结性能试验的简短作文。

---
**混凝土与钢筋粘结性能试验**
在现代建筑中,混凝土与钢筋的粘结性能是确保结构安全的关键因素。

为了探究这一性能,我们进行了一系列的试验研究。

首先,我们选择了不同强度等级的混凝土,包括C30、C40和C50,以观察不同强度对粘结性能的影响。

同时,选取了直径为12mm、16mm和20mm的钢筋,以研究直径对粘结性能的影响。

在试验中,我们采用了两种不同的钢筋表面处理方式:光滑表面和经过粗糙化处理的表面。

此外,还使用了两种不同的粘结剂,一种是传统的水泥基粘结剂,另一种是新型的聚合物改性粘结剂。

试验过程中,我们首先将钢筋植入混凝土中,然后让其在标准条件下养护28天。

之后,通过拉拔试验来测试混凝土与钢筋之间的粘结强度。

试验结果显示,随着混凝土强度的增加,粘结强度也相应提高。

同时,钢筋直径的增加对粘结强度的提升作用有限。

在表面处理方面,粗糙化处理的钢筋表面与混凝土之间的粘结性能明显优于光滑表面。

此外,聚合物改性粘结剂在提高粘结性能方面也表现出了优越性,尤其是在高湿度环境下。

通过这次试验,我们得出结论:混凝土强度、钢筋表面处理和粘结剂的选择对混凝土与钢筋的粘结性能有显著影响。

为了提高结构的安全性和耐久性,建议在工程设计和施工中充分考虑这些因素。

---
这篇作文简要介绍了混凝土与钢筋粘结性能试验的目的、方法和结果,为读者提供了一个关于该领域研究的概览。

钢筋与混凝土之间的粘结强度_概述说明

钢筋与混凝土之间的粘结强度_概述说明

钢筋与混凝土之间的粘结强度概述说明1. 引言1.1 概述钢筋与混凝土之间的粘结强度是混凝土结构中非常重要的一个参数。

粘结强度影响着混凝土梁、柱等构件的承载力和耐久性,而且也直接关系到整个混凝土结构的安全性和稳定性。

因此,了解钢筋与混凝土之间的粘结强度以及相关影响因素具有重要意义。

1.2 文章结构本文将首先介绍钢筋和混凝土各自的特性,分析它们在工程中的应用情况。

然后,我们将详细探讨钢筋与混凝土之间的粘结机理,包括物理和化学两种主要机制。

接着,我们将进一步讨论影响粘结强度的因素,如钢筋表面处理方法、混凝土配合比和浇筑工艺、环境条件和养护措施等。

最后,我们将提出一些提高粘结强度的实际措施和应用场景,并对未来发展进行展望。

1.3 目的本文旨在全面介绍钢筋与混凝土之间的粘结强度及其相关知识,为混凝土结构设计和建筑工程实践提供参考。

通过对粘结机理和影响因素的深入分析,希望能够提高对钢筋与混凝土粘结强度问题的理解,从而有效地应用于工程实践中,提升结构的安全性、耐久性和经济性。

此外,通过探索未来的发展方向,也能够促进该领域的研究进展和创新。

2. 钢筋与混凝土的特性2.1 钢筋的性质钢筋是一种具有高强度和韧性的金属材料,常用于加固混凝土结构。

其主要特性包括以下几个方面:首先,钢筋具有优异的拉伸强度。

相比于混凝土,钢筋在拉伸方向上能够承受更大的力量。

这使得钢筋成为抵抗混凝土结构中出现的拉应力和开裂问题的理想选择。

其次,钢筋还表现出良好的抗压能力。

虽然钢筋在受到压力时会失去拉伸强度,但它仍然具备相当高的抗压承载能力。

因此,在混凝土结构中使用钢筋可以有效地增强整体抗压试验。

此外,钢筋还具有较好的耐腐蚀性能。

由于混凝土结构通常暴露在潮湿环境下或者与化学物质接触,所以使用能够防止腐蚀作用对钢筋试验造成损害非常重要。

最后,值得注意的是,在不同类型和规格的钢筋中,其特性也会有所不同。

因此,在设计和选择钢筋时,必须根据具体项目的需求进行合理选择。

混凝土与钢筋的粘结

混凝土与钢筋的粘结

混凝土与钢筋的粘结
基本锚固长度
l
钢筋的基本锚固长度取决 于钢筋的强度及混凝土抗 拉强度,并与钢筋的外形 有关。《规范》规定纵向
f y 受拉钢筋的锚固长度作为 d钢 筋 的 基 本 锚 固 长 度 , 其
f 计算公式为: t
小结
01
钢筋:钢筋的成份、种类 和级别,钢筋的应力应变 曲线,钢筋的塑性性能, 钢筋的冷加工。
2.3 混凝土与钢筋的粘结
01 变形钢筋与混凝土之间的机械咬合作用主要是由于变 形钢筋肋间嵌入混凝土而产生的。
02 变形钢筋和混凝土的机械咬合作用
混凝土与钢筋的粘结
影响粘结的因素 影响钢筋与混凝土粘结强度的因素很多,主要有混凝土强度、保护层厚度及钢筋净间
距、横向配筋及侧向压应力,以及浇筑混凝土时钢筋的位置等。
1. 光圆钢筋及变形钢筋的粘结强度都随混凝土强度等级的提高而提高,但不与立方体强度成正比。 2. 变形钢筋能够提高粘结强度。 3. 钢筋间的净距对粘结强度也有重要影响。
2.3 混凝土与钢筋的粘结
影响粘结的因素 D.横向钢筋可以限制混凝土内部裂缝的发展,提高粘结强度。 E.在直接支撑的支座处,横向压应力约束了混凝土的横向变形,
可以提高粘结强度。 F.浇筑混凝土时钢筋所处的位置也会影响粘结强度。
2.3 混凝土与钢筋的粘结
钢筋的锚固与搭接 ◆保证粘结的构造措施 (1)对不同等级的混凝土和钢筋,要保证最小搭接长度和锚固长度; (2)为了保证混凝土与钢筋之间有足够的粘结,必须满足钢筋最小间距
和混凝土保护层最小厚度的要求; (3)在钢筋的搭接接头内应加密箍筋; (4)为了保证足够的粘结在钢筋端部应设置弯钩; (5)对大深度混凝土构件应分层浇筑或二次浇捣; (6)一般除重锈钢筋外,可不必除锈。

钢筋砼粘结锚固性能的试验研究

钢筋砼粘结锚固性能的试验研究

钢筋砼粘结锚固性能的试验研究钢筋混凝土结构在建筑工程中广泛应用,其性能与稳定性直接关系到建筑的使用寿命和安全性。

钢筋与混凝土之间的粘结锚固作用是影响钢筋混凝土结构性能的关键因素之一。

因此,对钢筋砼粘结锚固性能进行深入的研究具有重要意义。

本文通过试验研究,对钢筋砼粘结锚固性能进行了探讨和分析,旨在为提高钢筋混凝土结构的性能和稳定性提供理论支持。

钢筋:选用某知名品牌的高强度钢筋,直径为16mm,抗拉强度为340MPa。

混凝土:采用C30标号的商品混凝土,原材料包括普通硅酸盐水泥、砂、石和水。

试件制作:制作一组立方体试件,尺寸为100mm×100mm×100mm,每组包含5个试件。

在制作过程中,确保钢筋放置在试件中心,并与表面保持垂直。

加载装置:采用万能试验机进行加载,通过顶部加载的方式对试件施加拉力。

测量与记录:在加载过程中,实时记录每个试件的钢筋位移和混凝土应力数据。

(1)随着钢筋位移的增加,混凝土应力逐渐增大。

这表明在加载过程中,混凝土对钢筋的约束作用逐渐增强。

(2)在相同钢筋位移条件下,混凝土应力表现出较好的一致性,说明试件之间的粘结锚固性能较为接近。

(1)钢筋位移与混凝土应力之间存在正相关关系,随着钢筋位移的增大,混凝土应力逐渐增加。

这表明在加载过程中,混凝土对钢筋的约束作用逐渐增强。

(2)试件之间的粘结锚固性能表现出较好的一致性,说明在相同加载条件下,试件之间的变形和受力情况相差不大。

本次试验研究虽然取得了一定的成果,但仍存在以下不足之处:(1)试件尺寸较小,未来可以考虑制作更大尺寸的试件,以更好地模拟实际结构中的钢筋混凝土构件。

(2)本次试验仅了加载过程中的表现,未涉及卸载后的性能。

因此,未来可以对卸载后的试件进行观察和分析,以评估粘结锚固性能的持久性。

(3)在本次试验中,我们采用了顶部加载的方式对试件进行加载。

未来可以考虑采用其他加载方式(如侧向加载),以评估不同加载条件下粘结锚固性能的变化情况。

钢筋与混凝土之间的粘结作用

钢筋与混凝土之间的粘结作用

钢筋与混凝土之间的粘结作用
钢筋与混凝土之间的粘结作用是构成钢筋混凝土结构的重要力
学基础。

混凝土最大的特点是具有良好的压力性能,而钢筋则具有很好的拉力性能。

将两者结合在一起,可以充分发挥各自的优势,改善材料性能,提高结构的承载能力和抗震性能。

钢筋与混凝土之间的粘结作用主要是靠混凝土与钢筋之间的摩
擦力和化学键的相互作用实现的。

当钢筋埋入混凝土中时,混凝土会在钢筋表面形成一层较密实的硬壳,防止钢筋腐蚀,同时在钢筋表面与混凝土之间形成微小凸起和凹槽,增加了它们之间的摩擦力。

另外,在混凝土凝固后,水泥浆中的钙化合物和钢筋表面的氧化铁会产生化学键,进一步增强了钢筋与混凝土之间的粘结力。

钢筋与混凝土之间的粘结力大小与许多因素有关,比如混凝土强度、钢筋直径、混凝土与钢筋之间的覆盖层厚度等。

因此,在设计钢筋混凝土结构时,需要考虑这些因素的影响,并采取合适的措施来加强钢筋与混凝土之间的粘结力,以保证结构的安全性和可靠性。

- 1 -。

混凝土与钢筋的粘结力标准

混凝土与钢筋的粘结力标准

混凝土与钢筋的粘结力标准一、前言混凝土与钢筋的粘结力是混凝土结构中极为重要的一项性能指标,直接关系到混凝土结构的承载能力和使用寿命。

因此,制定混凝土与钢筋的粘结力标准,对于确保混凝土结构的质量和安全至关重要。

二、相关术语解释1. 粘结强度:表示混凝土与钢筋之间的粘结能力,通常用单位截面上的最大剪应力来表示。

2. 粘结长度:表示混凝土与钢筋之间的粘结区域长度,通常用钢筋直径的倍数来表示。

3. 粘结面积:表示混凝土与钢筋之间的粘结面积,通常用钢筋周长与粘结长度的乘积来表示。

三、试验方法1. 压缩试验法:将混凝土和钢筋制成试件,施加一定的压力,测量压力和变形,计算粘结强度和粘结长度。

2. 拉伸试验法:将混凝土和钢筋制成试件,在试件两端施加拉力,测量拉力和伸长量,计算粘结强度和粘结长度。

3. 剪切试验法:将混凝土和钢筋制成试件,在试件中央施加剪力,测量剪力和变形,计算粘结强度和粘结长度。

四、标准制定1. 粘结强度标准:根据试验结果,粘结强度应不低于混凝土的抗压强度的0.7倍。

2. 粘结长度标准:根据试验结果,粘结长度应不低于钢筋直径的20倍。

3. 粘结面积标准:根据试验结果,粘结面积应不低于钢筋周长与粘结长度的乘积的1.5倍。

4. 试验方法标准:试验应按照国家标准《钢筋混凝土结构设计规范》GB50010-2010的要求进行,试验设备应符合国家标准《试验机通用技术条件》GB/T 2611-2007的要求。

五、检验方法1. 粘结强度检验:取混凝土和钢筋制成的试件,在试件中央施加一定的压力、拉力或剪力,测量应变或变形,计算粘结强度。

2. 粘结长度检验:取混凝土和钢筋制成的试件,测量粘结长度。

3. 粘结面积检验:取混凝土和钢筋制成的试件,测量粘结面积。

六、检验标准1. 粘结强度:检验结果应不低于制定标准要求的粘结强度。

2. 粘结长度:检验结果应不低于制定标准要求的粘结长度。

3. 粘结面积:检验结果应不低于制定标准要求的粘结面积。

混凝土与钢筋的粘结

混凝土与钢筋的粘结

混凝土与钢筋的粘结混凝土与钢筋的粘结是建筑工程中非常重要的一环。

它决定了混凝土结构的稳定性和强度,直接关系到建筑物的安全性和使用寿命。

在本文中,将介绍混凝土与钢筋的粘结机理、粘结性能测试以及影响粘结性能的因素,并探讨如何提高混凝土与钢筋的粘结强度。

一、混凝土与钢筋粘结机理混凝土与钢筋的粘结是由于化学和物理相互作用而产生的。

当混凝土凝固后,水泥胶体开始逐渐硬化,形成坚固的胶凝体。

同样的,钢筋表面与混凝土中的水泥胶体发生反应,并形成了一层胶体粘结层。

这层胶体粘结层将混凝土和钢筋牢固地粘合在一起,使其成为一个整体。

二、粘结性能测试方法为了评估混凝土与钢筋的粘结性能,常用的测试方法有剪切试验和拉伸试验。

1.剪切试验:剪切试验是测定混凝土与钢筋粘结强度的常用方法。

一般采用双剪试验或剪切铰接试验。

在这些试验中,混凝土试块上面安装有两根钢筋,底部则安装一个刚度较高的支撑装置。

通过对试块施加剪切力,观察混凝土与钢筋的粘结强度。

2.拉伸试验:拉伸试验是测定混凝土与钢筋粘结性能的另一种方法。

拉伸试验通常使用拉伸试件,其两端固定有一根或多根钢筋。

通过施加拉力,在观察试件的破坏形态和力学性能的基础上,评估混凝土与钢筋之间的粘结性能。

三、影响混凝土与钢筋粘结的因素混凝土与钢筋粘结性能受多种因素的影响。

其中包括混凝土本身的性质、钢筋表面状态以及施工工艺等。

1.混凝土本身的性质:混凝土的强度、含水量和孔隙结构等对粘结性能有重要影响。

强度越高、孔隙结构越密实的混凝土,其与钢筋之间的粘结强度越高。

2.钢筋表面状态:钢筋表面的氧化皮、锈蚀和油污等会降低与混凝土的粘结性能。

因此,在施工前对钢筋进行清洁处理可以提高粘结性能。

3.施工工艺:施工中的坍落度、振捣浇筑和养护等工艺措施也会影响混凝土与钢筋的粘结性能。

合理的施工操作能够提高粘结性能,确保混凝土充分包覆钢筋。

四、提高混凝土与钢筋粘结强度的方法为了提高混凝土与钢筋的粘结强度,可以采取以下措施:1.优化混凝土配方:在设计混凝土配合比时,可以选择高强度胶结材料,增加胶结剂和细集料的粘结性能,以提高混凝土与钢筋的粘结强度。

有关钢筋与混凝土之间粘结性能的探究

有关钢筋与混凝土之间粘结性能的探究

有关钢筋与混凝土之问粘结性能的探究董二卫冯仲齐严峥嵘(西安建筑科技大学,陕西西安710055)喃要]粘结问题是钢筋混凝土结构中的一个重要问题,对这个问题的深入研究,不仅对钢筋的锚固、搭接和细部构造等工程设计问题有实用价值,而且对钢筋混凝土结构的非线性分析、结构抗震分析等也有重要的理论意义。

【关键词]钢筋;混凝土;粘结~滑移;粘结问题1概述近年,伴随我国经济持续高速增长,建筑业作为国民经济支柱产业得到了长足发展。

目前我国建筑主要为钢筋混凝土结构形式,因此随着建筑业的发展,钢筋和混凝土的消耗量也在逐年递增。

在钢筋和混凝土应用过程中,除材料强度外,我们还应该考虑材料延性、裂缝控制等其它性能。

钢筋与混凝土的粘结其实是钢筋与外围混凝土之间一种复杂的相互作用,借助这种作用来传递两者间的应力、协调变形、保证共同工作。

这种作用实质上是钢筋与混凝土接触面上所产生的沿钢筋纵向的剪应力,即所谓粘结应力,有时也简称粘结力。

而粘结强度则是指粘结失效(钢筋被拔出或混凝土被劈裂)时的最大粘结应力。

粘结性能的退化和失效必然导致钢筋混凝土结构力学性能的降低。

2粘结力的组成钢筋和混凝土两种性能不同的材料组成的组合结构之所以能够有效的结合在一起而共同工作,其基本条件是两者之间具有可靠的粘结和锚固,所谓钢筋和混凝土之间的粘结应力指的是两者接触面处的剪应力,它是一种复杂的相互作用。

一般认为这种作用来自三个方面:1)钢筋与混凝土之间的胶结力。

主要是指混凝土中的水泥凝胶体与钢筋表面形成的化学力即为胶结力,其主要与钢筋表面的粗糙程度和水泥的性能有关。

2)钢筋与混凝土之间的摩擦力。

摩擦力是由于混凝土在凝结硬化的过程中产生的对钢筋的握裹挤压作用,我们称此法向力为握裹力。

一般情况下,挤压力越大,接触面积越粗糙,则摩擦力越大。

3)钢筋与混凝土之间的机械咬合力。

机械咬合力对于光面钢筋,主要是由于表面凹凸不平产生的。

对带肋钢筋,主要是由于在钢筋表面突出的横肋之间嵌入混凝土而形成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢筋与混凝土粘结性能的分析
摘要:从钢筋与混凝土之间粘结性能的粘结机理、影响因素和粘结应力-滑移本构关系等三个方面进行了分析和探讨。

关键词:钢筋混凝土粘结机理影响因素粘结强度
1、引言
混凝土结构是目前应用最为广泛的工程结构形式之一。

钢筋与混凝土结构之间的粘结是保证两种材料形成整体、共同工作的基础,对于混凝土结构构件的受力性能、破坏形态、计算假定、承载能力、裂缝和变形等有着重要的影响。

一直以来,粘结问题是结构工程技术人员关注的热点问题之一。

本文主要从粘结机理、影响因素和粘结应力-滑移本构关系等三个方面进行分析和研究,以期深入理解、把握钢筋与混凝土之间的粘结性能,提出提高粘结能力的建议。

2、粘结机理
钢筋和混凝土是两种性能不同的材料组成的组合结构材料,其能够共同工作的基本要素是两者之间的粘结锚固作用。

所谓钢筋和混凝土之间的粘结应力指的是两者接触面上的剪应力,由钢筋与混凝土之间的粘着力、摩阻力和咬合力三部分组成[1][2]。

(1)粘着力。

混凝土中的水泥凝胶体在钢筋表面产生的化学粘着力或吸附力,其抗剪极限值取决于水泥的性质和钢筋表面的粗糙程度和清洁度。

当钢筋受力后有较大变形、发生局部滑移后,粘着力就丧失了[1]。

(2)摩阻力。

周围混凝土对钢筋的摩阻力,当混凝土的粘着力破坏
后发挥作用[1]。

如果垂直于钢筋作用有压力,则在产生极小的移动时,就会在钢筋和混凝土之间引起摩擦力,这种横向压力取决于混凝土发生收缩或者荷载和反力等对钢筋的径向压应力,以及二者间的摩擦系数等。

由于钢筋表面的粗糙度,摩擦系数μ可高达0.3~0.6,生锈的圆钢与新扎的圆钢以及冷拔钢丝的表面粗糙度相差可达36倍[3]。

挤压力越大,接触面越粗糙,则摩擦力越大。

(3)咬合力。

钢筋表面粗糙不平,或变形钢筋凸肋和混凝土之间的机械咬合作用,即混凝土对钢筋表面斜向压力的纵向分力产生的剪切粘结,是最有效和最可靠的粘结方式。

为了充分利用这种粘结,通常在钢筋表面轧制肋条来实现[4]。

依靠钢筋与混凝土间的粘结应力,也即两者接触面上的剪应力,使得钢筋和混凝土两种性质完全不同的材料,在钢筋混凝土结构中共同工作。

这种关系使得两种材料间相互传递力,实现弥补各自的缺点,发挥各自的优点。

3、主要影响因素
钢筋和混凝土的粘结性能及其各项特征值,受到许多因素的影响而变化。

3.1 混凝土强度
随着混凝土强度提高,钢筋与混凝土的粘结力提高,且粘结力的提高与混凝土劈裂强度成正比。

变形钢筋的粘结强度fb主要取决于混凝土的抗拉强度ft;混凝土振捣越密实,粘结强度也越高[4];此外,养护条件的好坏亦对对粘结强度有很大的关系,养护条件好,粘结强度能够得到更大的提高。

同时,混凝土的组分也影响粘结强
度。

3.2 钢筋位置、受力方向与浇注方向
平行浇注时,直接位于钢筋下面的混凝土由于下沉及泌水,不能与钢筋紧密接触,使粘结强度降低。

对于变形钢筋,当钢筋的受力方向与混凝土结硬时的下沉方向相同时,粘结强度降低,滑动增大。

而在构件顶部的钢筋比在构件底部的钢筋粘结力差[5]。

3.3 钢筋直径和外形
直径越大的钢筋,相对粘结面积越小,不利于极限粘结强度。

光面钢筋的粘结力显然低于变形钢筋的粘结力。

变形钢筋主要有月牙纹和螺旋钢筋,经过试验比较,月牙纹钢筋粘结锚固强度较低,滑移发生较早且发展较快,但下降段平缓,后期强度相对减小较慢,延性较好,在大滑移变形下仍能维持抗力,对结构抗震是一个有利因素[4]。

3.4 保护层厚度和钢筋净间距
对光面钢筋,此因素影响不大;对于变形钢筋,保护层厚度和钢筋净间距的增加,会提高粘结力,但当保护层厚度过大时,粘结破坏形式由劈裂破坏转向混凝土齿剪破坏,该因素就不再起作用了。

3.5 横向配筋
拔出试件内配置横向箍筋,能延迟和约束径向-纵向劈裂缝的开展,阻住劈裂破坏,提高极限粘结强度和增大特征滑移值。

而且τ-s下降段平缓,延性增加[1]。

3.6 外部压力
一定的外部压力会提高粘结力,其值与外部压力的平方根成正比,破坏形式为剪切型破坏,破坏时端部滑移较大。

但压力过大时,粘结力不但不增加,反而降低,这是由于与压应力垂直方向的横向拉应力显著增加造成的。

3.7 钢筋预埋长度
试件中钢筋的埋长越长,则受力后的粘结应力分布越不均匀,试件破坏时的平均粘结强度τu与实际最大粘结应力τmax的比值越小,故试验粘结强度随埋长(l/d)的增加而降低。

当钢筋的埋长l/d>5后,平均粘结强度值的折减已不大。

埋长很大的试件,钢筋加载段达到屈服而不被拔出[4]。

3.8 混凝土颗粒级配和稠度
粘结强度在很大程度上也受混凝土颗粒级配和稠度的影响,少细料的混凝土的粘结强度较大,因为肋间混凝土齿范围内的局部变得更紧密,所以混凝土齿可以承受较高的荷载,而且变形很小。

由于钢筋和混凝土之间传力机理复杂,影响因素多,至今仍然是钢筋混凝土结构理论中的热点和难点问题之一。

4、粘结应力-滑移本构模型
钢筋与混凝土的粘结-滑移本构关系建立在对钢筋与混凝土粘结性能深刻认识的基础上,是钢筋混凝土结构有限元分析中的基本条件之一。

由于影响粘结性能的因素很多,使得钢筋与混凝土界面的传力机理非常复杂,试验所得的曲线离散性较大。

因此,研究人员对大量粘结-滑移曲线进行拟合,但这些曲线之间也有较大的差异,
几个较具有代表性的关系式如下:
(1)nilson的经验公式[6]:
τ=9.78×102s-5.72×104s2+8.35×105s3 (4-1) (2)houde和mirza的四次项表示的经验公式:
τ=5.29×102s-2.52×104s2+5.87×106s4 (4-2) (3)狄生林公式:
τ=6.59×102s-2.13×104s2+0.22×106s3 (4-3)
式中:τ为粘结应力,单位n/mm2;s为滑移位移,单位为mm。

(4)滕智明公式:
式中:f(x)为位置函数,它反映在钢筋的不同埋入(锚固)深度(x=0为加载端,x=l为自由端)处τ-s关系的变化;s,c,d,x,1的单位为mm。

比较上面所列举的几个经验公式可知,(4-1)、(4-2)、(4-3)的表达形式都比较简洁,应用起来也很简单,但无法反映诸多的粘结锚固影响因素,都只适用于特定结构在特定锚固条件下的情况,只能在小范围内使用;式(4-4)能综合考虑各种粘结条件的影响,但表达式较复杂,可以反映诸多因素的影响,但实际应用困难。

人们将nilson及houde的数据代入滕智明公式(4-5)中,发现nilson公式反映了粘结滑移点在裂缝中间的情况,而houde公式则反映了粘结滑移点在靠近裂缝或者构件端部的情况,滕智明公式由于引入了位置函数,有着更为广泛的适应性。

另外,由于影响粘结的因素太多,以至于很难得到一个真正通用而又易于应用的表达式,因此对于一
些特殊的粘结问题,有必要进行单独的试验和研究。

5、结论与展望
(1)根据以上的分析研究,可得出影响钢筋与混凝土间粘结强度的主要因素有:混凝土强度和密度、浇注位置、保护层厚度、钢筋净间距、横向配筋及外部压力等。

因此,要提高粘结强度,主要应从下列方面着手:1)粘结强度随着混凝土强度等级的提高而提高。

因此,提高混凝土强度等级是提高粘结强度的措施之一。

2)选择良好的砂石级配,尽量降低细砂的含量,避免粉砂及泥土进入混凝土中,加强混凝土的养护工作;分层浇注混凝土,限制每层浇注的厚度。

3)设置横向钢筋可延缓径向裂缝的发展,并可限制劈裂裂缝的宽度。

4)钢筋外的混凝土保护层厚度以及钢筋锚固长度都应该得到保证。

5)钢筋的间距应该得到保证,过密势必影响粘结强度。

(2)鉴于钢筋与混凝土间的粘结性能研究现状,今后的研究方向应该是:1)试验方法已经能够较好地反映静态的钢筋与混凝土粘结性能,但对于动态的粘结滑移性能试验研究,国内外的研究尚不够。

2)由于影响粘结的因素太多,以至于很难得到一个真正通用而又易于应用的表达式,因此对于一些特殊的粘结问题,有必要进行单独的试验和研究。

3)可以充分利用计算机的技术,如ansys分析软件来辅助分析和研究。

4)新材料的出现以及钢筋不同锈蚀程度所对应的粘结性能,有必要进行相应的试验研究,得出其粘结滑移本构关系,以期给理论分析提供依据。

参考文献
[1]过镇海,时旭东.钢筋混凝土原理和分析[m].北京:清华大学出
版社,2003.
[2]徐有邻.混凝土结构用钢筋的合理选择[j].建筑结构,2000.
[3]杜锋,肖建庄,高向玲.钢筋与混凝土间粘结试验方法研究[j].
结构工程师,2006.
[4]王传志,滕智明.钢筋混凝土结构理论[m].北京:中国建筑工业
出版社,1985.
[5]陈建平,包华.钢筋混凝土粘结滑移特性的研究现状[m].南通:南通大学出版社,2006.
[6]a·h·nilson. internal measurement of bond-slip [j]. aci journal. july,1972.。

相关文档
最新文档