第六节 催化裂化反应-再生系统概述

合集下载

催化裂化反再系统培训 资料

催化裂化反再系统培训 资料

反应特点
1、各类烃之间的竞争吸附和对反应的阻滞作用 从以上分析看出,吸附能力强的烃分子将首先占据催化剂 活性中心进行反应。 但若吸附能力强,反应能力却差,则会阻碍其它烃分子反 应。 在一定反应条件下,各种烃类在催化剂上的吸附能力和反 应能力有很大差别 吸附能力:
稠环芳烃>稠环环烷烃>烯烃>单烷基侧链单芳>环烷烃>烷烃
催化裂化再生过程
催化裂化催化剂
催化剂:能够改变化学反应速度而本身 不发生化学反应的物质 催化剂能有选择性地促进某些反应 催化剂不仅对装置的生产能力、产品产 率及质量好坏、经济效益起主要影响, 而且对操作条件、工艺过程和设备型式 的选择有重要影响。
裂化催化剂的失活与再生
催化剂的失活 :在反应过程中,裂化催化剂的活性和选择性不断 下降的现象称为催化剂的失活。失活原因主要有:高温或高温与 水蒸气的作用;裂化反应生焦;毒物的毒害。
反应沉降器在提升管反应器的上部,沉 降器分为两部分,上部为沉降段,下部 为汽提段。 沉降段内设有四组单级旋分器,顶部为 集气室。提升管反应器出来的反应油气 和催化剂进入反应沉降器进行催化剂和 油气的自由沉降分离,没有沉降下来的 催化剂随油气进入设在沉降器顶部的旋 风分离器进行继续进行分离,分离后油 气经集气室去分馏单元。
催化裂化反应
催化裂化进料
烃类在催化剂 表面发生反应
循环使用 烧焦 催化剂恢复活性 再生 催化剂活性下降 分解 缩合 气体和轻油 沉积在催化剂上
催化裂化特征
催化裂化反应类型
(1)裂化反应 催化裂化的主要反应是裂化反应,反应速度快。各
类烃的裂化反应规律:
烷烃:分子中间C-C键断裂,分子越大,越易断裂;碳 数相同的链状烃中,异构比正构易反应 烯烃:与烷烃类似,速度比烷烃高得多 环烷烃:断侧链和开环

催化裂化反应—再生系统的模型参数辨识与先进控制研究的开题报告

催化裂化反应—再生系统的模型参数辨识与先进控制研究的开题报告

催化裂化反应—再生系统的模型参数辨识与先进控制研究的开题报告一、研究背景和意义催化裂化反应是石油化工过程中的重要反应之一。

它可以将重质烃分解为轻质烃,得到较高质量的汽油、石油醚等产品。

然而,随着反应时间的延长,催化剂的活性会逐渐降低,导致反应产物的质量下降。

因此,需要对催化裂化反应的催化剂进行再生,以保证其持续的活性。

催化裂化反应—再生系统的开发和控制对石油化工工业的发展至关重要。

本研究旨在建立催化裂化反应—再生系统的模型,并利用先进的控制方法对其进行优化控制,从而提高反应产物的质量和生产效率。

二、研究内容和方法1.系统建模本研究将建立催化裂化反应—再生系统的数学模型,包括反应器和再生器的动态模型和催化剂的活性衰减模型。

根据质量守恒、能量守恒和动量守恒等原理,分别建立反应器和再生器的动态模型。

此外,应考虑催化剂的活性衰减对反应速率和反应产物质量的影响,并据此建立催化剂活性衰减模型。

2.参数辨识在建立催化裂化反应—再生系统的模型后,需进行系统的参数辨识。

本研究将采用最小二乘法和模型预测控制中的闭环辨识方法,确定模型中的参数值。

3.先进控制方法的应用针对催化裂化反应—再生系统的动态特性,本研究将采用先进的控制方法,例如模型预测控制和广义预测控制,以实现系统的优化控制。

其中,模型预测控制是以模型为基础,通过预测未来状态和输出变量,来进行最优化的控制策略决策。

广义预测控制则是一种基于神经网络的控制方法,能够弥补传统控制方法的不足。

三、预期成果和意义本研究将建立催化裂化反应—再生系统的数学模型,实现系统的参数辨识,并利用先进的控制方法对其进行优化控制。

预期实现的成果包括:1.建立催化裂化反应—再生系统的数学模型;2.通过参数辨识,确定模型中的参数值;3.采用先进的控制方法,对催化裂化反应—再生系统进行优化控制;4.提高反应产物的质量和生产效率,为石油化工工业的发展做出贡献。

本研究的意义在于,为石油化工工业的催化裂化反应—再生系统的优化控制提供新思路和方法,推动该领域的科学研究和实践创新。

催化裂化

催化裂化
反应产物经旋风分离器分离出夹带的催化剂后 离开沉降器去分馏塔。 积有焦炭的催化剂(称待生催化剂)由沉降器落 入下面的汽提段。汽提段内装有多层人字形挡板并 在底部通入过热水蒸气,待生催化剂上吸附的油气 和颗粒之间的空间内的油气被水蒸气置换出而返回 上部。经汽提后的待生催化剂通过待生斜管进人再 生器。
再生器的主要作用是烧去催化剂上因反应而生成的积炭, 使催化剂的活性得以恢复。再生用空气由主风机供给,空气通 过再生器下面的辅助燃烧室及分布管进人流化床层。 催化剂(称再生催化剂)落人淹流管,经再生斜管送回反应器 循环使用。再生烟气经旋风分离器分离出夹带的催化剂后,经双 动滑阀排人大气。 再生烟气的温度很高,不少催化裂化装置设有烟气能量回收 系统,利用烟气的热能和压力能(当设能量回收系统时,再生器的 操作压力应较高些)做功,驱动主风机以节约电能,甚至可对外输 出剩余电力。对一些不完全再生的装置,再生烟气中含有5%-10% (体积分数)的CO,可以设CO锅炉使CO完全燃烧以回收能量。
工艺流程概述
包括:反应-再生系统、分馏系统、吸收-稳定系 统、再生烟气的能量回收系统和液化气、汽油的 脱硫精制等 1.反应—再生系统
高低并列式提升管催化裂化装置的工艺流程
470~510 ℃
3 ~4s
650~700 ℃
300~380 ℃
新鲜原料油经换热后与回炼油浆混合,经加热 炉加热后至催化裂化提升管反应器下部的喷嘴,原 料油由蒸气雾化并喷入提升管内,在其中与来自再 生器的高温催化剂接触,随即汽化并进行反应。
进入分馏塔的油气含有相当大量的不凝气和惰性气
体,它们会影响塔顶冷凝冷却器的效果 提高富气压缩机的入口压力以降低气压机的功率损

3.吸收—稳定系统
主要由吸收塔、解吸塔、再吸收塔及稳定塔组成。

催化裂化的装置简介及工艺流程

催化裂化的装置简介及工艺流程

催化裂化的装置简介及工艺流程概述催化裂化技术的发展密切依赖于催化剂的发展。

有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。

选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。

催化裂化装置通常由三大部分组成,即反应/再生系统、分馏系统和吸收稳定系统。

其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下:(一)反应––再生系统新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650℃~700℃)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。

积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。

待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650℃~680℃)。

再生器维持0.15MPa~0.25MPa(表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。

再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。

烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。

再生烟气温度很高而且含有约5%~10%CO,为了利用其热量,不少装置设有CO锅炉,利用再生烟气产生水蒸汽。

对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。

催化裂化反应再生系统流程简述

催化裂化反应再生系统流程简述

催化裂化反应再生系统流程简述下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!催化裂化反应再生系统是石油炼制过程中的重要组成部分,其主要作用是将重质油转化为轻质油。

第六节催化裂化反应再生系统资料

第六节催化裂化反应再生系统资料

2020/10/11
19
c.快速床(循环流化床)再生 ➢气相转化成连续相,催化剂颗粒变为分散相,从而强化 了烧碳过程 ➢随着气速的提高,返混程度减小,中、上部接近于平推 流,也有利于烧碳强度的提高 ➢在快速流化床区域,必须有较大的固体循环量才能保持 较高的床层密度 ➢催化裂化装置的烧焦罐再生就是属于循环流化床的一种 再生方式
➢再生温度对烧碳反应速率的影响十分显著,提高再生温 度是提高烧碳速率的有效手段,在单段再生时,密相创层 的温度一般不超过730℃
➢工业上一般采用的空气线速为0.6~0.7m/s ➢工业装置采用的再生器压力在0.25~0.4MPa(绝)之间 ➢单段再生的主要问题是再生温度的提高受到限制和密相 床层的有效催化剂含炭量低
9
分段反应
➢不同的馏分需要不同的反应条件,理想选择是不同的 馏分在不同的场所和条件下进行反应 ➢两段提升管(Ⅰ型)催化裂化:
★第一段提升管只进新鲜原料,段间抽出柴油出装置 ★第二段提升管单独进循环油,显著改善产品分布 ★第二段提升管底部回炼汽油,降低汽油烯烃含量 ➢分段进料避免了新鲜原料和油浆的相互干扰
2020/10/11
18
b.两段再生 ➢两段再生是把烧碳过程分为两个阶段进行 ➢与单段相比,两段再生的主要优点是:
①对于全混床反应器,第一段出口的半再生剂的含碳量 高于再生剂的含碳量,从而提高了烧碳速率;
②在第二段再生时可以用新鲜空气和更高的温度,提高 了烧碳速率;
③第二段内的水气分压可以很低,减轻了催化剂的水热 老化;且第二段的催化剂藏量比单段再生器的催化剂藏量低, 停留时间较短。因此,第二段可采用较高的再生温度。
2020/10/11
20
2020/10/11
21

重油催化裂化的反应—再生系统

重油催化裂化的反应—再生系统

重油催化裂化的反应—再生系统
崔璀
【期刊名称】《《石油化工设备技术》》
【年(卷),期】1991(012)001
【摘要】镇海石化总厂炼油厂催化裂化装置原设计为120×10~4t/a 蜡油催化裂化。

为解决重油出路,提高轻油收率,于1985年从美国 S&W 公司引进重油催化技术,对原装置进行改造。

从1987年开始,利用每年的停工检修时间分期进行施工,全部改造工程于1990年6月完成,投运试车一次成功,产品质量和收率均达到了设计要求。

一、反应—再生系统改造简介1.进料喷嘴提升管/沉降器为原有设备,为适应重油催化的需要作了部分改动。

【总页数】5页(P54-58)
【作者】崔璀
【作者单位】
【正文语种】中文
【中图分类】TE626.25
【相关文献】
1.重油催化裂化装置再生系统的技术改造 [J], 焦伟州;赵振辉;刘耀宇
2.MPC 在重油催化裂化反应-再生系统控制中的应用 [J], 郭锦标;房(韦华);高维进;魏国志
3.重油催化裂化反应-再生系统的热平衡控制研究 [J], 霍彦斌;温杰
4.重油催化裂化反应-再生系统的热平衡控制 [J], 康明艳;李钒;伍丽娜
5.重油催化裂化反应-再生系统的热平衡控制 [J], 康明艳;李钒;伍丽娜;孙津清因版权原因,仅展示原文概要,查看原文内容请购买。

催化裂化再生系统

催化裂化再生系统

1再生动力学1.1催化剂上的焦炭1)焦炭的化学组成催化剂上的焦炭来源于四个方面:⑴在酸性中心上由催化裂化反应生成的焦炭;⑵由原料中高沸点、高碱性化合物在催化剂表面吸附,经过缩合反应生成的焦炭;⑶因汽提段汽提不完全而残留在催化剂上的重质烃类,是一种富氢焦炭;⑷由于镍、钒等重金属沉积在催化剂表面上造成催化剂中毒,促使脱氢和缩合反应的加剧,而产生的次生焦炭;或者是由于催化剂的活性中心被堵塞和中和,所导致的过度热裂化反应所生成的焦炭。

上述四种来源的焦炭通常被分别称为催化焦、附加焦(也称为原料焦)、剂油比焦(也称为可汽提焦)和污染焦。

实际上,这四种来源的焦炭在催化剂上是无法辩认的。

所谓“焦炭”并不是具有严格的固定组成和结构的物质。

它不是纯碳,一般主要由碳和氢组成,是高度缩合的碳氢化合物,但碳和氢的比例受多种因素的影响,有相当大的变化范围。

影响H/C的因素主要有:催化剂、原料、反应温度、反应时间及汽提条件等。

对一定的催化剂和原料,影响焦炭H/C的主要因素是反应温度和反应时间(或结焦量)。

普遍认为,反应温度越高,焦炭的H/C越小,即焦炭中氢含量越低。

反应时间加长也有同样的影响。

在硅酸铝催化剂上用多种单体烃和轻瓦斯油进行催化裂化反应试验,结果表明所得焦炭的H/C不相同,而在0.4~0.9之间变化。

除碳和氢外,焦炭中还可能含有硫、氮、氧等杂原子,这主要决定于原料的杂原子化合物的含量。

应该指出,焦炭的化学组成,是焦炭的一个重要性质,尤其是C/H,对再生器的操作,特别是对装置的热平衡具有重要意义。

但很遗憾,焦炭的C/H很难测定准确,主要是氢含量很难测准,因为一般用燃烧法测定生成的水量,而水量难以测准,而且在燃烧过程中催化剂结构本身也可能放出一部分水,因而造成实验误差。

在生产装置上,一般还是以测定烟气中CO、CO2和O2的组成,利用焦炭在空气中燃烧时的元素平衡等计算焦炭中的C/H比。

2)焦炭的结构前面谈到焦炭的化学组成是不均匀的,而焦炭的结构与其组成密切相关,可以想象,焦炭的结构也是不均匀的,实际研究结果也证明了这一点,而且结构问题比组成更为复杂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/11/5 20
2018/11/5
21
催化裂化主要设备
1、预提升段 2、裂化反应段 3、汽提段
2018/11/5
22
催化裂化主要设备

预提升段:加速催化剂,使催化剂形成活塞流向
上流动,使催化剂上的重金属钝化,有利于油雾
的快速混合,一般为3-6m。

裂化反应段:提供裂化反应的场所。
中止反应技术(MTC)
2018/11/5 11
两段与单段实验室结果对比:

轻油收率可提高 2-3 个百分点 原料转化深度提高 5 个百分点


汽油烯烃含量下降12-13个百分点
液收率提高2.5个百分点以上 干气产率大幅度降低 可显著提高柴汽比
2018/11/5
12
两段与单段工业试验结果对比:

轻油收率提高4个百分点以上
第六节
催化裂化 反应-再生系统
2018/11/5
1
催化裂化装置一般有四部分构成:反应-再生系统,分
馏系统,吸收-稳定系统和能量回收系统
装置形式主要有高低并列式、同轴式等
2018/11/5
2
一:提升管反应器
提升管反应器主要有提升管、沉降器、汽提段、旋分 器、待生斜管等部分组成
2018/11/5
2018/11/5
6
两段提升管 FCC技术的思想及特点
两段FCC技术的基本思想:
★提高催化裂化催化剂的有效活性和选择性,从而改
善目的产品分布;
★分段反应,提高调整生产方案的灵活性
因此,两段提升管FCC技术打破原来的提升管反应器型 式和反-再系统流程: ★两段提升管反应器取代单一反应器 ★构成拥有两路循环的反应-再生系统
9
分段反应
不同的馏分需要不同的反应条件,理想选择是不同的
馏分在不同的场所和条件下进行反应
两段提升管(Ⅰ型)催化裂化: ★第一段提升管只进新鲜原料,段间抽出柴油出装置 ★第二段提升管单独进循环油,显著改善产品分布 ★第二段提升管底部回炼汽油,降低汽油烯烃含量 分段进料避免了新鲜原料和油浆的相互干扰
2018/11/5 18
b.两段再生
两段再生是把烧碳过程分为两个阶段进行
与单段相比,两段再生的主要优点是:
①对于全混床反应器,第一段出口的半再生剂的含碳量
高于再生剂的含碳量,从而提高了烧碳速率; ②在第二段再生时可以用新鲜空气和更高的温度,提高 了烧碳速率; ③第二段内的水气分压可以很低,减轻了催化剂的水热
T字形的构件,现在用得比较多的是初级旋风分离器
2018/11/5
4
提升管下部进料段的油剂接触状况对重油催化裂化的反应
有重要影响。减小原料油的雾化粒径,可增大传热面积,
从而提高了原料的气化率,且可以改善产品产率的分布
沉降器下面的汽提段的作用是用水蒸气脱出催化剂上吸附
的油气及置换催化剂颗粒之间的油气。汽提段的效率与水
蒸气用量、催化剂在汽提段的停留时间、汽提段的温度及
压力、以及催化剂的表面结构有关
重油催化裂化则用4~
汽提汽用量一般为 2~3kg/1000kgCat
2018/11/5 5
5kgH2O/1000kgCat
两段提升管催化裂化技术
目前提升管反应器的固有弊端: 提升管过长恶化产品分布 新鲜原料与循环油浆竞争催化 中心 难于实ቤተ መጻሕፍቲ ባይዱ大剂油比操作
2018/11/5 7
两段提升管反应器示意图
2018/11/5 8
催化剂接力
原料在第一段提升管经过短反应时间后,及时 将催化剂与油气分开;需要继续反应的中间物料 在第二段提升管与另一路再生催化剂接触反应 催化剂两路循环,整体活性及选择性提高
催化反应比例增大,热反应得到有效抑制
2018/11/5
2018/11/5 10
短反应时间
两段技术,采用分段反应,两段反应时间之和比常规
催化反应时间还短(2秒以内)
大剂油比
受热平衡控制,常规催化的剂油比难以提高,两段催
化采用两路催化剂循环,从设备角度提高剂油比可不受限
制;第一段的低转化率和汽油回炼改质可以突破原有热平
衡的限制,在较高的剂油比(催化剂/催化原料)下实现 新的热平衡


柴油产率提高3.5个百分点以上
液收率提高2.5个百分点以上
干气产率大幅度降低
显著提高了柴汽比
可采取灵活多样的操作方式
2018/11/5
13
二:再生器
主要作用是烧去结焦剂上的焦炭以恢复其活性,同时
也提供裂化反应所需的热量
2018/11/5
14
主要要求有: ①再生剂的含炭量较低,一般要求低于0.2%,甚至低 于0.05%; ②有较高的烧碳强度,当以再生器内的有效藏量为基 准时,烧碳强度一般为100~250kg/(t.h); ③催化剂减活及磨损较少;
④易于操作,能耗及投资少;
⑤能满足环保要求
2018/11/5 15
工业上再生器的主要形式可分为三类:单段再生、两段再
生、快速床再生
分布器可分为板式(蝶形)和管式(平面树枝或环形)两种
2018/11/5
16
重催再生器需设取热设备:
a.内取热式
b.外取热式
2018/11/5
17
工业上常用再生器的形式大体上可以分为三类:
老化;且第二段的催化剂藏量比单段再生器的催化剂藏量低,
停留时间较短。因此,第二段可采用较高的再生温度。
2018/11/5 19
c.快速床(循环流化床)再生 气相转化成连续相,催化剂颗粒变为分散相,从而强化
了烧碳过程
随着气速的提高,返混程度减小,中、上部接近于平推
流,也有利于烧碳强度的提高
在快速流化床区域,必须有较大的固体循环量才能保持 较高的床层密度 催化裂化装置的烧焦罐再生就是属于循环流化床的一种 再生方式
3
提升管反应器的直径是由进料量来决定的。工业上一般
采用的气速是入口处为4~7m/s,出口8~18m/s
提升管的高度由反应时间来决定,工业上反应时间多采
用2~4s
提升管的上端出口处设有气-固快速分离机构,用于使
催化剂与油气快速分离以及抑制反应的继续进行
快速分离机构的形式有多种多样,比较简单的有伞帽形、
a.单段再生
再生温度对烧碳反应速率的影响十分显著,提高再生温
度是提高烧碳速率的有效手段,在单段再生时,密相创层
的温度一般不超过730℃
工业上一般采用的空气线速为0.6~0.7m/s
工业装置采用的再生器压力在0.25~0.4MPa(绝)之间
单段再生的主要问题是再生温度的提高受到限制和密相
床层的有效催化剂含炭量低
相关文档
最新文档