电子式电流互感器的基本原理及应用
电流互感器的作用原理

电流互感器的作用原理
电流互感器是一种电气设备,用于测量电流,通常在高电流电路中将大电流转化为小电流以供测量或保护设备使用。
其主要作用是将高电流变压器到适宜的测量范围,以便进行监测、测量和保护。
以下是电流互感器的基本作用原理:
1.互感原理:电流互感器的基本原理是基于电磁感应的互感原理。
根据法拉第电磁感应定律,当一条导体中的电流变化时,会在附近的另一条导体中引起电动势的变化。
电流互感器利用这一原理将主导体(高电流电路)和次级导体(测量电路)通过磁耦合进行连接。
2.线圈结构:电流互感器通常包含一个主线圈,被连接在被测量电流所通过的主导体上。
此外,还有一个次级线圈,被连接在次级电路上,通常是通过一个测量设备((如电流表或保护继电器)。
3.变压器作用:主线圈和次级线圈之间的磁耦合效应类似于变压器。
当主导体中的电流变化时,主线圈中会产生磁场。
由于次级线圈与主线圈磁耦合,次级线圈中就会感应出一个电动势,从而在次级电路中形成一个与主导体电流成比例的小电流。
4.变比:电流互感器的性能通常由一个变比((turnsratio)来描述,表示主线圈中电流和次级线圈中电流的比例。
变比决定了电流互感器输出的电流与实际电流之间的关系。
5.准确性和精度:电流互感器的准确性和精度对于测量和保护应用至关重要。
因此,电流互感器的设计和制造需要考虑到线圈的匝数、磁芯材料、线圈绝缘和其他因素,以确保输出电流与实际电流之间的准确对应。
电流互感器的主要作用是将高电流电路中的电流转化为适宜的测量范围,以便进行电流的监测、测量和保护。
这在电力系统中广泛应用,包括电流测量、保护设备、电能计量等方面。
电子式互感器的工作原理及应用

电子式互感器的工作原理及应用
电子式互感器是采纳磁光、电光变换原理或由无铁芯线圈构成的新型互感器,它包括电流(电压)传感器、传输系统、二次转换器,具有模拟量输出或数字量输出。
目前,有别于传统(电磁式互感器或电容式电压互感器)的互感器,包括采纳磁光效应、洛氏线圈、小型号输出、全光纤传输等类型的互感器统称为电子式互感器。
1、电压互感器
通常采纳简洁的电阻分压原理或电容分压原理实现电压信号的采集。
专用的高压电阻或电容,实现了电压信息的高精度与高稳定性采集。
采纳屏蔽电缆或光纤电缆传输。
2、电流互感器
采纳光隔离绝缘,它依靠高压母线磁场自励供应传感工作电源,高压侧的测量、爱护线圈输出的电流信号经数字采样后通过光钎传至二次设备,凹凸压间实现了光隔离,永久性解决了绝缘隔离难题。
传感头采纳小型纳米晶磁芯线圈及罗高斯基爱护线圈,具有测量精度高,爱护范围宽,免于维护,工作稳定牢靠的优点。
3、电子式互感器的应用
电子式互感器通过信号处理箱接收传感头输出的模拟感应信号,经信号处理箱进行滤波、幅值、相位仪校准后变成标准输出信号,供应给计量、爱护和测量设备。
由于输出信号为小信号(毫伏级),不存在二次短路(开路)危急。
电子式电流互感器原理

电子式电流互感器原理
电子式电流互感器利用负载中的电流通过主线圈产生磁场,再由副线圈感应到的原理来测量电流。
其工作原理如下:
1. 工作原理:
电子式电流互感器由主线圈、副线圈、铁芯以及信号处理电路等部分组成。
当负载中有电流通过时,主线圈中会建立一个磁场。
2. 磁场感应:
主线圈产生的磁场会传导到副线圈中,副线圈中感应到的磁场与主线圈中的磁场方向相反,通过副线圈的磁场感应电流。
3. 信号处理:
通过增益放大器等信号处理电路将感应到的电流进行放大和滤波处理,然后将结果输出给后续的电路或设备进行处理或显示。
4. 铁芯的作用:
铁芯的存在可以加强磁场的传导效果,从而提高互感器的灵敏度和准确性。
5. 特点:
电子式电流互感器具有体积小、重量轻、精度高、能耗低的特点,适用于各种工业自动化控制系统中的电流测量和保护。
需要注意的是,在文中不能使用与标题相同的文字,以避免重复。
以上是电子式电流互感器的工作原理和特点的简要描述。
电子式互感器工作原理

电子式互感器工作原理
电子式互感器是一种将电流和电压信号转化为电压输出的传感器。
它的工作原理基于法拉第电磁感应定律,即当变化的磁场穿过一定面积的线圈时,会在线圈中产生感应电动势。
电子式互感器通常由一对互相耦合的线圈组成,分别称为主线圈和次级线圈。
主线圈通常与被测信号相关的电流或电压输入相连接,而次级线圈则用于输出感应电动势。
当主线圈中的电流或电压发生变化时,它会产生一个变化的磁场。
这个变化的磁场会穿过次级线圈,并在其内部产生感应电动势。
次级线圈的输出电压与主线圈中电流或电压的变化成正比。
为了保证准确的信号转换,电子式互感器通常采用一些补偿措施来减小非线性和失真。
例如,使用磁芯可以增强磁场的感应效果,并提高传感器的灵敏度和稳定性。
此外,电子式互感器还通过电路设计来对感应电动势进行放大、滤波和线性化。
总的来说,电子式互感器的工作原理是基于通过变化的磁场产生感应电动势,将输入的电流或电压信号转换为输出的电压信号,实现信号的传感和测量。
电子式电流互感器的基本原理与应用

9
电子式电流互感器的定义
➢ 《电子式电流互感器》标准:IEC60044-8: 2002, GB/T 20840.8—2007
➢ 电子式互感器:一种装置,由连接到传输系统和二次转 换器的一个或多个电压或电流传感器组成,用以传输正 比于被测量的量,供给测量仪器、仪表和继电保护或控 制装置。在数字接口的情况下,一组电子式互感器共用 一台合并单元完成此功能。
➢ 空心线圈电流互感器。以Rogowski线圈作为电流传 感器,在高压侧需要电源供电。
➢ 铁芯线圈式低功率电流互感器(LPCT)。通过一个分 流电阻将二次电流转换成电压输出,实现I/V变换,
具有低功率输出特性,动态测量范围大。
13
光学电流互感器
(全光纤电流互感器)
14
法拉第效应
➢ 1864年,法拉第发现在磁场的作用下,本来不具 有旋光性的物质也产生了旋光性,即光矢量发生旋 转,这种现象称作磁致旋光效应或法拉第效应。
基测电于流干值。涉检测方法的全光纤电流互感器
➢二束光在光纤末端被反射镜反
射,它们的旋转方向发生交换,
即左旋偏振光变为右旋偏振光,
单模传感光纤
右旋偏振光变为左旋偏振光。 ➢返程的二束光在电流作用下, 偏 y 反射器
载流导体
光纤 延时器 4 y
振角再次发生旋转,再经λ/4 波
片后,变为互相垂直的两束线偏
➢引入圆双折射。设法使光纤中的圆双折射远大于线 性双折射,常用的措施有采用扭转光纤或采用高圆双 折射光纤。扭转光纤就是将传感光纤沿轴向扭转多圈, 以增加其固有圆双折射,这样,电流磁场产生的法拉 第旋转将叠加在其固有圆双折射上,使测量灵敏度增 加。这种方法的主要问题是扭转产生的圆双折射随温 度变化,需要采取复杂的温度补偿措施。
电子式电流互感器原理

电子式电流互感器原理电子式电流互感器是一种用于测量电流的传感器,它能够将高电流转换成低电流,并通过电子设备进行测量和处理。
在电力系统中,电流互感器是非常重要的设备,它能够实现电流的测量、保护和控制功能。
本文将详细介绍电子式电流互感器的原理和工作机制。
首先,电子式电流互感器通过感应原理将高电流转换成低电流。
当高电流通过主绕组时,会在副绕组中感应出相应的低电流。
这是通过互感器的铁芯和线圈来实现的,铁芯能够集中磁场,而线圈则能够感应出相应的电流。
通过这种方式,电子式电流互感器能够将高电流转换成适合电子设备测量的低电流信号。
其次,电子式电流互感器采用了电子器件进行信号处理和输出。
经过副绕组感应的低电流信号会经过放大、滤波、线性化等处理,最终输出为标准的电流信号。
这样的设计能够保证互感器输出的电流信号稳定、准确,并且符合标准要求。
同时,电子式电流互感器还可以通过数字接口输出信号,方便与其他设备进行数据交互和远程监测。
最后,电子式电流互感器具有高精度、低功耗、抗干扰能力强等特点。
由于采用了先进的电子器件和信号处理技术,电子式电流互感器能够实现高精度的电流测量,满足电力系统对电流测量的严格要求。
同时,电子式电流互感器的功耗较低,对电力系统的影响较小。
而且,它能够抵抗外部干扰,保证测量结果的准确性和稳定性。
总的来说,电子式电流互感器是一种基于电子技术的高精度、稳定性强的电流测量设备,它通过感应原理将高电流转换成低电流,并通过电子器件进行信号处理和输出。
在电力系统中,电子式电流互感器扮演着重要的角色,它能够实现电流的测量、保护和控制功能。
相信随着科技的不断进步,电子式电流互感器将会有更广泛的应用和更高的发展。
全光纤电子式电流互感器及光学电压互感器产品介绍20130328

*
电磁感应原理的电流互感器已经应用了一百多年,但已不能完全满足智能电网建设的需求。 (1)安全性较差 充油、气,有爆炸危险,存在电磁谐振、二次开路等危险;
爆炸现场
*
1、应用概述
(2)存在磁饱和、动态测量精度差 电磁互感器中的铁磁材料在电网故障时可能出现磁饱和现象,难以适应特高压继电保护快速、准确的要求。
*
率先在国内武高所、西高所通过全光纤电流互感器、光学电压互感器型式试验,电流测量精度0.2S/5TPE,电压测量度0.2/3P,并通过直流测量、63kA(峰值171kA)大电流暂态试验等。
4、成果及应用业绩:成果鉴定
具有优异的频率特性及暂态特性,3dB带宽达10kHz,能够满足IEC60044-8品质测量50次谐波(2.5kHz)测量要求 。
发明专利
已公开
15
201110288611.7
基于电光效应的无源光学电压互感器
发明专利
已公开
4、成果及应用业绩:成果鉴定
*
我公司光纤电流、电压互感器已应用于我国49个智能化变电站重点项目,总数超过1650相,工程应用量居世界首位,运行时间最长超过4年,并实现产品向发达国家的出口(德国西门子公司)。
一种用于GIS腔体的光纤气密引出方法
发明专利
已授权
7
ZL200810226869.2
高可靠光纤耦合器制备方法
发明专利
已授权
8
ZL200810226744.X
一种电光调制器线性度测试装置
发明专利
已授权
9
PCT/CN2011/081579
基于电光效应的光学电压互感器
发明专利
欧洲专利 已公开
10
电子式互感器

二、工作原理
低功率小铁心线圈原理示意图: 低功率小铁心线圈原理示意图:
二、工作原理
电子式电压互感器工作原理: 电子式电压互感器工作原理:
(1)电阻分压原理 电子式电压互感器采用电阻、阻容分压原理, 电子式电压互感器采用电阻、阻容分压原理, 其输出在整个测量范围内呈线性, 其输出在整个测量范围内呈线性,其原理图如 下:
二、工作原理
(2)阻容分压原理(GIS适用) 阻容分压原理(GIS适用) 适用 原理示意图如下: 原理示意图如下:
电容分压是通过将柱状电容环套在导电线路外面来实 现的, 现的,柱状电容环及其等效接地电容构成了电容分 压的基本回路。 压的基本回路。
二、工作原理
考虑到系统短路后,若电容环的等效接地电容上积 考虑到系统短路后, 聚的电荷在重合闸时还未完全释放, 聚的电荷在重合闸时还未完全释放,将在系统工作 电压上叠加一个误差分量, 电压上叠加一个误差分量,严重时会影响到测量结 果的正确性以及继电保护装置的正确动作, 果的正确性以及继电保护装置的正确动作,长期工 作时等效接地电容也会因温度等因素的影响而变得 不够稳定, 不够稳定,所以对电容分压的基本测量原理进行了 改进。在等效接地电容上并联一个小电阻R 改进。在等效接地电容上并联一个小电阻R 以消除 上述影响,从而构成新的电压测量电路( 上述影响,从而构成新的电压测量电路(阻容分 )。电阻上的电压Uo即为电压传感头的输出信号 电阻上的电压Uo即为电压传感头的输出信号: 压)。电阻上的电压Uo即为电压传感头的输出信号: RC1du/dt, e(t)= RC1du/dt,R<<1/(ωC2)
四、工程应用
(3)基于低功率线圈原理的电子式电流互感器在中低 压测量系统中的应用,示意图如下: 压测量系统中的应用,示意图如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
采用油浸纸绝缘,易燃易爆,不安全;
电磁式电流互感器的二次侧输出对负载要求严格, 若二次负载较大,测量误差就增大,准确度下降; 传统互感器的模拟量不能直接与计算机相连(电 流互感器模拟量输出为5A或1A) ,难以满足新 一代电力系统自动化、数字化的发展需要。
2018/11/12 6
电子式互感器的优势
当电力系统发生故障时,互感器能正确反映故障 状态下电流、电压波形,与继电保护和自动装置 配合,可以对电网各种故障构成保护和自动控制 (称之为保护用互感器)。 目前,电力系统主要是采用传统的电磁式电流、 电压互感器和电容式电压互感器。
2018缘结构复杂,体积笨重,造价高(造价随电 压等级呈指数关系上升),特别是用于超高压 系统并且要满足大短路容量的动稳定及热稳定 要求时;
2018/11/12 24
双折射对电流测量的影响
降低了电流测量灵敏度。双折射使得线偏振光的 两个正交光振动分量之间产生位相差,结果输出光 变成了椭偏振光。当使用偏振仪进行测量时,由于 椭偏振光偏转角的测量灵敏度比偏振光小,因此, 整体的测量灵敏度也相应减小。 对于不同的入射偏振面,传感器具有不同的测量 灵敏度。由于线性双折射的存在,对不同偏振面的 入射线偏振光,双折射引入的位相不同,使得整个 探头的灵敏度随偏振面方位的改变而周期性变化。
2018/11/12 18
基于偏振检测方法的全光纤电流互感器
渥拉斯顿棱镜 光纤圈 电导体
P1
探测器
信 号 处 理
P2
光缆 光源 偏振器
光源发出的单色光经起偏器变换为线偏振光,由透镜将光 波耦合到单模光纤中。高压载流导体通有电流,光纤缠绕在 载流导体上,这一段光纤将产生磁光效应。光纤中线偏振光 的偏振面旋转θ角,出射光由透镜耦合到渥拉斯顿棱镜,棱 镜将输入光分成振动方向相互垂直的两束偏振光,并分别送 达到光电探测器,经过信号处理,即能获得外界被测电流。 2018/11/12 19
单模传感光纤 载流导体 y 反射器 光纤 延时器 4 y x 椭圆芯保偏光纤 光纤相位调制器 光纤起偏器 光源 信号输出 耦合器 光电二极管 信号处 22 理单元
通过高压侧的λ/4 波片后再变 为旋转方向相反的圆偏振光,即 左旋偏振光和右旋偏振光。它们 在传感光纤中继续传输,并在电 流产生的磁场作用下,各自旋转 不同角度。
经济性好。在电压等级升高时,成本只稍有增加。 可以组合到断路器或其他高压设备中,共用支撑 绝缘子,可减少变电站的占地面积。
2018/11/12 8
电子式电流互感器的需求更迫切
故障情况下,传统互感器的测量都有不同程度 的失真,但电流互感器远比电压互感器严重。 光学互感器采用光纤传输,而光纤传输方式对 于电流互感器可以大幅度简化绝缘结构和降低 制造成本,对于电压互感器却达不到此种效果。 电力系统中,电流互感器的数量远多于电压互 感器,市场规模更大。
电子式电流互感器的基本原理与应用
主要内容
• 发展背景
• 光学电流互感器
• 空心线圈电流互感器 • 应用与展望
2018/11/12
2
发展背景
2018/11/12
3
电力互感器的作用
将电力系统一次侧的电流、电压信息传递到二次 侧,与测量仪表和计量装置配合,可测量一次系 统的电流、电压和电能(称之为测量用互感器)。
基于偏振检测方法的全光纤电流互感器
当载流导体没有电流时,使渥拉斯顿棱镜的两个主轴 与入射光纤的线偏振光的偏振方向成45 ,可获得最大 灵敏度。 当载流导体通以电流时,光电探测器接收到的光强为
I 2 I 0 cos 2 45 经过信号处理电路
I1 I 0 cos 2 45
14
法拉第效应
1864年,法拉第发现在磁场的作用下,本来不具 有旋光性的物质也产生了旋光性,即光矢量发生 旋转,这种现象称作磁致旋光效应或法拉第效应。
2018/11/12
15
法拉第效应
VH sl
2018/11/12
V 维尔德(Verdet)常数 n
Hs
l 磁场在光传播方向的分量 光通过物质的光程
空心线圈电流互感器。以Rogowski线圈作为电流传 感器,在高压侧需要电源供电。 铁芯线圈式低功率电流互感器(LPCT)。通过一个分 流电阻将二次电流转换成电压输出,实现I/V变换, 具有低功率输出特性,动态测量范围大 。
2018/11/12 13
光学电流互感器
(全光纤电流互感器)
2018/11/12
此结果是以光在全程中保持线偏振为基础的,即要求光纤 2018/11/12 20 在这个长度上尽可能接近无双折射。
I1 I 2 P sin 2 I1 I 2
基于干涉检测方法的全光纤电流互感器
基于干涉检测方法的全光纤 电流互感器并不是直接检测光 的偏振面旋转角度,而是通过 法拉第效应作用的两束偏振光 的干涉,检测其相位差的变化 来测量电流。 系统中处于高压侧的传感光 纤为经退火处理的单模光纤; 而处于高、低压两侧之间的传 光光纤为椭圆芯保偏光纤。
模拟电压输出
二次 转换器
供合并单元使用
IV S1 S2
MR
EF 二次电源
2018/11/12
11
电子式电流互感器的基本结构
ECTa(测量)的SC ECTb(测量)的SC ECTc(测量)的SC ECTa(保护)的SC ECTb(保护)的SC ECTc(保护)的SC 中性点ECT的SC EVTa的SC EVTb的SC EVTc的SC 中性点EVT的SC 母线EVT的SC 需 要 时 的 时 钟 输 入 电 源
2018/11/12
x
二束光在起偏器中产生干涉, 根据偏振干涉原理可获得被 测电流值。 基于干涉检测方法的全光纤电流互感器 二束光在光纤末端被反射镜反 射,它们的旋转方向发生交换, 即左旋偏振光变为右旋偏振光, 右旋偏振光变为左旋偏振光。
y 反射器
单模传感光纤 载流导体 光纤 延时器 4 y
返程的二束光在电流作用下, 偏 振角再次发生旋转,再经λ/4 波 x x 片后,变为互相垂直的两束线偏 椭圆芯保偏光纤 振光,但它们原来的偏振方向发 4VNI 光纤相位调制器 生了交换,即正向传播时在x 方 光纤起偏器 光源 向的偏振光,返程时变为y 方向 信号输出 耦合器 光电二极管 的偏振光,反之亦然。 信号处
对来自二次转换器的电流和/或电 压数据进行时间相关组合,通信 标准为IEC61850。
合并单元
数字输出
合并单元 电源
12个二次转换器数据通道 合并单元的数字接口框图
2018/11/12 12
电子式电流互感器的分类
光学电流互感器。采用光学原理、器件做被测电流 传感器,光学原理器件由全光纤、光学玻璃等构成。 传输系统用光纤光缆,输出电压正比于被测电流。 在高压侧不需要电源供电。
2018/11/12
理单元
23
全光纤电流互感器存在的问题
全光纤电流互感器存在的主要问题是传感光纤的线 性双折射难以处理。
光波入射非均质体(光学性质随方向而异),除特殊方 向(光轴方向)以外,都要分解成振动方向互相垂直, 传播速度不同,折射率不等的两种偏振光,此现象称 为双折射。
引起双折射的因素有很多,例如,光纤本身的不完 善(椭圆度和内部残余应力)、外界温度及光纤机械状 态变化等。根据双折射的特点,可以分为线性双折射、 圆双折射和椭圆双折射。
解决双折射问题的方法
减少双折射分量。采用低双折射的螺旋光纤(通过 自旋方式拉制的低双折射光纤)或将光纤绕成适当的 结构,减少双折射的影响。 引入圆双折射。设法使光纤中的圆双折射远大于线 性双折射,常用的措施有采用扭转光纤或采用高圆双 折射光纤。扭转光纤就是将传感光纤沿轴向扭转多圈, 以增加其固有圆双折射,这样,电流磁场产生的法拉 第旋转将叠加在其固有圆双折射上,使测量灵敏度增 加。这种方法的主要问题是扭转产生的圆双折射随温 度变化,需要采取复杂的温度补偿措施。
电子式电流互感器:是一种电子式互感器,在正常使用 条件下,其二次转换器的输出实质上正比于一次电流, 且相位差在连接方向正确时,接近于已知相位角。
2018/11/12 10
电子式电流互感器的基本结构
P1 P2 一次 传感器 一次 转换器 传输系统 MR 一次电源 符号 IV 输出无效 EF 设备失效 MR 维修申请 单相电子式电流互感器通用框图 二次 转换器
2018/11/12
9
电子式电流互感器的定义
《电子式电流互感器》标准:IEC60044-8: 2002, GB/T 20840.8—2007 电子式互感器:一种装置,由连接到传输系统和二次转 换器的一个或多个电压或电流传感器组成,用以传输正 比于被测量的量,供给测量仪器、仪表和继电保护或控 制装置。在数字接口的情况下,一组电子式互感器共用 一台合并单元完成此功能。
消除了磁饱和现象。电子式互感器没有铁芯, 暂态性能好。 对电力系统故障响应快。现有保护装置是基于 工频量进行保护判断的,而使用电子式互感器 可以实现暂态信号量作为保护判断参量。 消除铁磁谐振。
优良的绝缘性能。电子式互感器的绝缘相对简 单,高压侧与地电位之间的信号传输采用绝缘 材料制造的玻璃纤维,体积小、重量轻。
2018/11/12 17
法拉第效应
目前尚无高精度测量偏振面旋转角的检测器, 因此,通常将线偏振光的偏振面角度变化的信 息转化为光强变化的信息,然后通过光电转换 将光信号变为电信号,并进行放大处理,以正 确反映最初的电流信息。 一般用光电探测器(检偏器)将角度信息转换为 光强信息。为此必须先用起偏器将光变成线偏 振光,经被测磁场后用光电探测器求光强信息。
2018/11/12 25
双折射对电流测量的影响
测量灵敏度受外界温度的影响。弯曲光纤引入的线性 双折射分布是随温度的变化而变化的,导致传感器的灵 敏度也随温度变化而产生漂移,且沿光路上不同部分的 灵敏度是逐渐变化的,分布不均匀。 振动影响。周期性振动会引起传感头内线性双折射周 期性改变,从而影响输出的稳定性。振动时,上行传导 光纤的作用会使进入起偏器的光强发生波动,对系统产 生不良影响。 由于线性双折射对温度和振动等环境因素变化十分敏 感,会造成偏振光偏振态输出的不稳定,影像测量准确 度。因此,利用各种方法降低双折射是全光纤电流互感 器实用化过程中需要解决的关键问题。 2018/11/12 26