角定义及表示方法

合集下载

角的认识与度量

角的认识与度量

角的认识与度量角是我们学习数学中的一个基本概念,它在几何学中扮演着重要的角色。

通过对角的认识与度量,我们能够更好地理解几何图形以及解决相关的问题。

本文将对角的概念、性质以及度量方法进行探讨,旨在帮助读者深入了解角的本质及其应用。

一、角的基本概念角是由两条射线共同起点所形成的形状,射线的起点称为角的顶点,射线的端点则分别称为角的边。

角可以用大写字母表示,例如∠ABC,顶点为B,边为BA和BC。

角可以分为锐角、直角、钝角及平角四种类型。

锐角指角的度数小于90°,直角指角的度数为90°,钝角指角的度数大于90°但小于180°,平角指角的度数为180°。

二、角的性质1. 锐角的特点:锐角的度数小于90°,而且两边都在同一直线的同侧。

2. 直角的特点:直角的度数为90°,两边垂直于彼此。

3. 钝角的特点:钝角的度数大于90°,而且两边都在同一直线的同侧。

4. 平角的特点:平角的度数为180°,可以看作是两条平行线相交所形成的角。

三、角的度量方法为了度量角的大小,我们需要使用角度作为单位。

角度是一个用于度量角的量纲,通常用符号°表示。

1. 角度的刻度:角度刻度是将一个圆周等分为360等份,每等份被定义为一度,记作1°。

2. 弧度的刻度:弧度是另一种角度的度量方式,可以用来度量任何大小的角。

一个角的度数与相应的弧度之间存在一个固定的换算关系:360° = 2π弧度。

3. 角度与弧度的换算:要进行角度和弧度的换算,我们可以使用下面的公式:弧度 = 角度× π / 180角度 = 弧度× 180 / π四、角的应用角的概念和度量在几何学中被广泛应用,涉及到许多问题的解决。

1. 直角三角形:在直角三角形中,一个角为直角(即90°),而其他两个角可以由角的度数关系求得。

新人教版初中数学七年级上学期《角》知识点讲解及例题解析

新人教版初中数学七年级上学期《角》知识点讲解及例题解析

《角》知识讲解及例题解析【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算.【要点梳理】要点一、角的概念1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.图1 图2(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.要点三、角的比较与运算1.角的比较角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB =∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.2.角的和、差运算如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.3.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示.(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”.(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向.(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念1. 利用一副三角板上的角,能画出多少个小于180°的角,试一一画出来.【思路点拨】首先发现一副三角板上有30°,45°,60°,90°这样4个不相等的角,利用这些角进行一次和差,可得小于180°的所有角.【答案与解析】解:除了可以画30°,45°,60°,90°外,还可画15°,75°,105°,120°,135°,150°,165°的七个度数的角,画法如图所示.【总结升华】利用一副三角板共可以画出11个度数的角,分别是:30°,45°,60°,90°,15°,75°,105°,120°,135°,150°,165°.举一反三:【变式】下列说法中,正确的是()A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形D.角可以看做是由一条线段绕着它的端点旋转而形成的图形【答案】C.类型二、角度制的换算2. 计算下列各题:(1)152°49′12″+20.18°; (2)82°-36°42′15″;(3)35°36′47″×9; (4)41°37′÷3.【答案与解析】解:(1)解法一:∵ 20.18°=20°10′48″即:152°49′12″+20.18°=173°.解法二:∵ 152°49′12″=152.82°,∴ 152.82°+20.18°=173°.即:152°49′12″+20.18°=173°.(2)将82°化为81°59′60″,则∴ 82°-36°42′15″=45°17′45″.423″=7′3″, 324′+7′=5°31′,∴ 35°36′47″×9=320°31′3″.∴ 41°37′÷3=13°52′20″.【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后进行计算;在进行乘法运算时,往往先把度、分、秒分别乘以倍数,将结果满60″进1′,满60′进1°;对于除法运算则是从度开始除,将余数化为分和以前的分数相加再除,将余数再化成秒和以前的秒数相加再除,若除不尽往往四舍五入.举一反三:【变式】计算:(1)23°45′36″+66°14′24″;(2)180°-98°24′30″;(3)15°50′42″×3; (4)88°14′48″÷4.【答案】(1)23°45′36″+66°14′24″=90°;(2)180°-98°24′30″=81°35′30″;(3)15°50′42″×3=47°32′6″;(4)88°14′48″÷4=22°3′42″.类型三、角的比较与运算3. 如图所示表示两块三角板.(1)用叠合法比较∠1,∠α,∠2的大小;(2)量出图中各角的度数,并把图中的6个角从小到大排列,然后用“<”或“=”连接.【答案与解析】解:(1)如图所示,把两块三角板叠在一起,可得∠1>∠α,用同样的方法,可得∠α<∠2.所以∠2=∠1>∠α.(2)用量角器量出图中各个角的度数,分别是∠1=∠2=45°,∠3=90°,∠α=30°,∠β=60°,∠γ=90°,把它们从小到大排列,有∠α<∠1=∠2<∠β<∠3=∠γ.【总结升华】比较角的大小有叠合法和度量法两种:①先将两个角的顶点与顶点重合,一条边与一条边重合再比较.②先量出每个角的度数,然后按它们的度数来比较.举一反三:【变式】如图,∠AOB的平分线OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线.某同学经过认真分析,得到一个关系式是∠MON=12(∠BON-∠AON),你认为这个同学得到的关系式正确吗?若正确,请把得到这个结论的过程写出来.【答案】解:正确,理由如下:∵∠AOB的平分线OM,∴∠AOM=∠MOB又∵∠MON=∠AOM-∠AON=∠MOB-∠AON=(∠BON-∠MON) -∠AON 即有∠MON=∠BON-∠MON -∠AON∴ 2∠MON=∠BON-∠AON∴∠MON=12(∠BON-∠AON)4. 如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC,(1)求∠MON的度数;(2)若∠AOB=α其他条件不变,求∠MON的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?【思路点拨】(1)要求∠MON,即求∠COM﹣∠CON,再根据角平分线的概念分别进行计算即可求得;(2)和(3)均根据(1)的计算方法进行推导即可.(4)根据(2)和(3)中的结论进行总结.【答案与解析】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°∵OM平分∠BOC,ON平分∠AOC∴∠COM=60°,∠CON=15°∴∠MON=∠COM﹣∠CON=45°.(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°∵OM平分∠BOC,ON平分∠AOC∴∠COM=+15°,∠CON=15°∴∠MON=∠COM﹣∠CON=.(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β∵OM平分∠BOC,ON平分∠AOC∴∠COM=45°+,∠CON=.∴∠MON=∠COM ﹣∠CON=45°. (4)从上面的结果中,发现:∠MON 的大小只和∠AOB 得大小有关,与∠A0C 的大小无关.【总结升华】能够结合图形表示角之间的和差关系,根据角平分线的概念运用几何式子表示角之间的倍分关系.举一反三:【变式】如图,已知O 是直线AC 上一点,OD 平分∠AOB ,OE 在∠BOC 内,且∠BOE =12∠EOC ,∠DOE =70°,求∠EOC 的度数.【答案】解:设∠EOC=x °,则∠BOE =12∠EOC =12x °,根据题意可得:1180127022x xx --+= ,解得: 80x = .∠EOC =2∠BOE =80°. 类型四、方位角5.已知小岛A 位于基地O 的东南方向,货船B 位于基地O 的北偏东50°方向,那么∠AOB 的度数等于 . 【答案】85°. 【解析】解:如图:∵∠2=50°,∴∠3=40°, ∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°, 故答案为:85°.【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A ,B 的方位,注意东南方向是45度是解答此题的关键. 类型五、钟表上有关夹角问题6. 在7时到7时10分之间的什么时刻,时针与分针成一条直线? 【答案与解析】解:设7时x 分钟,时针与分针成一条直线,由题意得:16302x x -=,5511x =. 答:7时5511分钟时针与分针成一条直线.【总结升华】时钟上的分针与时针绕着中心顺时针均匀转动,在不同时刻,两针之间形成一定的角度.如果把单位时间分针和时针转过的度数当作它们的速度则: ① 分针的速度为36060=6°/分;②时针的速度为3060°分=0.5°/分. 故分针速度是时针速度的12倍. 举一反三:【变式】某人下午6点多外出购物,表上的时针和分针的夹角恰为110°,下午7点前回家时,发现表上的时针和分针的夹角又是110°,试算出此人外出用了多长时间? 【答案】解:设此人外出用了x 分钟,则分针转了6x 度,时针转了0.5x 度.根据题意得:6x-0.5x =110×2,解之得x =40. 答:此人外出购物用了40分钟的时间.。

四年级上册画角的知识点

四年级上册画角的知识点

四年级上册画角的知识点
四年级上册画角的知识点主要包括以下几个方面:
角的定义和构成:角是由两条射线组成的几何图形,这两条射线称为角的边,它们的公共端点称为角的顶点。

角的表示方法:可以用大写字母表示角的顶点,用数字或小写字母表示角的边。

例如,角A可以表示为∠A,而角1可以表示为∠1。

角的度量单位:角度的度量单位是度(°),1度等于360分之一。

角的度量工具:量角器是用来度量角度的常用工具,它有一个半圆形的刻度,从0°到180°。

画角的方法:可以使用量角器来画角,也可以使用直尺和圆规来画角。

画角的基本步骤是先确定顶点和角的大小,然后画出角的两边。

特殊角的概念:直角(90°)、平角(180°)和周角(360°)是常见的特殊角,它们在几何学中有特殊的意义和应用。

通过学习这些知识点,学生可以更好地理解角的定义、性质和度量方法,为进一步学习几何学打下基础。

角的计算方法与技巧

角的计算方法与技巧

角的计算方法与技巧角是平面几何中非常重要的概念,它是由两条射线共同端点所构成的图形。

在实际生活和数学领域中,角的计算方法和技巧是非常重要的,它们被广泛应用在各种问题的解决中。

本文将从基本概念开始,以及角的计算方法和技巧展开讨论。

一、基本概念1.角的定义角是由平面上两条射线共同端点构成的图形,其中这两条射线被称为角的边,它们的共同端点被称为角的顶点。

2.角的记号通常情况下,角的记号是以角顶点为中心标记一个点,然后用这个点的上面加一个角的字母。

3.角的分类按照角的大小,角可以被分为三类:锐角、直角和钝角。

4.角的度量角的度量通常用角度来表示,1个直角等于90度,1个圆周等于360度。

二、角的计算方法1.角的度量单位角的度量单位有度、弧度和梯度。

度是常用的角的度量单位,弧度是物理学和数学上常用的角的单位,梯度则常用于工程和建筑领域。

2.角的度数制在度数制下,角的度数是用箭头表示的角对应的圆周弧长所占圆的半径的百分比。

3.角的弧度制在弧度制下,角的度量是指这个角所对应的圆周上的弧所占整个圆周的比例。

1个完整的圆周等于2π弧度。

4.角的换算在不同的度量单位之间,可以相互换算。

例如,1度等于π/180弧度,1弧度等于180/π度。

5.角的运算在数学运算中,角可以进行加法、减法、乘法和除法运算。

例如,两个角的和等于它们的对应的圆周弧的和所对应的角。

6.角的三角函数三角函数是用角度作为自变量的函数,常用的三角函数有正弦函数、余弦函数、正切函数等,它们在解决角的计算问题中起着重要的作用。

三、角的计算技巧1.利用三角函数在实际问题中,有时候可以利用三角函数来解决角的计算问题。

例如,在三角形中,可以通过三角函数关系来求解各个角的大小。

2.利用相似三角形相似三角形在角度和边长的比例上具有一定的特点,可以通过相似三角形的性质来计算角的大小。

3.利用角的平分线和高度在一些几何形状中,可以利用角的平分线和高度的性质来计算角的大小,例如直角三角形中的角度。

角的知识点总结

角的知识点总结

角的知识点总结①用1、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。

或:角也可以看成是一条射线绕着它的端点旋转而成的。

2、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。

终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

角的表示:①用数字表示单独的角,如/ 1,Z 2,Z 3等。

②用小写的希腊字母表示单独的一个角,如 /a,/0,/ 丫,/e 等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如/ B,/ C等。

④用三个大写英文字母表示任一个角,如/ BAD / BAE / CAE等。

注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

3、用一副三角板,可以画出15°,30°,45°, 60°, 75°, 90°,105°,120°,135°,150°,1654、角的度量(1)、角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位1° =60,, 1' =60- 是度,用表示,1度记作,n度记作“ n把1°的角60等分,每一份叫做1分的角,1分记作“ T”。

把1'的角60等分,每一份叫做1秒的角,1 秒记作“ T”。

(2)、角的性质①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

②角的大小可以度量,可以比较③角可以参与运算。

5、角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做今/这个角的平分线。

」oOB平分/ AOC• / AOB d BOC= / AOC(或者Z AOC=2 AOB=Z BOC6、余角和补角①如果两个角的和是一个直角,这两个角叫做互为余角,简称互余,其中一个角是另一个角的余角。

角与余(补)角、对顶角、平行和垂直

角与余(补)角、对顶角、平行和垂直

角与余(补)角、对顶角、平行和垂直知识框架⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩角的相关概念基础知识点钟面上角的比较余角、补角、对顶角平行线的相关概念垂线的概念和性质与角有关的基本概念垂线段在生活中的应用一副直角三角形板中的的角度问题重难点题型旋转、折叠有关的角度问题作图题与角有角度问题关的综合题 基础知识点知识点1-1角的相关概念1)角的定义:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点,这两条射线叫做角的边,构成角的两个基本条件:一是角的顶点,二是角的边.角的另一种定义:角也可以看成是由一条射线绕着它的端点旋转而成的.如图4-3-7所示,∠BAC 可以看成是以A 为端点的射线,从AB 的位置绕点A 旋转到AC 的位置而成的图形.如图4-3-8所示,射线OA绕点O旋转,当终止位置OC和起始位置OA成一直线时,所成的角叫做平角;如图4-3-9所示,射线OA绕它的端点旋转一周所成的角叫做周角.2)角的分类:小于平角的角可按大小分成三类:当一个角等于平角的一半时,这个角叫直角;大于零度角小于直角的角叫锐角(0°<锐角<90°);大于直角而小于平角的角叫钝角(90°<钝角<180°).1周角=2平角=4直角=360°,1平角=2直角=180°,1直角=90°.3)角的表示方法:角用几何符号“∠”表示,角的表示方法可归纳为以下三种:(1)用三个大写英文字母表示,如图4-3-3所示,记作∠AOB或∠BOA,其中,O是角的顶点,写在中间;A和B分别是角的两边上的一点,写在两边,可以交换位置.(2)用一个大写英文字母表示,如图4-3-3所示,可记作∠O.用这种方法表示角的前提是以这个点作顶点的角只有一个,否则不能用这种方法表示,如图4-3-4所示,∠AOC就不能记作∠O.因为此时以O为顶点的角不止一个,容易混淆.(3)用数字或小写希腊字母来表示,用这种方法表示角时,要在靠近顶点处加上弧线,注上阿拉伯数字或小写希腊字母α、β、γ等.如图4-3-4所示,∠AOB记作∠l,∠BOC记作∠2;如图4-3-5所示,∠AOB记作∠β,∠BOC记作∠α.4)度量角的方法:度量角的工具是量角器,用量角器量角时要注意:(1)对中(顶点对中心);(2)重合(一边与刻度尺上的零度线重合)(3)读数(读出另一边所在线的刻度数).5)角的换算:在量角器上看到,把一个平角180等分,每一份就是1°的角.1°的160为1分,记作“1′”,即l°=60′.1′的160为1秒,记作“1″”,即1″=60″.1.(2020·安丘市初一月考)下列说法中,正确的是()A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形D.角可以看做是由一条线段绕着它的端点旋转而形成的图形2.(2020·江苏省初一期中)下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的是().A.B.C.D.3.(2020·南京市初一期末)如图,下列表示角的方法中,不正确的是( )A.∠A B.∠a C.∠E D.∠13.(2020·广东省初一期末)如图所示,下列关于角的说法错误的是()A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB,∠AOC,∠BOC D.∠AOC也可用∠O来表示4.(2020·河北省初一期中)有下列说法:①射线是直线的一半;②线段AB是点A与点B 的距离;③角的大小与这个角的两边所画的长短有关;④两个锐角的和一定是钝角.其中正确的个数有()A.0个B.1个C.2个D.3个5.(2020·宿迁市钟吾初级中学初一期末)下列各数中,正确的角度互化是()A.63.5°=63°50′ B.23°12′36″=23.48° C.18°18′18″=18.33° D.22.25°=22°15′6.(2020·成都市嘉祥外国语初一月考)某人下午6点到7点之间外出购物,出发和回来时发现表上的时针和分针的夹角都为110°,此人外出购物共用了__________分钟.7.(2020·上海市静安区实验中学月考)用量角器量图中的角,30°的角有_____个,60°的角有_____个,90°的角有_____个,120°的角有_____个.8.(2020山西吕梁初一期末)如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,喜羊羊同学认为是两点确定一条直线,懒羊羊同学认为是两点之间线段最短.你认为_____同学的说法是正确的.9.(2020·江苏仪征市初一期中)日常生活中,我们几乎每天都要看钟表,它的时针;和分针如同兄弟俩在赛跑,其中蕴涵着丰富的数学知识.(1)如图1,上午8:00这一时刻,时钟上分针与时针的夹角等于________;(2)请在图2中画出8:20这一时刻时针和分针的大致位置,思考并回答:从上午8:00到8:20,时钟的分针转过的度数是________,时钟的时针转过的度数是________;(3)“元旦”这一天,小明上午八点整出门买东西,回到家中时发现还没到九点,但是时针与分针重合了,那么小明从离开家到回到家的时间为多少分钟?10.(2020·辽宁鞍山初一期末)如下图,在已知角内画射线,画1条射线,图中共有个角;画2条射线,图中共有个角;画3条射线,图中共有个角;求画n条射线所得的角的个数 .知识点1-2角的比较1)角的比较方法(1)度量法:如图4-4-4所示,用量角器量得∠1=40°,∠2=30°,所以∠1>∠2.(2)叠合法:比较∠ABC与∠DEF的大小,先让顶点B、E重合,再让边BA和边ED重合,使另一边EF和BC落在BA(DE)的同侧.如果EF和BC也重合(如图4-4-5(1)所示),那∠DEF等于∠ABC.记作∠DEF=∠ABC;如果EF落在∠ABC的外部(如图4-4-5(2)所示),那么∠DEF大于∠ABC,记作∠DEF>∠ABC;如果EF落在∠ABC的内部(如图4-4-5(3)所示),那么∠DEF小于∠ABC,记作∠DEF<∠ABC.提示:叠合法可归纳为“先重合,再比较”.2)角的和、差由图4-4-7(1)、(2),已知∠1,∠2,图4-4-7(3)中,∠ABC=∠1+∠2;图4-4-7(4)中,∠GEF =∠DEG-∠1.3)角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图4-4-9所示,射线OC 是∠BOA 的平分线,则∠BOC =∠COA =21∠BOA ,∠BOA =2∠BOC =2∠COA .4)方向的表示○1方位角:是指南北方向线与目标方向所成的小于900的水平角。

角的定义及相关概念

角的定义及相关概念

角的定义及相关概念角是数学中的一个重要概念,是两条射线共享一个起点而形成的图形。

角的定义不仅在数学应用中起着重要的作用,也在生活中有许多实际意义。

首先,我们来看一下角的定义。

角通常用大写字母表示,比如A,B,C等。

一个角由两条射线组成,其中一条射线叫做角的边,另一条射线叫做角的腿。

边是角的起点,腿是角的终点。

两条射线的交点叫做角的顶点。

我们可以用顶点和两个点来表示一个角,例如∠ABC。

值得注意的是,表示一个角时,通常点的位置是顺序排列的,也就是说我们是从边开始画,然后到顶点,最后画到另一条边。

角的大小是通过角的度数来确定的。

角的度数可以用角度或弧度来表示。

角度是平面内角的度量单位,用符号°表示。

一个完整的圆有360°。

当我们讨论角度时,经常会涉及到三种不同类型的角:锐角、直角和钝角。

锐角是指小于90°的角,直角是指等于90°的角,钝角是指大于90°小于180°的角。

锐角和钝角的大小在0°到180°之间,而直角的大小只能是90°。

角的概念在几何图形的测量中起着重要的作用。

比如我们常用角来描述一个多边形的内角和外角。

内角是指凸多边形内部两条边所形成的角,而外角是指凸多边形内部一条边和另一条边的延长线所形成的角。

内角和外角的关系是重要的几何定理之一,即内角和外角相加等于180°。

除了在几何图形的测量中,角的概念还广泛应用于物理学、天文学和建筑学等领域。

在物理学中,角度是测量两个物体或者物体的部分之间的相对旋转程度的一种方法。

在天文学中,角度用于度量天体的位置和运动。

而在建筑学中,角度被用来度量建筑物的朝向和结构。

总结起来,角是由两条射线共享一个起点而形成的图形,其大小通过度数来确定。

角在数学应用中起着重要的作用,不仅在几何图形的测量中被广泛使用,还在物理学、天文学和建筑学等领域发挥着重要的作用。

了解角的定义和相关概念,对我们理解和应用数学知识是具有指导意义的。

角的概念与测量知识点总结

角的概念与测量知识点总结

角的概念与测量知识点总结角是几何学中重要的概念之一,它指的是由两条射线或线段共享一个端点而形成的形状。

本文将对角的概念和测量知识点进行总结。

一、角的基本概念角由两条射线或线段共享一个端点而形成。

射线或线段称为角的边,共享端点称为角的顶点。

角的大小用弧度或度来表示,弧度常用于数学理论,度常用于日常测量中。

二、角的分类角可分为以下几种类型:1. 零角:两条重合的射线形成的角,其大小为0°或0弧度。

2. 直角:由两条相互垂直的射线形成的角,其大小为90°或π/2弧度。

3. 钝角:大于90°但小于180°的角,称为钝角。

4. 锐角:小于90°的角,称为锐角。

5. 平角:由两条相互平行的射线形成的角,其大小为180°或π弧度。

三、角的测量方法角的测量方法有两种:度数法和弧度法。

1. 度数法:度数法是一种常用的测量角的方法。

它以360°为一周,将一周等分为360份,每一份称为一度(°)。

在数学和日常生活中,通常使用度数法来表示角的大小。

例如,直角大小为90°,钝角大小为120°。

2. 弧度法:弧度法是一种用于解决复杂角度问题的工具,也是数学理论中常用的角度测量方法。

弧度以圆的半径为单位来测量角的大小。

一个圆的一周的弧长为2πr,其中r为圆的半径。

一个圆的一周约等于6.28倍的半径,因此定义了1弧度(rad)等于360°/2π≈57.3°。

例如,直角的弧度大小为π/2弧度,钝角的弧度大小为2π/3弧度。

四、角的性质角的性质是研究角的基本特点和关系的重要内容。

1. 对顶角:对顶角是指由两组对立的角,其中两个角的和为180°。

这种性质使得我们可以通过测量或计算一个角的补角来得到另一个角的度数。

2. 内角和外角:对于一个凸多边形(每个内角小于180°)而言,内角和等于360°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


1、角是由两条具有公共
的 端点的射线组成的图形。

概 2、角也可以看做一条射
线绕端点旋转所组成的图
念 形。动
我思我想我进步
说明:
在不做特别说明的情况下,我们说的角 都指不大于平角的角
练 二、判断题: 习 下列语句正确的在( )打“√”。
1、两条直线组成的图形叫做角( ) 2、两条射线组成的图形叫角 3、从同一点引出的两条射线组成的 图形叫角( ) 4、平角是一条直线 ( )
一个字母只表示一个角
在靠近顶点的处画上弧线, 并写上数字 在靠近顶点的处画上弧线, 并写上希腊字母
B D
A
C
我思我想我进步
E
我思我想我进步
反思总结
小结 角的定义
1、角是由两条具有公共端点的射线组成的图形。 2、角可以看作是一条射线绕着它的端点旋转而 成的.
角的表示方法
表示方法
注意事项
1、用三个大写的字母表示
表示顶点的字母要写 在中间
2、用一个顶点的字母来 表示 3、用一个数字
4、希腊字母表示
成的图形。
B
B
O
B
终边 B
A O
始边
我思我想我进步
思 射线 OA绕点O 旋转90度后, B
终边OB和始边 OA垂直时,所
考 成的角叫做 直角。
O
A
B OA
射成线一直O线A绕时点,O所旋成转的1角80叫度做后平,角终边OB; 和始边 OA
O
BA
射线 OA绕点O 旋转360度后,回到原来的位置时, 所成的角叫做 周角。
的 表示法:∠1
2

示α 表示法:∠α
用此法时, 必须在近顶点处加上弧线并注上阿拉伯 数字或小写希腊字母α、β、γ
方法
图标
记法
适用范围
备注
1、用三
个大写字
A
母表示
O
2、用一
B
个大写字
母表示
O
3、用一个
β
数字或希腊
字母来表示

∠AOB 任何角都可以用

此方法表示
∠BOA
当以某一个字母
∠O
(如O)为顶点 的角只有一个角
可以交换位置,但O必须写在中间。任何角都可以用
此方法表示。
2、用角的符号及一个大写字母表示

A

表O
B
表示法:∠O

A
O
C
B
这种情形不能表示为 ∠O
当以某一个字母(如O)为顶点的角只有一个角时 可以这样表示。若以O为顶点的角有若干个时,不
能用此表示法。
3、用角的符号及一个数字或希腊字母来表示

这四种表示方法,你认为 1 哪一种比较1 方便?
它们给我们怎样的图形印象
在下列图形中,哪些可以近似地看成角?(请 同学们分组讨论后,派代表样 构成 的?
角是由两条具有公共端点的射线组成的图形。
公共端点
顶点
射线 边
练 习 一、判断下列哪些图形是角
(√)
(√) (×)
(√)
我思我想我进步
角也可以看做一条射线绕端点旋转所组
我思我想我进步
角的表示方法课本已经说得比较清楚, 请同学们通过课本探究,角有几种表示 方法 。请在课本上划出来。
A
这个角
该叫什
么名字
O
B
呢?
1、用角的符号及三个大写字母表示

这A样的角还可角以的怎符样号表示?
的O
B
表示法:∠AOB
表 示 或∠BOA
O是角的顶点,A、B分别是角两边上的一点,A、B
B 5
4
3
21
E
D
A
C
∠1
∠BCE
∠2 ∠ACB
∠3
∠4
∠5
∠BAC ∠DAB ∠ABC
(3)图中有几个小于平角的角?请分 别表示出来。
∠DAC,
B
∠ BAD, ∠BAC,
D A
C
我思我想我进步
(3)图中有几个小于平角的角?请分 别表示出来。
(∠ BAD, ∠BAC, ∠BAE, ∠DAC, ∠DAE, ∠CAE )
时可以这样表示。
∠⒉ 当一个角的内部 没有别的角时,
∠β 可用些法。
我思我想我进步
牛刀小试
• 把图中的角表示成下列形式:
①∠APO ②∠AOP ③∠OPC,
• ④∠O
⑤∠COP ⑥∠P。
• 其中正确的有___________(把你认为正确的
序号都填上。)
C
A
P
O
将图中的角用不同的方法表示 出来,并填写下表
相关文档
最新文档