用洛必达法则求下列极限
洛必达法则公式求极限

洛必达法则公式求极限好的,以下是为您生成的关于“洛必达法则公式求极限”的文章:在咱们数学的奇妙世界里,洛必达法则就像是一把神奇的钥匙,能帮咱们打开求极限的神秘大门。
先来说说啥是洛必达法则吧。
简单来讲,就是当咱们遇到那种分子分母都趋于零或者无穷大的极限问题时,这法则就派上用场啦。
比如说,有这么一个例子,咱们要算极限:lim(x→0) (sin x)/x 。
你看,当 x 趋于 0 的时候,分子分母都趋于 0 ,这时候就可以用洛必达法则。
对分子分母分别求导,就变成了lim(x→0) cos x/1,这一下子就简单多啦,答案就是 1 。
我记得之前给学生们讲这个的时候,有个小同学,眼睛瞪得大大的,一脸懵地问我:“老师,这法则咋就这么神奇呢?”我笑着跟他说:“这就像是你在走一条黑漆漆的路,洛必达法则就是给你点亮的那盏灯呀。
”咱再深入一点,洛必达法则可不光是这么简单用一下就完事儿。
有时候得多次求导才能得出结果。
就像有一次考试,出了一道挺难的题目:lim(x→∞) (x^2 + 2x -1)/(2x^2 - 3x + 5) 。
不少同学一开始就懵了,不知道从哪儿下手。
其实呢,用洛必达法则,先对分子分母求导,得到lim(x→∞) (2x + 2)/(4x - 3) 。
这还不行,再求一次导,变成lim(x→∞) 2/4 ,答案就是 1/2 。
在实际运用中,可得小心一点。
不是说所有看起来分子分母都趋于零或者无穷大的情况都能用洛必达法则。
得先看看满足条件不,不然可就得出错误结果啦。
有一回,我布置了一道作业题,让大家用洛必达法则求极限。
结果有个同学交上来的作业,明显就是乱用法则。
我把他叫过来,指着他的作业问:“你仔细想想,这里能用洛必达法则吗?”他挠挠头,不好意思地笑了。
总之啊,洛必达法则是咱们求极限的好帮手,但也得用对地方,用对方法。
就像咱们手里有把宝剑,得知道啥时候该出鞘,怎么出鞘,才能发挥它最大的威力。
希望大家在面对求极限的问题时,都能熟练地运用洛必达法则,把难题一个个攻克,在数学的海洋里畅游无阻!。
微积分第三章习题解答

第三章习题解答 习题 3-11. 验证函数()f x =在区间[0,4]上满足罗尔定理的条件,并求出使得结论成立的点ξ。
解:显然函数()f x =[0,4]上连续,在(0,4)上可导,且有(0)(4)0f f ==所以函数在区间[0,4]上满足罗尔定理,则有()0f ξ'==,83ξ=。
2. 验证函数3()1f x x =-在区间[1,2]上满足拉格朗日中值定理的条件,并求出使得结论成立的ξ。
解:函数3()1f x x =-在区间[1,2]上连续,在(1,2)上可导,则满足拉格朗日中值定理,则有2(2)(1)321f f ξ-=-,即ξ=3. 函数4()1f x x =-与2()g x x =在区间[1,2]上是否满足柯西中值定理的所有条件,如满足,求出满足定理的数值ξ。
解:函数4()1f x x =-与2()g x x =在区间上连续,在区间(1,2)上可导,则满足柯西中值定理,则有3(2)(1)4(2)(1)2f f g g ξξ-=-,即ξ=4. 若4次方程432012340a x a x a x a x a ++++=有4个不同的实根,证明3201234320a x a x a x a +++=的所有根皆为实根。
证明:设43201234()f x a x a x a x a x a =++++,()0f x =的四个实根分别为1234,,,x x x x ,且1234x x x x <<<,则函数()f x 在1[,](1,2,3)i i x x i +=上满足罗尔定理的条件,则在1(,)i i x x +内至少存在一点i ξ,使得()0i f ξ'=。
这说明方程3201234320a x a x a x a +++=至少有3个实根,而方程为3次方,则最多也只有3个实根,所以结论得到证明。
5. 设()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,证明:存在(0,1)ξ∈,使得()()f f ξξξ'=-。
最新32洛必达法则汇总

32洛必达法则1.用洛必达法则求下列极限:⑴«Skip Record If...»;【解】这是“«Skip Record If...»”未定型商式极限,可以应用洛必达法则求解:«Skip Record If...»«Skip Record If...» ---- 应用洛必达法则«Skip Record If...»«Skip Record If...»«Skip Record If...»。
---- 代值计算⑵«Skip Record If...»;【解】这是“«Skip Record If...»”未定型商式极限,可以应用洛必达法则求解:«Skip Record If...»«Skip Record If...» ---- 应用洛必达法则«Skip Record If...» ---- 对未定型商式再应用洛必达法则«Skip Record If...» ---- 套用极限公式«Skip Record If...»«Skip Record If...»⑶«Skip Record If...»;【解】这是“«Skip Record If...»”未定型商式极限,可以应用洛必达法则求解:«Skip Record If...»«Skip Record If...» ---- 应用洛必达法则«Skip Record If...» ---- 对未定型商式再应用洛必达法则«Skip Record If...» ---- 代值计算⑷«Skip Record If...»;【解】这是“«Skip Record If...»”未定型商式极限,可以应用洛必达法则求解:«Skip Record If...»«Skip Record If...» ---- 应用洛必达法则«Skip Record If...» ---- 整理繁分式«Skip Record If...» ---- 对未定型商式再应用洛必达法则«Skip Record If...» ---- 化简复杂分式«Skip Record If...» ---- 对未定型商式再应用洛必达法则«Skip Record If...» ---- 代值计算«Skip Record If...»⑸«Skip Record If...»;【解】这是“«Skip Record If...»”未定型商式极限,可以应用洛必达法则求解:«Skip Record If...»«Skip Record If...» ---- 应用洛必达法则«Skip Record If...» ---- 化简繁分式«Skip Record If...» ---- 对未定型商式再应用洛必达法则«Skip Record If...» ---- 化简繁分式«Skip Record If...»⑹«Skip Record If...»;【解】这是“«Skip Record If...»”未定型商式极限,可以应用洛必达法则求解:«Skip Record If...»«Skip Record If...» ---- 应用洛必达法则«Skip Record If...» ---- 化简繁分式«Skip Record If...» ---- 对未定型商式再应用洛必达法则«Skip Record If...»«Skip Record If...» ---- 代入计算⑺«Skip Record If...»;【解】这是“«Skip Record If...»”未定型极限,应化为商式极限后应用洛必达法则求解:«Skip Record If...»«Skip Record If...» ---- 化为商式后,成为“«Skip Record If...»”未定型商式极限«Skip Record If...» ---- 应用洛必达法则«Skip Record If...» ---- 化简繁分式«Skip Record If...» ---- 代入计算⑻«Skip Record If...»;【解】这是“«Skip Record If...»”未定型极限,应化为商式极限后应用洛必达法则求解:«Skip Record If...»«Skip Record If...» ---- 化为商式后,成为“«Skip Record If...»”未定型商式极限«Skip Record If...» ---- 应用洛必达法则«Skip Record If...» ---- 化简繁分式«Skip Record If...» ---- 代入计算⑼«Skip Record If...»;【解】这是“«Skip Record If...»”未定型极限,应化为商式极限后应用洛必达法则求解:«Skip Record If...»«Skip Record If...» ---- 为通分化为商式作准备«Skip Record If...» ---- 成为“«Skip Record If...»”未定型商式极限«Skip Record If...» ---- 应用洛必达法则«Skip Record If...» ---- 代入计算⑽«Skip Record If...»;【解】这是“«Skip Record If...»”未定型极限,应化为商式极限后应用洛必达法则求解:«Skip Record If...»«Skip Record If...» ---- 通分化为商式,成为“«Skip Record If...»”未定型«Skip Record If...» ---- 应用洛必达法则«Skip Record If...» ---- 化简繁分式,成为“«Skip Record If...»”未定型«Skip Record If...» ---- 应用洛必达法则«Skip Record If...» ---- 代入计算⑾«Skip Record If...»;【解】这是“«Skip Record If...»”幂指函数未定型极限,应化为商式极限后应用洛必达法则求解:【解法一】应用对数法,令«Skip Record If...»,则«Skip Record If...»,于是,«Skip Record If...»---- 成为“«Skip Record If...»”未定型«Skip Record If...» ---- 应用洛必达法则«Skip Record If...» ---- 化简繁分式,成为“«Skip Record If...»”未定型«Skip Record If...» ---- 应用洛必达法则«Skip Record If...» ---- 代入计算得到 «Skip Record If...»,亦即«Skip Record If...»,从而有 «Skip Record If...»,亦即«Skip Record If...»。
洛必达法则的应用

f ( x) F ( x) F ( ) f ( ) lim lim lim lim A. x a g ( x ) x a G ( x ) a G( ) a g ( )
例1 解
tan x 求 lim . x 0 x
0 ( ) 0
(tan x ) sec2 x 1. 原式 lim lim x 0 x 0 ( x ) 1
F ( x),G( x)满足柯西中值定理的条 件, 则有 F ( ) F ( x ) F ( x ) F (a ) (在x与a之间) G( x ) G( x ) G(a ) G( )
F ( ) F ( x ) f ( x ) A, lim A, lim 当x a时, a , 而 lim a G( ) x a G ( x ) x a g ( x )
定义 这种在一定条件下通过分子分母分别求导再求极限 来确定未定式的值的方法称为洛必达法则.
当x 时,以及x a ( a ), x ( )时, 该法则仍然成立 .
证
定义辅助函数
g ( x), x a f ( x ), x a G( x ) , F ( x) , 0, xa 0 , x a 在 U (a, ) 内任取一点 x, 在以 a 与 x 为端点的区间上 ,
练习题
一、填空题:
0 1 、洛必达法则除了可用于求“ ” ,及“ ”两种 0 类 型 的未 定 式的 极限 外 ,也 可 通 过 变 换 解 决 _____________,_____________,____________, _____________ ,_____________ ,等型的未定式 的求极限的问题.
1 cos x lim 0. x 0 2x
洛必达法则详解【一元分析学经典讲义】

上页
返回
下页
练习题
一、 填空题: 填空题:
0 ∞ 1、洛必达法则除了可用于求“ ” 及“ ”两种类 洛必达法则除了可用于求“ , 0 ∞ 型的未定式的极限外,也可通过变换解决 _____________, _____________, ____________, _____________,_____________,____________, _____________,_____________, _____________,_____________,等型的未定式 的求极限的问题. 的求极限的问题.
2 2
6 cos 6 x 3. = = lim π x → 2 cos 2 x
2
法则可多次使用
上页
返回
下页
注意:洛必达法则是求未定式的一种有效方法, 注意:洛必达法则是求未定式的一种有效方法, 但与其它求极限方法结合使用,效果更好. 但与其它求极限方法结合使用,效果更好.比如 等价替换、 极限先求等 等价替换、非0极限先求等. 例6 解
返回
下页
例
求 lim
e x (1 − cos x 2 ) x ⋅ ( 1 + x 2 − 1)
x → 0 tan 2
.
0 ( ) 0
x4 2 = lim 1 = 1. ( 因 e x →1 ) 原式 = lim 解 式 2 x →0 x→0 2 x x ⋅ 2 0 e2 x − 1 − 2 x ( ) 例 求 lim 2 x . 0 x → 0 x ⋅ (e + 1 + 2 x )
上页 返回 下页
三、小结
洛必达法则是求未定式的一种有效方法, 洛必达法则是求未定式的一种有效方法,可多次 使用, 不是万能的. 使用,但不是万能的 它与其它求极限方法结合使 效果更好.比如等价替换 等价替换、 极限先求等 用,效果更好.比如等价替换、非0极限先求等
高数习题答案3-2

习题3-21. 用洛必达法则求下列极限:(1)xx x )1ln(lim 0+→;(2)xe e x x x sin lim 0-→-; (3)ax a x a x --→sin sin lim ;(4)x x x 5tan 3sin lim π→;(5)22)2(sin ln lim x x x -→ππ;(6)n n mm a x ax a x --→lim ;(7)x x x 2tan ln 7tan ln lim 0+→;(8)xx x 3tan tan lim 2π→;(9)xarc x x cot )11ln(lim++∞→; (10)xx x x cos sec )1ln(lim 20-+→;(11)x x x 2cot lim 0→;(12)2120lim x x e x →;(13))1112(lim 21---→x x x ;(14)x x x a )1(lim +∞→;(15)x x x sin 0lim +→;(16)x x xtan 0)1(lim +→.解 (1)111lim 111lim )1ln(lim 000=+=+=+→→→x x xx x x x .(2)2cos lim sin lim 00=+=--→-→xe e x e e x x x x x x . (3)a x ax a x a x a x cos 1cos lim sin sin lim ==--→→.(4)535sec 53cos3lim 5tan 3sin lim 2-==→→x x x x x x ππ. (5)812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x x x x x πππππ. (6)n m n m n m a x n n m m a x a n m namx nx mx a x a x -----→→===--1111lim lim . (7)22sec 2tan 177sec 7tan 1lim 2tan ln 7tan ln lim 2200⋅⋅⋅⋅=+→+→x xx x x x x x177s e c 22s e c l i m 277t a n 2t a n l i m 272200=⋅⋅==+→+→x x x x x x . (8)x x x x x x x x x 2222222cos 3cos lim 3133sec sec lim 3tan tan lim πππ→→→=⋅= )s i n (c o s 23)3s i n (3c o s 2lim 312x x x x x -⋅-=→πxx x c o s 3c o s l i m2π→-= 3s i n3s i n 3l i m2=---=→x x x π.(9)22221lim 11)1(111lim cot arc )11ln(limxx x xx x x x x x x ++=+--⋅+=++∞→+∞→+∞→ 122lim 212lim ==+=+∞→+∞→x x x x .(10)x x xx x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→1s i n lim )sin (cos 22lim00==--=→→xx x x x x x .(注: cos x ⋅ln(1+x 2)~x 2) (11)2122sec 1lim 2tan lim2cot lim 2000=⋅==→→→x x x x x x x x . (12)+∞====+∞→+∞→→→1lim lim 1lim lim 21012022t t t t x x x x e t e x e e x(注: 当x →0时, +∞→=21xt . (13)2121lim 11lim 1112lim 12121-=-=--=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x . (14)因为)1ln(lim )1(lim x ax x x x exa +∞→∞→=+, 而 221)(11lim 1)1ln(lim)1(ln(lim xx a x ax x a x a x x x x --⋅+=+=+∞→∞→∞→ a a a x ax x x ==+=∞→∞→1lim lim ,所以 a x ax x x x e e xa ==++∞→∞→)1l n (l i m )1(l i m. .(15)因为x x x x x e x ln sin 0sin 0lim lim +→+→=,而 x x x x x x x x x x c o tc s c 1lim csc ln lim ln sin lim 000⋅-==+→+→+→c o s s i n l i m 20=-=+→xx x x ,所以 1lim lim 0ln sin 0sin 0===+→+→e e x x x x x x .(16)因为x x x x e xln tan tan 0)1(lim -+→=,而 xx x x x x x x x 2000c s c 1limcot ln lim ln tan lim -==+→+→+→ 0s i n l i m 20=-=+→xx x , 所以 1l i m )1(l i m 0ln tan 0tan 0===-+→+→e e x x x x x x .2. 验证极限x x x x sin lim +∞→存在, 但不能用洛必达法则得出.解 1)s i n 1(l i m s i n l i m =+=+∞→∞→x x x x x x x , 极限x x x x sin lim +∞→是存在的. 但)cos 1(lim 1cos 1lim )()sin (limx x x x x x x x +=+=''+∞→∞→∞→不存在, 不能用洛必达法则. 3. 验证极限xx x x sin 1sin lim20→存在, 但不能用洛必达法则得出. 解 0011sin sin lim sin 1sin lim020=⋅=⋅=→→xx x x x x x x x , 极限x x x x sin 1sin lim 20→是存在的. 但xx x x x x x x x cos 1cos 1sin 2lim )(sin )1sin (lim020-=''→→不存在, 不能用洛必达法则. 4. 讨论函数⎪⎪⎩⎪⎪⎨⎧≤>+=-0])1([)(2111x e x e x x f x x 在点x =0处的连续性.解 21)0(-=e f ,)0(lim)(lim 21210f e e x f x x ===---→-→,因为]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x x x x x x x x e ex x f ,而 200)1l n (l i m]1)1l n (1[1l i m x xx x x x x x -+=-++→+→ 21)1(21lim 2111lim 00-=+-=-+=+→+→x x x x x ,所以]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x xx x x x x x e ex x f )0(21f e ==-.因此f (x )在点x =0处连续.习题 2-21. 推导余切函数及余割函数的导数公式: (cot x )'=-csc 2x ; (csc x )'=-csc x cot x .解 x x x x x x x x 2sin cos cos sin sin )sin cos ()(cot ⋅-⋅-='=' x xx x x 22222c s cs i n 1s i n c o s s i n -=-=+-=. x x xx x x c o t c s c s i n c o s )s i n 1()(c s c 2⋅-=-='='.2. 求下列函数的导数:(1)1227445+-+=x x x y ; (2) y =5x 3-2x +3e x ; (3) y =2tan x +sec x -1; (4) y =sin x ⋅cos x ; (5) y =x 2ln x ; (6) y =3e x cos x ; (7)xx y ln =;(8)3ln 2+=xey x ;(9) y =x 2ln x cos x ;(10)tt s cos 1sin 1++=;解 (1))12274()12274(14545'+-+='+-+='---x x x xx x y 2562562282022820x x x x x x +--=+--=---. (2) y '=(5x 3-2x +3e x )'=15x 2-2x ln2+3e x .(3) y '=(2tan x +sec x -1)'=2sec 2x +sec x ⋅tan x =sec x (2sec x +tan x ). (4) y '=(sin x ⋅cos x )'=(sin x )'⋅cos x +sin x ⋅(cos x )' =cos x ⋅cos x +sin x ⋅(-sin x )=cos 2x . (5) y '=(x 2ln x )'=2x ⋅ln x +x 2⋅x1=x (2ln x +1) .(6) y '=(3e x cos x )'=3e x ⋅cos x +3e x ⋅(-sin x )=3e x (cos x -sin x ).(7)22ln1ln 1)ln (x x x xx x x x y -=-⋅='='. (8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=⋅-⋅='+='. (9) y '=(x 2ln x cos x )'=2x ⋅ln x cos x +x 2⋅x1⋅cos x +x 2 ln x ⋅(-sin x )2x ln x cos x +x cos x -x 2 ln x sin x . (10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t tt t t t t t t t s +++=+-+-+='++='.3. 求下列函数在给定点处的导数: (1) y =sin x -cos x , 求6π='x y 和4π='x y .(2)θθθρcos 21sin +=,求4πθθρ=d d .(3)553)(2x x x f +-=, 求f '(0)和f '(2) . 解 (1)y '=cos x +sin x , 21321236s i n 6c o s 6+=+=+='=πππx y ,222224s i n 4c o s 4=+=+='=πππx y . (2)θθθθθθθθρcos sin 21sin 21cos sin +=-+=d d ,)21(4222422214c o s 44s i n 214πππππθρπθ+=⋅+⋅=+==d d . (3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=.求:(1)该物体的速度v (t ); (2)该物体达到最高点的时刻. 解 (1)v (t )=s '(t )=v 0-gt . (2)令v (t )=0, 即v 0-gt =0, 得gv t 0=, 这就是物体达到最高点的时刻. 5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程. 解 因为y '=2cos x +2x , y '|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为 y =2x ,所求的法线方程为x y 21-=, 即x +2y =0.6. 求下列函数的导数: (1) y =(2x +5)4 (2) y =cos(4-3x ); (3)23x e y -=; (4) y =ln(1+x 2); (5) y =sin 2x ; (6)22x a y -=; (7) y =tan(x 2);(8) y =arctan(e x ); (9) y =(arcsin x )2; (10) y =lncos x .解 (1) y '=4(2x +5)4-1⋅(2x +5)'=4(2x +5)3⋅2=8(2x +5)3. (2) y '=-sin(4-3x )⋅(4-3x )'=-sin(4-3x )⋅(-3)=3sin(4-3x ). (3)22233236)6()3(x x x xe x e x e y ----=-⋅='-⋅='. (4)222212211)1(11x x x x x x y +=⋅+='+⋅+='.(5) y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x . (6))()(21])[(22121222122'-⋅-='-='-x a x a x a y222122)2()(21xa x x x a --=-⋅-=-.(7) y '=sec 2(x 2)⋅(x 2)'=2x sec 2(x 2). (8)xx x x e e e e y 221)()(11+='⋅+='.(9) y '21arcsin 2)(arcsin arcsin 2x x x x -='⋅=.(10)x x x x x y tan )sin (cos 1)(cos cos 1-=-='⋅='.7. 求下列函数的导数: (1) y =arcsin(1-2x ); (2)211xy -=; (3)x e y x3cos 2-=;(4)xy 1arccos =;(5)xx y ln 1ln 1+-=;(6)x x y 2sin =;(7)x y arcsin =; (8))ln(22x a x y ++=; (9) y =ln(sec x +tan x ); (10) y =ln(csc x -cot x ). 解 (1)2221)21(12)21()21(11xx x x x y --=---='-⋅--='. (2))1()1(21])1[(21212212'-⋅--='-='---x x x y222321)1()2()1(21xx x x x --=-⋅--=-.(3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y xxx x )3s i n 63(c o s 213s i n 33c o s 21222x x e x e x e xxx +-=--=---. (4)1||)1()1(11)1()1(1122222-=---='--='x x x x x x x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='. (6)222sin 2cos 212sin 22cos x x x x x x x x y -=⋅-⋅⋅='. (7)2222121)(11)()(11x x x x x x y -=⋅-='⋅-='. (8)])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y2222221)]2(211[1xa x x a x a x +=++⋅++=. (9) x xx x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12=++='+⋅+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12=-+-='-⋅-='.8. 求下列函数的导数: (1)2)2(arcsin x y =;(2)2tan ln x y =;(3)x y 2ln 1+=; (4)xe y arctan=;(5)y =sin n x cos nx ; (6)11arctan -+=x x y ;(7)x x y arccos arcsin =;(8) y =ln[ln(ln x )] ;(9)xx xx y -++--+1111;(10)xxy +-=11arcsin .解 (1)'⋅=')2(arcsin )2(arcsin 2x x y)2()2(11)2(a r c s i n22'⋅-⋅=x x x 21)2(11)2(a r c s i n 22⋅-⋅=x x .242a r c s i n2x x -= (2))2(2sec 2tan 1)2(tan 2tan 12'⋅⋅='⋅='x x x x x yx x x c s c 212s e c 2t a n 12=⋅⋅=. (3))ln 1(ln 121ln 1222'+⋅+=+='x xx y )(l n ln 2ln 1212'⋅⋅+=x x xx x x 1ln 2ln 1212⋅⋅+=x x x 2ln 1ln +=.(4))(arctan arctan'⋅='x e y x)()(112arctan'⋅+⋅=x x e x)1(221)(11a r c t a n2a r c t a nx x e x x ex x +=⋅+⋅=.(5) y '=n sin n -1x ⋅(sin x )'⋅cos nx +sin n x ⋅(-sin nx )⋅(nx )' =n sin n -1x ⋅cos x ⋅cos nx +sin n x ⋅(-sin nx )⋅n=n sin n -1x ⋅(cos x ⋅cos nx -sin x ⋅sin nx )= n sin n -1x cos(n +1)x . (6)222211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--⋅-++='-+⋅-++='. (7)222)(arccos arcsin 11arccos 11x x x x x y -+-='22)(a r c c o s a r c s i n a r c c o s 11x x x x +⋅-=22)(a r c c o s12x x -=π.(8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'⋅⋅='⋅='x x x x x y)l n (l n ln 11ln 1)ln(ln 1x x x x x x ⋅=⋅⋅=.(9)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111xx -+-=. (10)2)1()1()1(1111)11(1111x x x xx x x x x y +--+-⋅+--='+-⋅+--=' )1(2)1(1x x x -+-=.9. 设函数f (x )和g (x )可导, 且f 2(x )+g 2(x )≠0, 试求函数)()(22x g x f y +=的导数. 解 ])()([)()(212222'+⋅+='x g x f x g x f y )]()(2)()(2[)()(2122x g x g x f x f x g x f '+'⋅+=)()()()()()(22x g x f x g x g x f x f +'+'=.10. 设f (x )可导, 求下列函数y 的导数dxdy : (1) y =f (x 2);(2) y =f (sin 2x )+f (cos 2x ).解 (1) y '=f '(x 2)⋅(x 2)'= f '(x 2)⋅2x =2x ⋅f '(x 2).(2) y '=f '(sin 2x )⋅(sin 2x )'+f '(cos 2x )⋅(cos 2x )'= f '(sin 2x )⋅2sin x ⋅cos x +f '(cos 2x )⋅2cos x ⋅(-sin x ) =sin 2x [f '(sin 2x )- f '(cos 2x )]. 11. 求下列函数的导数: (1) y =ch(sh x ); (2) y =sh x ⋅e ch x ; (3) y =th(ln x ); (4) y =sh 3x +ch 2x ; (5) y =th(1-x 2); (6) y =arch(x 2+1); (7) y =arch(e 2x ); (8) y =arctan(th x );(9)xx y 2ch 21ch ln +=; (10))11(ch 2+-=x x y解 (1) y '=sh(sh x )⋅(sh x )'=sh(sh x )⋅ch x . (2) y '=ch x ⋅e ch x +sh x ⋅e ch x ⋅sh x =e ch x (ch x +sh 2x ) .(3))(ln ch 1)(ln )(ln ch 122x x x x y ⋅='⋅='. (4) y '=3sh 2x ⋅ch x +2ch x ⋅sh x =sh x ⋅ch x ⋅(3sh x +2) .(5))1(ch 2)1()1(ch 122222x x x x y --=-⋅-='.(6)222)1()1(112422++='+⋅++='x x x x x y . (7)12)(1)(142222-='⋅-='x xx x e e e e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11⋅+=⋅+='⋅+=' xx x 222sh 211sh ch 1+=+=.(9))ch (ch 21)ch (ch 124'⋅-'⋅='x xx x yx x xx x sh ch 2ch 21ch sh 4⋅⋅-=x x x x x x x x 323ch sh ch sh ch sh ch sh -⋅=-= x xxx x x 33332th ch sh ch )1ch (sh ==-⋅=. (10)'+-⋅+-⋅+-='+-⋅+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y)112(sh )1(2)1()1()1()112(sh 22+-⋅+=+--+⋅+-⋅=x x x x x x x x . 12. 求下列函数的导数: (1) y =e -x (x 2-2x +3); (2) y =sin 2x ⋅sin(x 2); (3)2)2(arctan x y =;(4)n x x y ln =;(5)t t t t ee e e y --+-=; (6)x y 1cos ln =;(7)x ey 1sin 2-=;(8)x x y +=;(9) 242arcsin x x x y -+=;(10)212arcsin t t y +=.解 (1) y '=-e -x (x 2-2x +3)+e -x (2x -2) =e -x (-x 2+4x -5).(2) y '=2sin x ⋅cos x ⋅sin(x 2)+sin 2x ⋅cos(x 2)⋅2x =sin2x ⋅sin(x 2)+2x ⋅sin 2x ⋅cos(x 2).(3)2arctan 44214112arctan 222x x x x y +=⋅+⋅='.(4)121ln 1ln 1+--=⋅-⋅='n n n n x x n x nx x x x y . (5)2222)1(4)())(())((+=+---++='-----tt t t t t t t t t t t e e e e e e e e e e e e y . (6)x x x x x x x y 1tan 1)1()1sin (1sec )1(cos 1sec 22=-⋅-⋅='⋅='. (7))1(1cos )1sin 2()1sin (21sin 21sin 22x xx exe y x x -⋅⋅-⋅='-⋅='--x e x x1s i n 222s i n 1-⋅⋅=. (8))211(21)(21x xx x x x x y +⋅+='+⋅+='xx x x +⋅+=412.(9)2arcsin )2(421214112arcsin 22x x x x x x y =-⋅-+⋅-⋅+='.(10)22222222)1()2(2)1(2)12(11)12()12(11t t t t tt t t t t y +⋅-+⋅⋅+-='+⋅+-=' )1(|1|)1(2)1()1(2)1(1222222222t t t t t t t +--=+-⋅-+=.总习题一1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)数列{x n }有界是数列{x n }收敛的________条件. 数列{x n }收敛是数列{x n }有界的________的条件.(2)f (x )在x 0的某一去心邻域内有界是)(lim 0x f x x →存在的________条件. )(lim 0x f x x →存在是f (x )在x 0的某一去心邻域内有界的________条件.(3) f (x )在x 0的某一去心邻域内无界是∞=→)(l i m 0x f x x 的________条件.∞=→)(lim 0x f x x 是f (x )在x 0的某一去心邻域内无界的________条件.(4)f (x )当x →x 0时的右极限f (x 0+)及左极限f (x 0-)都存在且相等是)(lim 0x f x x →存在的________条件.解 (1) 必要, 充分. (2) 必要, 充分. (3) 必要, 充分. (4) 充分必要.2. 选择以下题中给出的四个结论中一个正确的结论: 设f (x )=2x +3x -2, 则当x →0时, 有( ).(A )f (x )与x 是等价无穷小; (B )f (x )与x 同阶但非等价无穷小; (C )f (x )是比x 高阶的无穷小; (D )f (x )是比x 低阶的无穷小.解 因为x x xx x f x x x x x x x x 13lim 12lim 232lim )(lim0000-+-=-+=→→→→ 3ln 2ln )1ln(lim 3ln )1ln(lim 2ln 00+=+++=→→u u t t u t (令2x -1=t , 3x -1=u ) .所以f (x )与x 同阶但非等价无穷小, 故应选B .3. 设f (x )的定义域是[0, 1], 求下列函数的定义域: (1) f (e x ); (2) f (ln x ); (3) f (arctan x ); (4) f (cos x ).解 (1)由0≤e x ≤1得x ≤0, 即函数f (e x )的定义域为(-∞, 0]. (2) 由0≤ ln x ≤1得1≤x ≤e , 即函数f (ln x )的定义域为[1, e ].(3) 由0≤ arctan x ≤1得0≤x ≤tan 1, 即函数f (arctan x )的定义域为[0, tan 1]. (4) 由0≤ cos x ≤1得2222ππππ+≤≤-n x n (n =0, ±1, ±2, ⋅ ⋅ ⋅),即函数f (cos x )的定义域为[2,22ππππ+-n n ], (n =0, ±1, ±2, ⋅ ⋅ ⋅).4. 设⎩⎨⎧>≤=0 0 0)(x x x x f , ⎩⎨⎧>-≤=0 00)(2x x x x g , 求f [f (x )], g [g (x )], f [g (x )], g [f (x )].解 因为f (x )≥0, 所以f [f (x )]=f (x )⎩⎨⎧>≤=0 0 0x x x ;因为g (x )≤0, 所以g [g (x )]=0; 因为g (x )≤0, 所以f [g (x )]=0;因为f (x )≥0, 所以g [f (x )]=-f 2(x )⎩⎨⎧>-≤=0 002x x x .5. 利用y =sin x 的图形作出下列函数的图形:(1)y =|sin x |; (2)y =sin|x |; (3)2sin 2x y =.6. 把半径为R 的一圆形铁片, 自中心处剪去中心角为α的一扇形后围成一无底圆锥. 试将这圆锥的体积表为α的函数.解 设围成的圆锥的底半径为r , 高为h , 依题意有R (2π-α)=2πr , παπ2)2(-=R r ,παπαπαπ244)2(2222222-=--=-=R R R r R h . 圆锥的体积为παπαπαππ244)2(312222-⋅-⋅=RR V 22234)2(24a R -⋅-=πααππ(0<α<2π). 7. 根据函数极限的定义证明536lim 23=---→x x x x . 证明 对于任意给定的ε>0, 要使ε<----|536|2x x x , 只需|x -3|<ε, 取δ=ε, 当0<|x -3|<δ时, 就有|x -3|<ε, 即ε<----|536|2x x x , 所以536lim 23=---→x x x x .8. 求下列极限:(1)221)1(1lim -+-→x x x x ; (2))1(lim 2x x x x -++∞→;(3)1)1232(lim +∞→++x x x x ;(4)30sin tan lim x x x x -→; (5)x x x x x c b a 10)3(lim ++→(a >0, b >0, c >0); (6)x x x tan 2)(sin lim π→.解 (1)因为01)1(lim 221=+--→x x x x , 所以∞=-+-→221)1(1lim x x x x . (2))1()1)(1(lim )1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→211111lim 1lim22=++=++=+∞→+∞→x x x x x x .(3)2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x 21212)1221()1221(l i m++++=+∞→x x x x e x x x x x =++⋅++=∞→+∞→21212)1221(lim )1221(lim . (4)x x x x x x x x x x x x x cos )cos 1(sin lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→ 21)2(2lim cos 2sin 2sin lim320320=⋅=⋅=→→x x x x x x x x x (提示: 用等价无穷小换).(5)x c b a c b a xx x x xx xx x x x x x x x cb ac ba 3333010)331(lim )3(lim -++⋅-++→→-+++=++,因为e c b a x x x c b a xx x x =-+++-++→330)331(l i m , )111(lim 3133lim 00x c x b x a x c b a xx x x x x x x -+-+-=-++→→])1l n (1lim ln )1ln(1lim ln )1ln(1lim [ln 31000v c u b t a v u t +++++=→→→3ln )ln ln (ln 31abc c b a =++=, 所以 3ln 103)3(lim abc e c b a abc x x x x x ==++→. 提示: 求极限过程中作了变换a x -1=t , b x -1=u , c x -1=v . (6)xx x x xx x x tan )1(sin 1sin 12tan 2)]1(sin1[lim )(sin lim -⋅-→→-+=ππ, 因为e x xx =-+-→1s i n 12)]1(sin1[lim π,x x x x x x x c o s )1(s i n s i n l i mt a n )1(s i n l i m 22-=-→→ππ 01s i n c o s s i n lim )1(sin cos )1(sin sin lim 222=+-=+-=→→x x x x x x x x x ππ, 所以 1)(s i n lim 0tan 2==→e xx x π. 9. 设⎪⎩⎪⎨⎧≤+>=01sin )(2x x a x xx x f , 要使f (x )在(-∞, +∞)内连续, 应怎样选择数a ? 解 要使函数连续, 必须使函数在x =0处连续. 因为f (0)=a , a x a x f x x =+=--→→)(lim )(lim 200, 01sinlim )(lim 00==++→→xx x f x x , 所以当a =0时, f (x )在x =0处连续. 因此选取a =0时, f (x )在(-∞, +∞)内连续.。
洛比达法则

2
2
x→
2
6 cos 6 x = 3. = lim π x → 2 cos 2 x
2
0 二、 ⋅ ∞, ∞ − ∞,0 ,1 , ∞ 型未定式
0 0
∞
关键: 关键: 将其它类型未定式化为洛必达法
1.决的类型: 或 型. 0 ∞
1 1 步骤: 步骤 0 ⋅ ∞ ⇒ ⋅ ∞, 或 0 ⋅ ∞ ⇒ 0 ⋅ . 0 ∞ −2 x 例9 求 lim x e . ( 0 ⋅ ∞ )
ln(1 + x ) 例3 . (0) 求 lim 2 x →0 x 0 1 解 1 1 + x = lim 原式 = lim =∞ x →0 2 x x → 0 2(1 + x ) x
f ′( x ) 0 ∞ 如果 仍属 、 型,且 f ′( x )、 g ′( x ) 满 g' ( x ) 0 ∞ 足定理的条件, 续使用洛必达法则, 足定理的条件,可以继 续使用洛必达法则,即
6x 6x lim 注意: 注意: 式 中 的 x →1 6 x − 2 已不是未定式,不能 已不是未定式, 上
再对它应用洛必塔法则,否则会导致错误结果. 再对它应用洛必塔法则,否则会导致错误结果.
注意:在多次使用洛必塔法则时, 注意 在多次使用洛必塔法则时,一定要注 在多次使用洛必塔法则时 意验证是否满足条件. 意验证是否满足条件
1 tan x 6. lim ( ) ; x → +0 x
5. lim
x → +0
x
sin x
;
7. lim (
x → +∞
2
π
arctan x) x .
练习题答案
1.
1 ; 8
用洛必达法则求下列极限

习题3-21. 用洛必达法则求下列极限: (1)xx x )1ln(lim0+→;(2)xe e xx x sin lim 0-→-;(3)ax ax a x --→sin sin lim ;(4)x xx 5tan 3sin limπ→; (5)22)2(sin ln limx x x -→ππ;(6)nnmm ax a x a x --→lim;(7)xxx 2tan ln 7tan ln lim 0+→;(8)xxx 3tan tan lim2π→; (9)xarc x x cot )11ln(lim++∞→; (10)xx x x cos sec )1ln(lim 20-+→;(11)x x x 2cot lim 0→;(12)212lim x x e x →;(13)⎪⎭⎫ ⎝⎛---→1112lim 21x x x ;(14)x x xa)1(lim +∞→;(15)x x x sin 0lim +→;(16)x x xtan 0)1(lim +→.解 (1)111lim 111lim )1ln(lim000=+=+=+→→→x x xx x x x . (2)2cos lim sin lim 00=+=--→-→xe e x e e xx x x x x .(3)a xa x a x a x a x cos 1cos lim sin sin lim ==--→→.(4)535sec 53cos 3lim 5tan 3sin lim 2-==→→x x x x x x ππ. (5)812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x xx x x πππππ. (6)nm n m n m ax nn m m ax anm na mx nx mx a x a x -----→→===--1111limlim. (7)177sec 22sec lim 277tan 2tan lim 2722sec 2tan 177sec 7tan 1lim 2tan ln 7tan ln lim22002200=⋅⋅==⋅⋅⋅⋅=+→+→+→+→x x x x x xx x x x x x x x . (8))sin (cos 23)3sin (3cos 2lim31cos 3cos lim 3133sec sec lim 3tan tan lim 22222222x x x x x x x x x x x x x x -⋅-==⋅=→→→→ππππ 3sin 3sin 3lim cos 3cos lim22=---=-=→→x xx x x x ππ.(9)122lim 212lim 1lim 11)1(111lim cot arc )11ln(lim 2222==+=++=+-⋅+=++∞→+∞→+∞→+∞→+∞→x x x x x x x x x x x x x x x .(10)x x xx x x x x x x x 22022020cos 1limcos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→(注: cos x ⋅ln(1+x 2)~x 2) 1sin lim )sin (cos 22lim 00==--=→→xxx x x x x .(11)2122sec 1lim 2tan lim2cot lim 2000=⋅==→→→x x x x x x x x . (12)+∞====+∞→+∞→→→1lim lim 1lim lim 2101222t t t t x x xx e t e x e e x (注: 当x →0时, +∞→=21xt ).(13)2121lim 11lim 1112lim 12121-=-=--=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x . (14)因为)1ln(lim )1(lim x ax x x x exa +∞→∞→=+, 而 a a a x ax xx ax a x x a xa x x x x x x ==+=--⋅+=+=+∞→∞→∞→∞→∞→1lim lim 1)(11lim 1)1ln(lim )1(ln(lim 22,所以 a x ax x x x e exa ==++∞→∞→)1ln(lim )1(lim . .(15)因为x x x x x e x ln sin 0sin 0lim lim +→+→=,而 0cos sin lim cot csc 1lim csc ln limln sin lim 20000=-=⋅-==+→+→+→+→xx x x x x x x x x x x x x , 所以 1lim lim 0ln sin 0sin 0===+→+→e e x x x x x x .(16)因为x x x x e xln tan tan 0)1(lim -+→=,而 0sin lim csc 1lim cot ln limln tan lim 202000=-=-==+→+→+→+→xx x x x x x x x x x x , 所以 1lim )1(lim 0ln tan 0tan 0===-+→+→e e x x x x x x .2. 验证极限xxx x sin lim +∞→存在, 但不能用洛必达法则得出.解 1)sin 1(lim sin lim=+=+∞→∞→x x x x x x x , 极限x xx x sin lim+∞→是存在的. 但)cos 1(lim 1cos 1lim )()sin (limx xx x x x x x +=+=''+∞→∞→∞→不存在, 不能用洛必达法则. 3. 验证极限xx x x sin 1sinlim20→存在, 但不能用洛必达法则得出.解 0011sin sin limsin 1sinlim020=⋅=⋅=→→xx x x xx x x x , 极限x x x x sin 1sinlim20→是存在的.但xx x x x x x x x cos 1cos1sin 2lim )(sin )1sin (lim020-=''→→不存在, 不能用洛必达法则. 4. 讨论函数⎪⎪⎩⎪⎪⎨⎧≤>+=-0 0 ])1([)(2111x e x ex x f xx 在点x =0处的连续性. 解 21)0(-=e f , )0(lim )(lim 21210f eex f x x ===---→-→,因为 ]1)1ln(1[101100lim])1([lim )(lim -+-→-→+→=+=x xx x xxx x e ex x f , 而 21)1(21lim 2111lim )1ln(lim ]1)1ln(1[1lim 00200-=+-=-+=-+=-++→+→+→+→x x x x x x x x x x x x x , 所以 )0(lim])1([lim )(lim 21]1)1ln(1[101100f ee ex x f x xx x xxx x ===+=--+-→-→+→.因此f (x )在点x =0处连续.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 用洛必达法则求下列极限 (1) lim ln(1 x)
x0 x (2) lim e x ex
x0 sin x (3) lim sin x sin a
xa x a (4) lim sin 3x
x tan5x
(5) lim ln sin x x ( 2x)2
2
(6) lim xm am xa x n a n
(7) lim ln tan 7x x0 ln tan 2x
(8) lim tan x
x
tan 3x
2
ln(1 1 )
(9) lim
x
x arc cot x
(10) lim ln(1 x2 ) x0 sec x cos x
(11) lim x cot 2x
x0
1
(12) lim x 2e x2 x0
(13) lim x 1
2 x2 1
1 x 1
(14) lim (1 a ) x x x
(15) lim xsin x x0
(16) lim ( 1 )tan x
x0 x
1
解 (1) lim ln(1 x) lim 1 x lim 1 1
x0 x
x0 1
x0 1 x
(2) lim e x ex lim e x ex 2 x0 sin x x0 cos x
(3) lim sin x sin a lim cos x cos a
xa x a
xa 1
(4) lim sin 3x lim 3cos 3x 3 x tan 5x x 5sec2 5x 5
(5) lim ln sin x lim
cot x
1 lim csc2 x 1
x ( 2x)2 x 2( 2x) (2) 4 x 2
8
2
2
2
(6) lim x m a m lim mxm1 mxm1 m a mn xa x n a n xa nx n1 na n1 n
(7) lim
ln tan 7x
lim
1 tan 7x
sec2
7x 7
7
lim
tan 2x 7
lim
sec2 2x 2 1
x0 ln tan 2x x0 1 sec2 2x 2 2 x0 tan 7x 2 x0 sec2 7x 7
tan 2x
(8) lim tan x lim sec2 x 1 lim cos2 3x 1 lim 2 cos 3x( sin 3x) 3
x tan 3x x sec2 3x 3 3 x cos2 x 3 x 2 cos x( sin x)
2
2
2
2
lim cos 3x lim 3sin 3x 3
x cos x
x sin x
2
2
1 ( 1 )
ln(1 1 )
1 1
(9) lim
x lim x
x2 lim 1 x2 lim 2x lim 2 1
x arc cot x x
1
x x x 2 x 1 2x x 2
1 x2
(10) lim ln(1 x2 ) lim cos x ln(1 x2 ) lim x2 (注
x0 sec x cos x x0 1 cos2 x
x0 1 cos2 x
lim
2x
lim x 1
x0 2 cos x( sin x) x0 sin x
cosx ln(1 x2)~x2)
(11) lim x cot 2x lim x lim 1 1
x 0
x0 tan 2x x0 sec2 2x 2 2
(12)
1
1
lim x 2e x2
e x2 lim
lim
et
lim
et
x0
x0 1 t t t 1
x2
(注
当 x0 时
t 1 x2
(13)
lim x 1
2 x2 1
x
1 1
lim
x1
1 x x2 1
lim
x1
1 2x
1 2
(14)因为
lim (1
a)x
lim
x ln(1 a )
ex
x
x
x
1 ( a )
而
lim
x(ln(1
a)
lim
ln(1
a) x
lim
1
a x
x2 lim ax lim a a
x
x x 1
x
1
x x a x 1
x
x2
所以
lim (1
a)x
lim
x ln(1 a )
e
x
ea
x
x
x
(15)因为 lim xsin x lim esin x ln x
x0
x0
1
而
lim sin x ln x lim ln x lim
x
lim sin 2 x 0
x 0
x0 csc x x0 csc x cot x x0 x cos x
所以
lim xsin x lim esin xln x e0 1
x 0
x0
(16)因为 lim ( 1 )tan x etan x ln x
x0 x
1
而
lim tan x ln x lim ln x lim x lim sin 2 x 0
x 0
x0 cot x x0 csc2 x
x0 x
所以
lim(1)tanx limetanxln x e0 1
x x 0
x0
2 验证极限 lim x sin x 存在 但不能用洛必达法则得出 x x
解 lim x sin x lim (1 sin x) 1
x x
x
x
极限 lim x sin x 是存在的 x x
但 lim (x sin x) lim 1 cos x lim (1 cos x) 不存在
x (x)
x 1
x
不能用洛必达法则
x 2 sin 1
3 验证极限 lim
x 存在
x0 sin x
但不能用洛必达法则得出
x2 sin 1
解 lim
x lim
x
x sin 1 1 0 0
x0 sin x x0 sin x
x
x 2 sin 1
极限 lim
x 是存在的
x0 sin x
(x2 sin 1 )
2x sin 1 cos 1
但 lim
x lim
x
x 不存在
x0 (sin x) x0
cos x
不能用洛必达法则
4
讨论函数
f
(x)
1
[ (1 x) x e
1
]x
x 0 在点 x 0 处的连续性
1
e2
x0
解
1
f (0) e 2
1
1
lim f (x) lim e 2 e 2 f (0)
x0
x0
1
因为
lim
f (x)
lim
[(1
x)
x
1
]x
lim
1[ 1 ln(1 x)1]
ex x
x0
x0 e
x0
而
lim
1 [1 ln(1 x) 1]
lim
ln(1 x) x
lim
1 1 x
1
lim
1 1
x0 x x
x0
x2
x0 2x
x0 2(1 x) 2
1
所以
lim
f (x)
lim
[(1
x)
x
1
]x
1[ 1 ln(1x)1]
lim e x x
1
e 2
f (0)
x0
x0 e
x0
因此 f(x)在点 x 0 处连续
。