勾股定理(讲义)
勾股定理数学优秀ppt课件

在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
《勾股定理》课件

A.如果∠C- ∠B= ∠A,则△ABC是直角三角形.
解析:因为∠C- ∠B=∠A,所以 ∠C=∠B+∠A.
因为∠C+∠B+∠A=180〫,所以 ∠C+∠C=180〫.
解得∠C=90〫,所以△ABC是直角三角形.
B.如果2 + 2 = 2 ,则△ABC是直角三角形,且
《勾股定理》
知识梳理
如果三角形的三边长a, b ,
勾
股
定
理
的
逆
定
理
概念
2
2
2
c 满足 + = ,那么这
个三角形是直角三角形.
找最长边
如何判断
直角三角形
两短边的平方和
与最长边的平方
判断等量关系
互逆命题
勾股Βιβλιοθήκη 定理的逆
定
理
命题
定理
互逆定理
应用
数形结合,实际问题转化为
直角三角形
勾股数的判断
1.互逆命题和互逆定理
重点解析 重难点4:勾股数
判断下列各组数是不是勾股数:
(1)21,72,75.
(2)2,3,4.
满足什么条件?
(3)0.5,1.2,1.3.
解:(1)因为212 + 722 = 5625 = 752 ,所以是勾股数.
(2)因为22 + 32 = 13 ≠ 42 ,所以不是勾股数.
(3)因为0.5,1.2,1.3不是正整数,所以不是勾股数.
所以 2 − 10 + 25 + ሺ 2 − 26 +
169ሻ + ሺ 2 − 24 + 144ሻ2 =0.
勾股定理讲义

第十八章 勾股定理18.1 勾股定理知识点1 勾股定理的内容定理:果直角三角形两直角边分别为a 、b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方.解读:(1)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形.(2)注意区分直角边和斜边.(3)勾股定理揭示了直角三角形三边的平方关系.(4)我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦(如图所示) 即:222+勾股=弦(5)应用:②已知直角三角形的两边,求第三边;③已知直角三角形的一边,确定另两边的关系;③已知直角三角形的一边与另两边的关系,求另两边;④推导线段之间的平方关系.知识点2 验证勾股定理方法:勾股定理的验证方法多达上百种,而且很多巧妙的验证方法令人赞叹不已,但大多数采用拼图的方法.善于变换角度看问题,是这种方法验证勾股定理的技巧.解读:用拼图的方法验证勾股定理的思路是:(1)图形经过制补拼接后,只要没有重叠,没有空隙,面积不会改变.(2)根据同一种图形面积的不同表示方法列出等式,推导出勾股定理.(3)运用:如图①所示,24,S S S ==+大正方形三角形小正方形边长即221()4.2a b ab c +=⨯+ 化简,得222.a b c +=如图②所示,24S S S +大正方形三角形小正方形=边长=,即2214().2c ab b a =⨯+- 化简,得222a b c +=一、选择题1.若某等腰直角三角形的斜边长为12c m,则它的面积是( )A.48c m 2B.72c m 2C.24c m 2D.36c m 22.如图所示,在△ABC 中,若∠C =90,∠B =45,则a :b :c =( )A.1:1:2B.1:1:2C.1:2:1D.1:2:13.在Rt △ABC 中,斜边AB=1,则AB 2+BC 2+AC 2的值是( )A.2B.4C.6D.84.若一个直角三角形的两边长分别为6和8.则下列说法正确的是( )A.第三边一定为10B.三角形的周长为25C.三角形的面积为48D.第三边可能为105.如图所示是一段楼梯,高BC 是3m,斜边AB 是5m,如果在楼梯上铺地毯,那么地毯至少需要( )A.5mB.6mC.7mD.8m6.如图所示,若∠C =90,AC =12,BC =5,AM =AC ,BN =BC ,则MN 的长是( )A.2B.2.6C.3D.47.如图所示,分别以Rt △ABC 的三边AB 、BC 、CA 为直径向外作半圆,设斜边AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定8.在△ABC 中,∠A =90,则下列各式中不成立的是( )A.222BC AB AC =+B.222AB AC BC =+ C.22AB BC AC -- D.222AC BC AB =- 9.如图所示,三个正方形中有两个的面积分别为S 1=169,S 2=144,则S 3等于( )A.50B.25C.100D.3010.如图所示,强台风“麦莎”过后,一棵大树在离地面3.6米处折断倒下,倒下部分与地面的接舢点离树的底部为4.8米,则该树的原高度为( )A.6米B.8.4米C.6.8米D.9.6米11.在某直角三角形中,若它的斜边长为5 m,周长为12 m,则它的面积是( )A.12m 2B.6m 2C.8m 2D.9m 212.若△ABC 中,12::::1,33A B C ∠∠∠=那么这个三角形是( ) A.锐角三角形 B.钝角三角形C.直角三角形D.等腰三角形13.已知一个直角三角形,两条直角边分别为3和4.则下列说法正确的是( )A.斜边为25B.三角形的周长为24C.斜边为5D.三角形的面积为2014.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的面积为( )A.84B.24C.24或84D.30或3515.在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,且c +a =2b ,,2b c a -=则△ABC 的形状是( )A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形16.若一个直角三角形的边长是三个连续自然数,那么这三边的长为( )A.1,2,3B.2,3,4C.3,4,5D.4,5,617.若∠XOY =45°,在角的内部有一点P ,它关于OX 、OY 的对称点分别为M 、N ,那么△MON 一定是( )A.正三角形B.等腰三角形C.直角三角形D.等腰直角三角形18.在某直角三角形中,若它的斜边上的中线是2.5cm,周长是l2cm,则其面积为 ( )A.12cm 2B.6cm 2C.8cm 2D.10cm 219.若小明同学先向北行进4千米,然后向东行进4千米,再向北行进2千米,最后又向东行进4千米,此时小明离出发点( )A.6千米B.8千米C.10千米D.12千米20.如图所示,有一块直角三角形纸片,两直角边AC =6cm,BC =8cm.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A.2 cmB.3cmC.4 cmD.5cm二、填空题1.如图所示,阴影部分是一个正方形,则此正方形的面积是________cm2.2.如图所示,在四边形ABCD 中,∠B=∠ACD =90°,BC =6,AB =8,AD =26,则△ACD的面积是_________.3.如图所示,台风将旗杆在B 处折断,使杆顶落在距离杆底8米处的A 点.已知旗杆总长16米,问:旗杆是在距底部_________米处折断的.4.如图所示,折叠长方形的一边AD,使点D落在BC边上的点F处,若AB=8cm,BC=10cm,则EC=__________cm.5.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长是7cm,则正方形A、B、C、D的面积的和是________cm2.6.在△ABC中,若AB=3,BC=4,第三边AC的长_________求出.(填“能”或“不能”)7.如图所示是由边长为1m的正方形地砖铺设的地面示意图.小明沿图中所示的折线从A →B→C所走的路程为__________m.(结果保留根号)8.在Rt△ABC中,∠C=90°,回答下列问题:(1)若a=12,b=16,则c=______;(2)若a=12,c=13,则b=_______;(3)若a:b=3:4,c=10,则a=______.9.看图求出未知边.(1)a=________.a=_______,b=________.10.已知直角三角形ABC中,两直角边AB、BC分别长6cm、8cm,则斜边AC上的高为_______cm.11.如图所示,则阴影部分的面积:____________.(阴影部分为正方形)12.如图所示,在矩形纸片ABCD中,AD=4cm,AB=10cm,接如图所示方式折叠,使点B与点D重合,折痕为EF,则DE=________cm.13.等腰三角形底边上的高是8,周长是32,则三角形的面积为________.14.某生态环境调查小组的甲组同学从学校出发,以15km/h的速度向东南方向前进;同时乙组同学也由学校出发,以20km/h的速度向东北方向前进,经过2h,两组各自到达目的地A、B,则A、B两地间相距________km.15.在△ABC中,∠C=90°,△ABC的周长为60cm,BC:CA=5:12,则BC=______cm,CA==_______cm,AB=_______cm.16.如图所示,在△ABC中,AB=AC,AD是BC边上的中线,若AB=17,BC=16,那么AD=______.17.已知三角形三内角度数之比为1:2:3,它的最大边长为6cm,则最小边长为______.18.在△ABC中,∠C=90°AB=13,BC=5,则AC=________.19.直角三角形的两条直角边长分别为5cm,12cm,则斜边上的高为_______cm.20.如图所示,阴影部分是一个正方形,如果正方形的面积是100cm2,则a的长为______cm.21.若直角三角形两直角边之比为3:4,且斜边的长为20cm,则斜边上的高为________.三、解答题1.(1)如图①所示,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,试证明S1=S2+S3.(2)加固②所示,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(3)如图③所示,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明.2.如图所示,在Rt△ACB中,∠C=90°,AM是中线,MN⊥AB,垂足为点N,试说明AN2-BN2=AC2.3.如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AC=3,AB=5.求AD的长.4.(1)如图①所示,在Rt△ABC中,AC=5,BC=12,求AB的长.(2)如图②所示,在Rt△ABC中,AB=25,AC=20,求BC的长.5.一场台风过后,一棵小树被从距地面1.5 m处折断,树头距树的根部2m,你能判断出这棵小树原来有多高吗?6.在一次缉毒行动中,我省警方获得可靠消息:一辆运毒车将路经5号公路,但由于车上装有爆炸装置,督员无法靠近,只能利用远程射击的办法,为了减少伤亡,警方选中一距离公路120m的隐蔽处P点,射程为200m,准备行动,此时,运毒车与P点的水平距离为300m(如图所示),那么警方可在运毒车再前进多少米之后对其进行射击?7.如图所示,有一个长方形的场院ABCD,其中AB=9m,AD=12m,在点B处竖直立着一根电线杆,在电线杆上距地面8m的E处有一盏电灯.点D到灯E的距离是多少?8.如图所示,在树CD上10m高的B处有两只松鼠,其中一只松鼠爬到C点后又爬到离树20m的池塘A处,另一只松鼠爬到树顶后直接跃向池塘A处,若两只松鼠所经过的距离相等,试问这棵树有多高?(DA间实为抛物线,现假设为直线)9.如图所示,在5×5的正方形网格中,每个小正方形的边长都是1,请在所给网格中按下列要求画图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为22(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数.10.现有四块直角边为a、b,斜边为c的直角三角形的纸板,请你从中取出若干块拼图,说明勾股定理(需要画出所拼的图形).11.如图所示,在△ABC中,AB=AC=20,BC=32,∠DAC=90°,求BD.12.某住宅小区的形状是直角三角形,如图所示,直角边AC、BC的长度分别为600m、800m,DE为小区的大门,大门宽5m,小区的周边用冬青围成了绿化带,问绿化带有多长?13.如图所示,一逃犯从A地正北6km的B地乘车向B地正东8km的C地逃跑,我公安干警在A地闻讯,同时从A地沿直路直接向C地追击.若逃犯速度为80km/h,我公安干警的速度为多少时,恰好在C地将逃犯截住?14.如图所示,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在离A点多千米处?15.如图所示,某人在B处通过平面镄看见在B正上方3m处的A物体已知物体A到平面镜的距离为2m,问B点到物体A的像A'的距离是多少?(注:A'O=AO)16.为了测量一个球的直径,今有若干根木棒可供使用,通过实验发现,若将球放在桌面上,再将一根长6cm的木棒垂直桌面而立(如图所示).某一时刻,在斜阳的照射下,球与木棒的影长都是8cm,求球的直径.17.为了预防禽流感,张大爷想把自家的鸡用栅栏圈起来,已知栅栏为矩形,且其面积为48m2,对角线长为10m,那么张大爷家的鸡栅栏的周长为多少?18.如图所示,美伊战争期间,美军运输车队计划沿由东向西延伸的L公路向巴格达前线供应军用物资,一支先头小分队奉总部之命沿公路侦察敌情,当行至A地时,测得一伊军炮兵阵地P的方位是北偏西30°,行至B地时测得P地方位是北偏东30°,继续前进到C地,测得P 地方位是北偏东60°,在C地俘虏一名伊军士兵,得知C、B两地之间的距离不会超过10千米,并获得可靠情报:P地伊方炮火的射程半径是9千米.根据以上数据,请问美侦察兵能否判断运输车队沿公路通行的安全性.19.如图所示,已知∠BAC,AB=3,AC=4.若∠A是不断变化的角,问:(1)当∠A为锐角时,BC的取值情况;(2)当∠A为直角时,BC的取值情况;(3)当∠A为钝角时,BC的取值情况;(4)当∠A变为平角时,BC的取值情况.20.如图所示,在长方形纸片ABCD中,AB=3cm,BC=4cm,现将A、C重合,使纸片折叠压平,设折痕为EF,试确定重叠部分△AEF的面积.21.图①是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c,图②是以c为直角边的等腰直角三角形,请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,写出它是什么图形;(2)用这个图形证明勾股定理;(3)假设图①中的直角三角形有若干个,你能运用图①中所给的直角三角形拼另一种能证明勾股定埋的图形吗?请画出拼后的示意图.(无需证明)22.如图所示,两个村子A、B在河CD的同侧,A、B两村到河边的距离分别为AC=1km,BD =3km,又CD=3km.现需在河边CD上建造一水厂向A、B两村送水,铺设水管的工程费用约为每千米20 000元,请在河边CD上选择水厂位置O,使铺设水管的费用最省,并求出,铺设水管的费用,假如你是工程师,帮助A、B两村设计一下好吗?。
《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
勾股定理ppt课件

弦
勾
股
那么勾、股、弦之间有什么关系呢?这 就是我们今天要探究的问题。
推进新课
知识点 1 勾股定理的发现
毕达哥拉斯在朋友家里做客 时,从砖铺成的地面中发现了直 角三角形三边的数量关系.
观察
你从图片中发现了什么?
思考 三个正方形的面积有什么关系?
发现
两个小正方形的面积之和等于大正方形的面积.
思考
等腰直角三角形三条边长度 之间有怎样的特殊关系?
课堂小结
勾股定理 如果直角三角形两直角边长分别为a ,b,斜边长为c,那么a2+b2=c2.
课后作业
1.课后练习1、2; 2.完成练习册本课时的习题。
第十七章 勾股定理
17.1 勾股定理
第1课时 勾股定理
学习目标 1.了解勾股定理的文化背景,了解常见的利用 拼图验证勾股定理的方法. 2.知道勾股定理的内容. 教学重点:掌握勾股定理并运用勾股定理解决 简单的实际问题。 教学难点:勾股定理的证明。
新课导入
提问 你知道在古代,人们
如何称呼直角三角形的三 边吗?
拓展延伸
如图,已知长方形ABCD沿直线BD折叠,使点C 落在C′处,BC′交AD于E,AD=8,AB=4,求DE的长. 解:∵∠A=∠C′=∠C=90°, ∠AEB=∠C′ED,AB=C′D, ∴△AEB≌△C′ED.∴AE=C′E, ∴C′E=AD-ED=8-ED.又在△EC′D中,
ED2 CE2 CD2 . ED2 8 ED2 42,解得ED 5.
赵爽弦图
思考 你是如何理解的?你会证明吗?
证明
c
a
b
bbc
a S=a2+b2
a
小正方形的面b积= (b-a)a2 =c2-4×1 ab
《勾股定理》讲义

一、知识要点:1、勾股定理勾股定理:2、勾股定理的逆定理勾股定理的逆定理:该定理在应用时,要注意如下几个要点:①已知的条件:三角形的三条边长度.②满足的条件:(最大边)2=(最小边)2+(中间边)2.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。
3、勾股数满足a 2 + b 2= c 2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
4、最短距离问题:主要运用的依据是 。
二、 知识结构:三、考点剖析考点一:利用勾股定理求面积例1:求:(1) 阴影部分是正方形; (2) 阴影部分是长方形; (3) 阴影部分是半圆.直角三角形 勾股定理应用判定直角三角形的一种方法【强化练习】1、(易错题)已知直角三角形的两边长为3、2,则另一条边长的平方是 。
2、已知Rt △ABC 三边的长分别是x ,x+1和5,则△ABC 的周长= ,面积= 。
考点二:应用勾股定理求边长例2:如图,已知Rt △ABC 的两直角边AC=5,BC=12,D 是BC 上一点,当AD 是∠A 的平分线时,则CD 为?考点三、利用列方程求线段的长(方程思想)例3:折叠矩形ABCD 的一边AD,点D 落在BC 边上的点F 处,已知AB=8CM,BC=10CM,求CF 和EC 。
【强化练习】 如图,四边形ABCD 中,DC//AB ,BC=1,AB=AC=AD=2,则BD 的长为( )A 、14B 、15C 、23D 、32考点四:勾股定理在几何图形中的应用例4、图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的。
在Rt △ABC中,若直角边AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是______________。
(精选幻灯片)勾股定理ppt课件

“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
《勾股定理》数学教学PPT课件(10篇)

=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理一、知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 3.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c ,b =,a =②知道直角三角形一边,可得另外两边之间的数量关系 二、题型题型一:直接考查勾股定理例1. 在ABC ∆中,90C ∠=︒⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长解:题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为21EDCB AAB CD E例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m三、勾股定理的逆定理知识归纳 1. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。
2. 常用的平方数112=_______,122=_______,132=_______,142=_______,152=_______,162=_______,172=_______,182=_______,192=_______,202=_______,252=_______.注意.如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。
勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; 3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 4判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
(3)如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)注:用勾股定理逆定理判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)5.直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形 例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CBA练习1.已知一个Rt △的两边长分别为3和4,则第三边长是2.如图,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的母线L 是________3.直角三角形两直角边长分别为5 和12,则斜边上的高为________.4. 已知等腰三角形的腰长是6cm ,底边长是8cm ,那么这个等腰三角形的面积是 . 5.如图所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8,正方形A 的面积是10,B 的面积是11,C 的面积是13,则D 的面积之为_______. 6.如图,C 、D 分别是一个湖的南、北两端A 和B 正东方向的两个村庄,CD = 6 km ,且D 位于C 的北偏东30°方向上,则AB =______km .7. 如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行___________米.(第2题)第13题第6题 第9题128.如图,直线 L 过正方形 ABCD 的顶点 B , 点A 、C 到直线 L 的距离分别是 1 和 2 , 则正方形的ABCD 的面积是 .9. 如图是一个长方体长4、宽3、高12,则图中阴影部分的三角形的周长为__________。
10.某校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30,90BCA ∠=,台阶的高BC 为2米,那么请你帮忙算一算需要 米长的地毯恰好能铺好台阶.(结果精确到0.1m ,取2 1.414=3 1.732=)11.有一圆柱体高为10cm ,底面圆的半径为4cm ,AA 1、BB 1为相对的两条母线。
在AA 1上有一个蜘蛛Q ,QA =3cm ;在BB 1上有一只苍蝇P ,PB 1=2cm 。
蜘蛛沿圆柱体侧面爬到P 点吃苍蝇,最短的路径是 cm 。
(结果用带π和根号的式子表示)12.如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n (n 为正整数),那么第8个正方形的面积8S =_______________ 二、看准了再选13.“数轴上的点并不都表示有理数,如图中数轴上的点P 5,这种利用图形直观说明问题的方式体现的数学思想方法叫( )A.代入法 B.换元法 C.数形结合的思想方法 D.分类讨论的思想方法30B(第10题图)A 1 A 1BQP 第11题图ABC DEF GHIJ2524cm 32cm 第17题12-3-210-13A14.下列几组数中不能作为直角三角形三边长度的是 ( ) A .7,24,25a b c === B . 1.5,2, 2.5a b c === C .25,2,34a b c ===D .15,8,17a b c ===15.两只小鼹鼠在地下打洞,一只朝正东方挖,每分钟挖8cm ,另一只朝正南方挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A. 50cmB. 100cmC. 140cmD. 80cm16.如图一个圆桶儿,底面直径为24cm,高为32cm,则桶内能容下的最长的木棒为( ) A. 20cm B. 50cm C. 40cm D. 45cm17.若等边△ABC 的边长为4cm ,那么△ABC 的面积为( ).A .32B .32C .32D .8cm 218.如图(2),在直角坐标系中,△OBC 的顶点O (0,0),B (-6,0),且∠OCB=90°,•OC=B则点C 关于y 轴对称的点的坐标是( ) A .(3,3) B.(-3,3) C.(-3,-3) D.(2,2) 19.如图所示:数轴上点A 所表示的数为a ,则a 的值是( )A 5.55520.直角三角形的周长为24,斜边长为10,则其面积为( ).A .96B .49C .24D .4821.老李家有一块草坪如图所示.已知AB =3米,BC =4米,CD =12米,DA =13米,且AB ⊥BC ,这块草坪的面积是( )A .24米2. B.36米2. C.48米2. D.72米2.22.在一块平地上,李大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的李大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到李大爷的房子吗?请你通过计算、分析后给出正确的回答.( )A.一定不会 B.可能会 C.一定会 D.以上答案都不对 23.如图,在直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在A 1处,已知OA =3,AB =1,则点A 1的坐标是( )。
y A 1 AB C O x 第23题A 、(2323,) B 、(323,) C 、(2323,) D 、(2321,)三、想好了再规范的写24、已知:在四边形ABCD 中,AB=3cm, BC=5cm ,CD=32,AD=2cm,AC ⊥AB 求四边形ABCD 的面积25、某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?感谢您的支持与配合,我们会努力把内容做得更好!DCADC = 3.52 cm AD = 2.03 cmBC = 5.08 cmCA = 4.11 cmAB = 3.00 cm。