常见以太网帧结构详解

合集下载

第02章 Ethernet帧结构解析-2

第02章 Ethernet帧结构解析-2

8 字节
7 字节 10101010101010 1 字节
MAC 帧
物理层
… 10101010101010101011
帧开始 定界符
计算机硬件基础教学中心
前同步码
Copyright © by LIPENG All rights reserved.
帧结构解析
1、以太网的MAC层
以太网 V2 的格式
局域网介绍
2、局域网概述
局域网技术发展的过程
Copyright © by LIPENG All rights reserved.
计算机硬件基础教学中心
局域网介绍
2、局域网概述
最早的Ethernet原理设计图
Copyright © by LIPENG All rights reserved.
计算机硬件基础教学中心
局域网介绍
1、IEEE 802 标准
ISO/OSI-RM
7 6 5 4 3 2 1 应用层 表示层 会话层 传输层 网络层 数据 链路层 物理层
UTP 同轴电缆 光缆
Copyright © by LIPENG All rights reserved.
802.10 网络安全
802.1 802.2
帧开始 定界符
计算机硬件基础教学中心
前同步码
Copyright © by LIPENG All rights reserved.
帧结构解析
1、以太网的MAC层
以太网 V2 的格式
IP 数据报 字节 以太网 V2 MAC 帧 插入 6 目的地址 6 源地址 2 类型 数 46 ~ 1500 据 4 FCS MAC 层 IP 层
• 随机接入:所有的用户可随机地发送信息。 • 受控接入:如多点线路探询(polling),或轮询。

以太网帧结构详解

以太网帧结构详解

以太网帧结构详解分类:计算机网络知识2011-10-25 20:28 3165人阅读评论(0) 收藏举报byte网络工作serviceaccess扩展1 以太网相关背景以太网这个术语通常是指由DEC,Intel和Xerox公司在1982年联合公布的一个标准,它是当今TCP/IP采用的主要的局域网技术,它采用一种称作CSMA/CD 的媒体接入方法。

几年后,IEEE802委员会公布了一个稍有不同的标准集,其中802.3针对整个CSMA/CD网络,802.4针对令牌总线网络,802.5针对令牌环网络;此三种帧的通用部分由802.2标准来定义,也就是我们熟悉的802网络共有的逻辑链路控制(LLC)。

由于目前CSMA/CD的媒体接入方式占主流,因此本文仅对以太网和IEEE 802.3的帧格式作详细的分析。

在TCP/IP世界中,以太网IP数据报文的封装在RFC 894中定义,IEEE802.3网络的IP数据报文封装在RFC 1042中定义。

标准规定:1)主机必须能发送和接收采用RFC 894(以太网)封装格式的分组;2)主机应该能接收RFC 1042(IEEE 802.3)封装格式的分组;3)主机可以发送采用RFC 1042(IEEE 802.3)封装格式的分组。

如果主机能同时发送两种类型的分组数据,那么发送的分组必须是可以设置的,而且默认条件下必须是RFC 894(以太网)。

最常使用的封装格式是RFC 894定义的格式,俗称Ethernet II或者Ethernet DIX。

下面,我们就以Ethernet II称呼RFC 894定义的以太帧,以IEEE802.3称呼RFC 1042定义的以太帧。

2 帧格式Ethernet II和IEEE802.3的帧格式分别如下。

Ethernet II帧格式:----------------------------------------------------------------------------------------------| 前序| 目的地址| 源地址| 类型| 数据 |FCS |---------------------------------------------------------------------------------------------- | 8 byte | 6 byte | 6 byte | 2 byte | 46~1500 byte | 4 byte|IEEE802.3一般帧格式--------------------------------------------------------------------------------------------------------------| 前序| 帧起始定界符| 目的地址| 源地址| 长度| 数据| FCS |------------------------------------------------------------------------------------------------------------| 7 byte | 1 byte | 2/6 byte | 2/6 byte | 2 byte | 46~1500 byte | 4 byte |Ethernet II和IEEE802.3的帧格式比较类似,主要的不同点在于前者定义的2字节的类型,而后者定义的是2字节的长度;所幸的是,后者定义的有效长度值与前者定义的有效类型值无一相同,这样就容易区分两种帧格式了。

以太网帧

以太网帧

分析以太网数据帧的构成2009-06-15 11:221.以太网的报文格式如下2.MAC地址的作用:不同物理主机(唯一的MAC标识)之间的通信地址,标识以太网上的每台主机,需要给每台主机上的网络适配器(网络接口卡)分配一个唯一的通信地址。

3.MAC广播地址的作用:48位全1的地址为MAC广播地址,其作用使主机发送一个ARP或其它广播协议包时同一网内的其它主机均能收到此包.4.LLC帧报文的格式如下;5.仿真编辑器和协议分析器的使用方法:用了很多次基本结构已了解.以太网数据帧的构成抓取一个原始IP包捕获一个数据包并分析数据链路层的帧结构No. Time Source Destination Protocol Info2350 703.174591 172.16.77.15 172.16.77.6 IP Fragmented IP protocol (proto=ICMP 0x01, off=1480) [Reassembled in #2393]Frame 2350 (1514 bytes on wire, 1514 bytes captured)Arrival Time: Jun 15, 2009 09:20:09.379091000[Time delta from previous captured frame: 0.000021000 seconds][Time delta from previous displayed frame: 0.000021000 seconds][Time since reference or first frame: 703.174591000 seconds]Frame Number: 2350Frame Length: 1514 bytesCapture Length: 1514 bytes[Frame is marked: False][Protocols in frame: eth:ip:data]分析数据链路层的帧结构Ethernet II, Src: AsustekC_97:2a:ee (厂家名_后3位16进制数为MAC)(00:13:d4:97:2a:ee)(源MAC,前6位16进制数代表网络硬件制造商的编号, 后3位16进制数代表该制造商所制造的某个网络产品(如网卡)的系列号), Dst: AsustekC_97:2b:17 (00:13:d4:97:2b:17)(目标MAC)Destination: AsustekC_97:2b:17 (00:13:d4:97:2b:17)目标MACAddress: AsustekC_97:2b:17 (00:13:d4:97:2b:17).... ...0 .... .... .... .... = IG bit: Individual address (unicast) 无效单播地址.... ..0. .... .... .... .... = LG bit: Globally unique address (factory default)全局唯一地址(厂家默认)Source: AsustekC_97:2a:ee (00:13:d4:97:2a:ee)源MACAddress: AsustekC_97:2a:ee (00:13:d4:97:2a:ee).... ...0 .... .... .... .... = IG bit: Individual address (unicast) 无效单播地址.... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) 全局唯一地址(厂家默认)Type: IP (0x0800)类型IPInternet Protocol, Src: 172.16.77.15 (172.16.77.15), Dst: 172.16.77.6 (172.16.77.6) Version: 4Header length: 20 bytesDifferentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)0000 00.. = Differentiated Services Codepoint: Default (0x00).... ..0. = ECN-Capable Transport (ECT): 0.... ...0 = ECN-CE: 0Total Length: 1500Identification: 0x490d (18701)Flags: 0x02 (More Fragments)0... = Reserved bit: Not set.0.. = Don't fragment: Not set..1. = More fragments: SetFragment offset: 1480Ti me to live: 128Protocol: ICMP (0x01)Header checksum: 0xd924 [correct][Good: True][Bad : False]Source: 172.16.77.15 (172.16.77.15)Destination: 172.16.77.6 (172.16.77.6)Reassembled IP in frame: 2393以太网帧格式2009-06-15 11:06目前,有四种不同格式的以太网帧在使用,它们分别是:●Ethernet II即DIX 2.0:Xerox与DEC、Intel在1982年制定的以太网标准帧格式。

以太网IEEE 802.3帧的结构

以太网IEEE 802.3帧的结构

以太网/IEEE 802.3帧的结构下图所示为以太网/IEEE 802.3帧的基本组成。

如图所示,以太网和IEEE 802.3帧的基本结构如下:前导码(Preamble):由0、1间隔代码组成,可以通知目标站作好接收准备。

IEEE 802.3帧的前导码占用7个字节,紧随其后的是长度为1个字节的帧首定界符(SOF)。

以太网帧把SOF包含在了前导码当中,因此,前导码的长度扩大为8个字节。

帧首定界符(SOF:Start-of-Frame Delimiter):IEEE 802.3帧中的定界字节,以两个连续的代码1结尾,表示一帧实际开始。

目标和源地址(DA、SA):表示发送和接收帧的工作站的地址,各占据6个字节。

其中,目标地址可以是单址,也可以是多点传送或广播地址。

类型(以太网):占用2个字节,指定接收数据的高层协议。

长度L(IEEE 802.3):表示紧随其后的以字节为单位的数据段的长度。

数据L(以太网):在经过物理层和逻辑链路层的处理之后,包含在帧中的数据将被传递给在类型段中指定的高层协议。

虽然以太网版本2中并没有明确作出补齐规定,但是以太网帧中数据段的长度最小应当不低于46个字节。

数据(IEEE 802.3:LLCPDU逻辑链路层协议数据单元):IEEE 802.3帧在数据段中对接收数据的上层协议进行规定。

如果数据段长度过小,使帧的总长度无法达到64个字节的最小值,那么相应软件将会自动填充数据段,以确保整个帧的长度不低于64个字节。

LLCPDU——它的范围处在46字节至1500字节之间。

最小LLCPDU长度46字节是一个限制,目的是要求局域网上所有的站点都能检测到该帧,即保证网络工作正常。

如果LLCPDU小于46个字节,则发送站的MAC子层会自动填充“0”代码补齐。

802.3一个帧的长度计算公式:DA+SA+L+LLCPDU+FCS=6+6+2+(46~1500)+4=64~1518即当LLCPDU为46个字节时,帧最小,帧长为64字节;当LLCPDU为1500字节时,帧最大,帧长为1518字节帧校验序列(FCS:Frame Check Sequence):该序列包含长度为4个字节的循环冗余校验值(CRC),由发送设备计算产生,在接收方被重新计算以确定帧在传送过程中是否被损坏。

数通各种帧协议结构

数通各种帧协议结构

数通各种帧协议结构网络通信中的数据传输主要通过数据包的形式进行,而数据包是按照特定的帧和协议结构组织的。

下面将对几种常见的帧和协议结构进行介绍。

1. 以太网帧 (Ethernet Frame)以太网帧是局域网中最为常见的帧类型,用于在以太网中传输数据。

以太网帧的结构如下:- 目的MAC地址 (Destination MAC Address):表示数据包的接收者的物理地址。

- 源MAC地址 (Source MAC Address):表示数据包的发送者的物理地址。

- 类型/长度 (Type/Length):表示上层协议的类型或长度。

- 数据 (Data):实际要传输的数据。

-帧校验序列(FCS):用于校验数据传输是否正确。

2. IPv4数据报 (IPv4 Datagram)IPv4是互联网中最基本的网络层协议,IPv4数据报是在IPv4网络中传输的数据单元。

IPv4数据报的结构如下:- 版本 (Version):表示使用的IPv4协议版本。

- 首部长度 (Header Length):表示IPv4首部的长度。

- 区分服务 (Differentiated Services):用于指定不同类型的服务质量要求。

- 总长度 (Total Length):表示整个IPv4数据报的总长度。

- 标识 (Identification):用于唯一标识一个数据报,用于处理分片和重组。

- 标志 (Flags):用于指定是否进行分片以及分片的位置。

- 时间到生存 (Time to Live):用于限制数据报在网络中的传播时间。

- 协议 (Protocol):表示上层协议的类型。

- 源IP地址 (Source IP Address):表示数据报的发送者IP地址。

- 目的IP地址 (Destination IP Address):表示数据报的接收者IP地址。

- 首部校验和 (Header Checksum):用于校验IPv4首部的正确性。

列出ethernet v2标准的数据帧的5个字段

列出ethernet v2标准的数据帧的5个字段

列出ethernet v2标准的数据帧的5个字段Ethernet V2标准是以太网传输技术的第二个版本,它在网络通信中广泛应用。

Ethernet V2数据帧是实现数据传输的基本单位,具有特定的结构。

本文将介绍Ethernet V2数据帧的5个字段,并阐述它们的作用和意义。

1.目的地址(Destination MAC Address):目的地址字段用于标识数据帧的接收方。

它位于数据帧的开头,长度为6字节。

发送方通过目的地址字段将数据帧发送到接收方。

接收方在接收到数据帧后,根据目的地址字段判断是否需要处理这个数据帧。

如果目的地址与接收方的MAC地址匹配,则接收方会处理这个数据帧;如果不匹配,则数据帧会被丢弃。

2.源地址(Source MAC Address):源地址字段用于标识数据帧的发送方。

它位于数据帧的目的地址之后,长度也为6字节。

发送方通过源地址字段将自己的MAC地址附加到数据帧中,以便接收方能够识别发送方。

同时,源地址字段有助于实现数据帧的追踪和路由。

3.类型(Type):类型字段用于指示数据帧中所携带的数据类型。

它位于源地址字段之后,长度为2字节。

类型字段的值表示数据帧中数据部分的字节顺序,常用的值为0x0806(IPV4)和0x0815(ARP)。

接收方根据类型字段值判断数据帧中携带的数据是否为己知类型,从而决定如何处理数据帧。

4.数据(Data):数据字段是数据帧的核心部分,用于承载实际传输的数据。

数据字段的长度可变,根据数据类型和实际需求而定。

在数据传输过程中,发送方将数据加载到数据字段中,接收方收到数据帧后,根据数据字段中的数据进行处理。

数据字段长度的不固定性使得Ethernet V2标准具有较高的灵活性。

5.校验和(FCS):校验和字段用于检测数据帧在传输过程中的错误。

它位于数据字段之后,长度为4字节。

发送方在发送数据帧前,根据数据帧的各个字段(不包括校验和字段)计算出一个校验和值,并将其附加到数据帧的末尾。

以太数据帧结构

G(2)二进制值
二进制 模二除法
二进制 余数
余数不够 高位 0 凑
Data
CRC
对方使用相同G(x) 一定能够整除
三、随堂练习
一、判断题
1、以太数据帧中,类型字段代表该数据帧是802.3帧还是Ethernet II帧 ( )
2、每个以太数据帧能够封装的最大网络层报文大小为1500字节
()
二、选择题
二、以太数据帧字段
前导码:用于接收方与发送方的同步,7个字节,每个字节的值固定为0xAA。 帧起始定界符:用于标识一个以太网帧的开始,值固定为0xAB。 目的地址:存放48bit的目标MAC地址,用于局域网中交换机寻址转发。 源地址:存放48bit的源MAC地址,用于局域网中交换机学习和目标主机回复。 类型 :用于指定报文头后所接的数据类型。包括:IPv4(0x0800), IPv6(0x86DD), ARP(0x0806),802.1q数据帧(0x8100) 。 数据:用于存放网络层封装的报文内容(比如:IPv4数据包、IPv6数据包、ARP报文)。 FCS(Frame Check Sequence):通过CRC(Cyclic Redundancy Check)算法计算出 来的序列号,用来确定接收到的帧比特是否正确。
1
0
1
1
1
1x25-1 +0x24-1+1x23-1+1x22-1+1x21-1
CRC校验码位数 = 二进制值位数 - 1 二进制值( 10111 )与数据流做模二除法,余数即为CRC校验码
二、模二除法
使用G(x)的二进制值10111对目标数据流1010110做模二除法,求余数值
1001001
10111 1 0 1 0 1 1 0 0 0 0 0

以太网详细介绍


Balanced Copper Xcvr Shielded Balanced Copper Cable
2005©
zqiangwu@
GBN支持的传输供介质
1000 Mbps MAC (Media Access Control) 802.3z CSMA/CD Ethernet
1000BaseLX (1300 nm)
多模光纤连接的最大距离为550米 单模光纤连接的最大距离为3000米
铜基连接距离最大为25米,基于5类无屏蔽双绞线的连接距离增至 100 米的技术
可选的千兆位介质无关接口(GMII) 基于光纤的全双工和半双工操作

2005©
zqiangwu@
GBN的优点

千兆以太网采用和以太网、快速以太网一样的可变长的 (64-1514byte)IEEE802.3帧格式 千兆以太网在不改变现有的网络结构的前提下得到更高的 带宽。千兆网和以前的以太网以及快速以太网几乎一样, 都支持相同的IEEE 802.3帧格式、全双工和流控制模式。 根据IEEE802.3x的定义,当两个节点以全双工通讯时,线 路上能同时发送和接收数据包。千兆以太网在全双工模式 下遵循该标准进行通讯 ,也遵循标准以太网的流控制模 式来避免冲突和拥挤简单、直接的转移低成本;支持新应 用程序能力强;弹性化的网络设计简单、直接的转移到高 性能平台
2005©
zqiangwu@
千兆网的技术规范
规范名称
1000BASE-LX
传输介质
62.5um 多模 50um 多模 10um 单模 62.5um 多模
编码方式
8B/10B 8B/10B 8B/10B 8B/10B
传输带宽
500MHz 400/500MHz

以太网(Ethernet)的帧结构

以太网( 以太网(Ethernet)的帧结构 )
以太网(Ethernet)的帧结构
1.Ethernet V2.0帧结构 2. IEEE802.3帧结构 3. Ethernet V2.0帧结构组成详解
Ethernet V2.0帧结构
帧前 帧校 前导 目的 源地 数据 定界 验字 类型 码 地址 址 字段 符 段 46~1 7B 1B 6B 6B 2B 4B 500B 注:Ethernet帧的最小长度为64B,最大长 度为1518B。(前导码与帧前定界符不计入 帧头长度中)
IEEE802.3帧结构
帧前 帧校 前导 目的 源地 数据 定界 验字 长度 码 地址 址 字段 符 段 46~1 7B 1B 6B 6B 2B 4B 500B
Ethernet V2.0帧结构组成详解
1)前导码与帧前定界符字段 ) 2)目的地址和源地址字段 ) 3)类型字段 ) 4)数据字段 5)帧校验字段
数据字段
数据字段的组成: 数据字段的组成:长度在46~1500B之间的比 特序列。 特点: 特点:如果数据的长度少于46B,需要加填充 字节,补充到46B。填充字节是任意的,不计 入长度字段中。
帧校验字段
帧校验字段的组成: 32位 4B)比特序列。 帧校验字段的组成: 32位(4B)比特序列。 特点: 特点:采用CRC校验。校验的范围包括目的地 址字段,源地址字段,类型字段,数据字段。 在接收端进行校验,如果发生错误,帧将被丢 弃。 32位CRC校验的生成多项式为: G(x) =x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4 +x2+x1+1

计算机网络以太帧

计算机网络以太帧1. 简介以太网是一种常用的局域网技术,其通信基本单位是以太帧(Ethernet Frame)。

以太帧是数据链路层中用于在网络中传输数据的基本单元。

本文将详细介绍以太帧的结构、功能和处理过程。

2. 以太帧结构以太帧是由一系列字段组成的数据包,通常包括以下几个部分:2.1 帧前导码帧前导码是一个固定的字段,由7个字节构成。

它的作用是在数据传输之前进行同步和定时,以确保接收方能正确解读数据。

帧前导码的内容为10101010。

2.2 目的MAC地址目的MAC地址是一个6个字节的字段,用于识别帧的接收方。

每个网络设备都有一个唯一的MAC地址,用于标识其在网络中的位置。

2.3 源MAC地址源MAC地址是一个6个字节的字段,用于识别帧的发送方。

与目的MAC地址类似,源MAC地址也是设备的唯一标识符。

2.4 类型/长度字段类型/长度字段用于指示数据字段的类型或长度。

它可以表示以太网上使用的协议类型,如IP、ARP等,或者表示数据字段的长度。

2.5 数据字段数据字段包含实际传输的数据。

它的长度可以根据类型/长度字段的指示进行变化。

2.6 帧校验序列帧校验序列是一个4字节的字段,用于检测帧在传输过程中是否发生了错误。

接收方会根据帧的内容计算校验序列,并与接收到的校验序列进行比较,以确认接收到的帧是否正确。

3. 以太帧的工作流程了解以太帧的工作流程对理解其在计算机网络中的作用非常重要。

下面是以太帧的基本工作流程:3.1 数据封装在发送端,数据从应用层逐层向下传输,最终被封装成以太帧。

数据会按照特定的格式组织,然后与目的MAC地址、源MAC地址等信息一起构建帧。

3.2 帧传输以太帧通过网络传输到目的地。

在传输过程中,帧会经过网络设备,如交换机、路由器等。

这些设备会根据目的MAC地址将帧转发到正确的接口,以确保帧能够到达正确的接收方。

3.3 帧解封在接收端,以太帧被接收到,并根据其结构进行解封。

接收方会根据目的MAC地址判断是否接收该帧,并提取数据字段中的数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见以太网帧结构详解
以太网是一个常用的局域网技术,其数据传输是以帧的形式进行的。

以太网帧是以太网数据传输的基本单位,通过帧头、帧数据和帧尾等部分来描述有效载荷的数据。

以太网帧的结构如下:
1. 帧前同步码(Preamble):以太网帧的开始部分有7个字节的帧前同步码,其作用是为接收端提供定时的参考,帮助接收端进行帧同步。

2.帧起始界定符(SFD):帧前同步码之后的1字节帧起始界定符为0x55,标志着以太网帧的开始。

3. 目标MAC地址(Destination MAC Address):目标MAC地址占6个字节,表示帧的接收者的MAC地址。

4. 源MAC地址(Source MAC Address):源MAC地址占6个字节,表示帧的发送者的MAC地址。

5. 长度/类型字段(Length/Type Field):长度/类型字段占2个字节,当该字段的值小于等于1500时,表示以太网帧的长度;当该字段大于等于1536时,表示该字段定义了帧中的协议类型。

6. 帧数据(Data):帧数据部分是以太网帧的有效载荷,其长度为46到1500字节,不包括帧头和帧尾。

7. 帧校验序列(Frame Check Sequence,FCS):帧校验序列占4个字节,主要用于对帧进行错误检测,以保证数据的可靠性。

8. 帧尾(Frame Check Sequence,FCS):帧尾占4个字节,用于标识以太网帧的结束。

以太网帧的长度为64到1518字节,其中有效载荷部分数据长度为46到1500字节,不同帧的长度可以根据网络需求进行调整。

在发送以太网帧时,发送方会在帧尾的后面添加额外的字节以保证整个帧的长度达到最低限制。

这些额外的字节即填充字节(Padding),用于使帧长达到最小限制的要求。

以上是以太网帧的常见结构,它描述了以太网帧的各个部分的作用和位置。

了解以太网帧的结构对于理解以太网的工作原理和网络通信非常重要。

相关文档
最新文档