等腰直角三角形模型、三垂直模型

合集下载

三垂直模型

三垂直模型

三垂直模型知识导航三垂直模型是经典的全等三角形模型之一,综合性较强。

解题方法通常是根据三垂直倒角来证明题目中有一对边相等的两个全等三角形。

一线三等角是三垂直模型的变式,包括一线三等锐角、一线三直角、一线三等钝角,这类型题型通常是利用三垂直模型原理进行倒角,证明两个三角形全等。

【核心考点】三垂直模型1. 如图,AC CE =,90ACE ∠=︒,AB BD ⊥,ED BD ⊥,6AB cm =,2DE cm =,则BD等于( )A .6cmB .8cmC .10cmD .4cm【解答】 解:AB BD ⊥,ED BD ⊥,90B D ACE ∴∠=∠=∠=︒,90BAC ACB ∴∠+∠=︒,90ACB ECD ∠+∠=︒, BAC ECD ∴∠=∠,在Rt ABC ∆与Rt CDE ∆中, B D BAC DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, Rt ABC Rt CDE(AAS)∴∆≅∆,2BC DE cm ∴==,6CD AB cm ==, 268BD BC CD cm ∴=+=+=,故选:B .2. 如图,已知ABC CDE ∆≅∆,90B D ∠=∠=︒,且B ,C ,D 三点在同一条直线.(1)试说明:BD AB ED =+.(2)试判定ACE ∆的形状, 并说明理由 .【解答】证明:(1)Rt ABC Rt CDE ∆≅∆,BC DE ∴=,AB CD =, BD CD CB =+, BD AB ED ∴=+.(2)结论:ACE ∆是等腰直角三角形 . 理由:Rt ABC Rt CDE ∆≅∆,90B D ∠=∠=︒,ACB CED ∴∠=∠,BAC ECD ∠=∠,AC EC =, 90BAC ACB ∠+∠=︒, 90ECD ACB ∴∠+∠=︒, 90ACB ∴∠=︒,ACE ∴∆是等腰直角三角形 .3. 已知在平面直角坐标系中,ABC ∆的顶点A 、C 分别在y 轴、x 轴上,90ACB ∠=︒,AC BC =.如图,当(0,2)A -,(1,0)C ,点B 在第四象限时,则点B 的坐标为_______.【解答】解:作BD x ⊥轴,90ACO CAO ∠+∠=︒,90ACO BCD ∠+∠=︒, CAO BCD ∴∠=∠,在AOC ∆和CDB ∆中, 90AOC CDB CAO BCDAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AOC CDB AAS ∴∆≅∆,1DB OC ∴==,2CD AO ==, 3OD ∴=,∴点B 的坐标为(3,1)-.故答案为(3,1)-.4. 如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为2,3,m ,A ,B ,N ,E ,F 五点在同一直线上,则正方形CNHM 的边长m 是多少?【解答】解:四边形ABCD 、EFGH 、NHMC 都是正方形,90CNB ENH ∴∠+∠=︒,又90ENH NHE ∠+∠=︒,CNB EHN ∴∠=∠,在CBN ∆和NEH ∆中, CBN NEH CNB NHE CN NH ∠=∠⎧⎪∠=∠⎨⎪=⎩CBN NEH ∴∆≅∆, HE BN b ∴==,故在Rt CBN ∆中,222BC BN CN +=, 又2a =,3b =,m ∴=则正方形CNHM 的边长m5. 已知:在平面直角坐标系中,等腰直角ABC ∆顶点A 、C 分别在y 轴、x 轴上,且90ACB ∠=︒,AC BC =.(1)如图1,当(0,2)A -,(1,0)C ,点B 在第四象限时,先写出点B 的坐标,并说明理由. (2)如图2,当点C 在x 轴正半轴上运动,点(0,)A a 在y 轴正半轴上运动,点(,)B m n 在 第四象限时,作BD y ⊥轴于点D ,试判断a ,m ,n 之间的关系,请证明你的结论.【解答】解:(1)点B 的坐标为(3,1)-. 理由如下:作BD x ⊥轴于D ,90BOC BDC ∴∠=︒=∠, 90OAC ACO ∴∠+∠=︒, 90ACB ∠=︒,AC BC =, 90ACO BCD ∴∠+∠=︒, OAC BCD ∴∠=∠,在AOC ∆和CDB ∆中,90OAC BCDAOC CDB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()AOC CDB AAS ∴∆≅∆,AO CD ∴=,OC BD =,(0,2)A -,(1,0)C ,2AO CD ∴==,1OC BD ==,3OD ∴=,B 在第四象限,∴点B 的坐标为(3,1)-;(2)0a m n ++=. 证明:作BE x ⊥轴于E ,90BEC AOC ∴∠=∠=︒, 1290∴∠+∠=︒, 90ACB ∠=︒, 1390∴∠+∠=︒, 23∴∠=∠,在CEB ∆和AOC ∆中,23BEC AOC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CEB AOC AAS ∴∆≅∆,AO CE a ∴==,BE CO =, BE x ⊥轴于E ,//BE y ∴轴,BD y ⊥轴于点D ,EO y ⊥轴于点O ,EO BD m ∴==, BE n ∴=-,a m n ∴+=-,0a m n ∴++=.6. 如图1,ABC ∆中,90BAC ∠=︒,AB AC =,直线l 经过点A ,分别过点B ,C 作直线l 的垂线,垂足分别为D ,E ,求证:DE BD CE =+;(1)将直线l 绕点A 逆时针旋转到直线l 与BC 相交,且45BAD ∠<︒(如图2)时,其它条件不变,请你探索DE ,BD ,CE 之间的数量关系,并证明之;(2)继续旋转,使4590BAE ︒<∠<︒(如图3),其它条件不变,此时(1)中的结论还成立吗?若成立,给出证明;若不成立,DE ,BD ,CE 之间又怎样的数量关系?(不需证明).【解答】证明:如图1,BD l ⊥,CE l ⊥,90BDA CEA ∴∠=∠=︒, 90ABD DAB ∴∠+∠=︒. 90BAC ∠=︒, 90DAB CAE ∴∠+∠=︒, ABD CAE ∴∠=∠.在ABD ∆和CAE ∆中 BDA CEA ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD CAE AAS ∴∆≅∆,AD CE ∴=,BD AE =.DE AD AE =+, DE CE BD ∴=+;(1)DE CE BD =-理由:如图2,BD l ⊥,CE l ⊥,90BDA CEA ∴∠=∠=︒,90ABD DAB ∴∠+∠=︒. 90BAC ∠=︒, 90DAB CAE ∴∠+∠=︒,ABD CAE ∴∠=∠.在ABD ∆和CAE ∆中 BDA CEA ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD CAE AAS ∴∆≅∆,AD CE ∴=,BD AE =DE AD AE =-, DE CE BD ∴=-;(2)DE BD CE =-.理由:如图3,BD l ⊥,CE l ⊥,90BDA CEA ∴∠=∠=︒, 90ABD DAB ∴∠+∠=︒. 90BAC ∠=︒, 90DAB CAE ∴∠+∠=︒, ABD CAE ∴∠=∠.在ABD ∆和CAE ∆中 BDA CEA ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD CAE AAS ∴∆≅∆,AD CE ∴=,BD AE =DE AE AD =-, DE BD CE ∴=-.7. 如图所示,已知ABC ∆中,90ABC ∠=︒,AB BC =,三角形的顶点分别在相互平行的三条直线1l 、2l 、3l 上,且115∠=︒,则2∠=_________度.【解答】解:123////l l l ,13∴∠=∠,24∠=∠, 1234∴∠+∠=∠+∠. 90ABC ∠=︒,AB BC =, 45BAC BCA ∴∠=∠=︒. 34BAC ∠+∠=∠, 3445∴∠+∠=︒, 1245∴∠+∠=︒. 115∠=︒, 230∴∠=︒.故答案为:30.8.问题背景:(1)如图①,已知ABC∠=︒,AB AC=,直线m经过点A,BAC∆中,90=+.BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE BD CE拓展延伸:(2)如图②,将(1)中的条件改为:在ABC=,D、A、E∆中,AB AC 三点都在直线m上,并且有BDA AEC BAC∠=∠=∠请写出DE、BD、CE三条线段的数量关系.(不需要证明)实际应用:(3)如图③,在ACB-,=,点C的坐标为(2,0)∆中,90∠=︒,AC BCACB点A的坐标为(6,3)-,请直接写出B点的坐标.【解答】(1)证明:BD AD ⊥,90ABD BAD ∴∠+∠=︒,90BAC ∠=︒,90CAE BAD ∴∠+∠=︒,ABD CAE ∴∠=∠,在ABD ∆和CAE ∆中,90ABD CAEADB CEA AB CA∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()ABD CAE AAS ∴∆≅∆AE BD ∴=,AD CE =,DE AD AE BD CE ∴=+=+;(2)解:DE BD CE =+,理由如下:在ABD ∆中,180ABD ADB BAD ∠=︒-∠-∠, 180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠, ABD CAE ∴∠=∠,在ABD ∆和CAE ∆中,ABD CAEBDA AEC AB CA∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABD CAE AAS ∴∆≅∆AE BD ∴=,AD CE =,DE AD AE BD CE ∴=+=+;(3)解:如图③,作AE x ⊥轴于E ,BF x ⊥轴于F , 由(1)可知,AEC CFB ∆≅∆,3CF AE ∴==,4BF CE OE OC ==-=, 1OF CF OC ∴=-=,∴点B 的坐标为(1,4).。

等腰直角三角形模型三垂直模型

等腰直角三角形模型三垂直模型

全等三角形的经典模型(一)题型一:等腰直角三角形模型思路导航等腰直角三角形数学模型思路:⑴利用特殊边特殊角证题(AC=BC或90° 45 ,45).如图1;⑵常见辅助线为作高,利用三线合一的性质解决问题•如图2;图3 图4典题精练【例1】已知:如图所示,Rt△ ABC中,AB=AC, BAC 90° O为BC的中点, ⑴写出点O到厶ABC的三个顶点A、B、C的距离的关系(不要求证明)⑵如果点M、N分别在线段AC、AB上移动,且在移动中保持AN=CM.试判断△ OMN的形状,并证明你的结论.⑶如果点M、N分别在线段CA、AB的延长线上移动,且在移动中保持AN=CM,试判断⑵中结论是否依然成立,如果是请给出证明.【解析】⑴OA=OB=OC⑵连接OA,••• OA=OC BAO C 45° AN=CM• △ ANO 也厶CMO•ON=OMNOA MOCNOA BON MOC BON90NOM90• △ OMN 是等腰直角三角形⑶也ONM依然为等腰直角三角形,证明:•••/ BAC=90°, AB=AC, O 为BC 中点•••/ BAO = Z OAC=Z ABC=Z ACB=45°,••• AO = BO=OC,•••在△ ANO和厶CMO中,AN CMBAO CAO CO•△ ANO ◎△ CMO (SAS)•ON = OM, / AON= / COM ,又•••/ COM / AOM =90°,•△ OMN为等腰直角三角形.【例2】两个全等的含30°, 60°角的三角板ADE和三角板ABC,如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M ,连接ME , MC .试判断△ EMC的形状,并说明理由.【解析】△ EMC是等腰直角三角形.证明:连接AM .由题意,得DE AC, DAE BAC 90°, DAB 90°•△ DAB为等腰直角三角形•••• DM MB ,MMDE MAC 105° , ••• △ EDM 也△CAM . ••• EM MC, DME AMC .又 EMC EMA AMC EMA DME 90°. • CM EM ,• △ EMC 是等腰直角三角形.• △ ABM CAF . • AM CF . 在 △ ADM 和△ CDF 中, AD CD DAM C AM CF• △ ADM ◎△ CDF . •- ADB CDF .证法二:如图,作 CM AC 交AF 的延长线于 M . T AF BD , • 3 2 90° •/ BAC 90° , • 1 2 90° • 13.在△ ACM 和△ BAD 中,13AC ABACM BAD 90°• △ ACM ◎△ BAD . • M ADB , AD CM••• AD DC , • CM CD . 在△ CMF 和△ CDF 中, CF CFMCF DCF 45° CM CD【例3】 已知: 点,A 求证: 如图,△ ABC 中,AB AC , \F BD 于E ,交BC 于F ,连接BACDF .ADBCDF . 【解析】 证法一 ':如图,过点 A 作AN BC 于N,交••• AB AC , BAC 90° ,• 3DAM 45°.••• C 45 ° • 3 C .••• AF BD , 1BAE 90°••• BAC 90° , • 2 BAE 90° .• 12 .在△ ABM 和△ CAF 中,1 2AB AC3 CACM••• △ CMF ◎△ CDF • ••• M CDF ••• ADB CDF •【例4】 如图,等腰直角 △ ABC 中,AC BC , ACB 90°, P 为△ ABC 内部一点,满足PB PC , AP AC ,求证:BCP 15 •【解析】补全正方形ACBD ,连接DP ,易证△ ADP 是等边三角形, DAP 60 , BAD 45 ,• BAP 15 , PAC 30 , • ACP 75 ,• BCP 15 •【探究对象】等腰直角三角形添补成正方形的几种常见题型在解有关等腰直角三角形中的一些问题, 若遇到不易解决或解法比较复杂时, 可将等腰直角三角形引辅助线转化成正方形,再利用正方形的一些性质来解,常常可以起到化难为易的效果, 从而顺利地求解。

三垂直模型及练习题

三垂直模型及练习题
的结论并证明。
2. 如图 1,等腰 Rt△ABC 中,AB=CB,∠ABC=90º,点 P 在线段 BC 上(不与 B、C 重合), 以 AP 为腰长作等腰直角△PAQ,QE⊥AB 于 E ,连 CQ 交 AB 于 M。 (1)求证:M 为 BE 的中点
(2)若 PC=2PB,求 PC 的值 MB
1
2
变式 1:如图,在 R t △ABC 中,∠ACB=45º,∠BAC=90º,AB=AC,点 D 是 AB 的中点,AF⊥CD
于 H 交 BC 于 F,BE∥AC 交 AF 的延长线于 E,求证:BC 垂直且平分 DE.
变式 2:等腰 Rt△ABC 中,AC=AB,∠BAC=90°,点 D 是 AC 的中点,AF⊥BD 于点 E, 交 BC 于点 F,连接 DF,求证:∠1=∠2。
9
6、如图,在等腰 Rt△ABC 中,∠ACB=90°,D 为 BC 的中点,DE⊥AB,垂足为 E,过点 B 作 BF∥AC 交 DE 的延长线于点 F,连接 CF. (1)求证:AD⊥CF; (2)连接 AF,求证:AF=CF.
8
7、已知:如图所示,在△ABC 中,AB=AC,∠BAC=90°,D 为 AC 中点,AF⊥BD 于点 E,交 BC 于 F,连接 DF . 求证:∠ADB=∠CDF .
变式 1、已知:如图所示,在△ABC 中,AB=AC,AM=CN,AF⊥BM 于 E,交 BC 于 F, 连接 NF . 求证:(1)∠AMB=∠CNF;(2)BM=AF+FN .
变式 2、在变式 1 的基础上,其他条件不变,只是将 BM 和 FN 分别延长交于点 P, 求证:(1)PM=PN;(2)PB=PF+AF .
★模型一 等腰三垂直全等模型
(1)以原等腰直角三角形的两直角边为对应斜边,必定可以构造一对全等的直角三角形:

三角形全等11大解题模型汇总

三角形全等11大解题模型汇总

三角形全等11大解题模型汇总类别 1:角平分线模型应用模型 1:角平分性质模型:辅助线:过点 G 作 GE ⊥射线 AC【例题详解】①如图1,在中ABC ∆,,cm 4,6,900==∠=∠BD cm BC CAB AD C 平分,那么点D 到直线AB 的距离是cm.②如图2,已知,21∠=∠,43∠=∠.BAC AP ∠平分求证:.图1图2①2 (提示:作 DE ⊥AB 交 AB 于点 E)②21∠=∠ ,PN PM =∴,43∠=∠ ,PQ PN =∴,BAC PA PQ PM ∠∴=∴平分,.模型2:角平分线+垂线,等腰三角形比呈现辅助线:延长ED 交射线OB 于F 辅助线:过点E 作EF∥射线OB【例题详解】已知:如图2,在中ABC ∆,,,AD AB D BC AD BAC =∠且于交的角平分线)(21.AC AB AM M AD AD CM +=⊥求证:的延长线于交作分析:此题很多同学可能想到延长线段CM,但很快发现与要证明的结论毫无关系。

而此题突破口就在于 AB=AD,由此我们可以猜想过 C 点作平行线来构造等腰三角形.证明:过点 C 作 CE∥AB 交 AM 的延长线于点 E.例题变形:如图,21∠=∠,的中点为AC B ,.,N FB AN M FB CM 于于⊥⊥模型3:角分线,分两边,对称全等要记全两个图形的辅助线都是在射线OA 上取点B ,使OB=OA ,从而使OAC ∆≌△OBC.【例题详解】①、在△ABC 中,∠BAC=60°,∠C=40°,AP 平分∠BAC 交BC 于P,BQ 平分∠ABC 交AC 于Q,求证:AB+BP=BQ+AQ。

思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。

2)解题思路:本题要证明的是AB+BP=BQ+AQ。

形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。

可过O 作BC 的平行线。

【中考数学专题】三大变换之旋转(三垂直模型)

【中考数学专题】三大变换之旋转(三垂直模型)

【中考数学专题】三大变换之旋转(三垂直模型)上一篇我们了解了关于手拉手模型的一些内容,同样作为模型,但“三垂直”的定位和“手拉手”并不相同,“手拉手”本身可以作为问题,而“三垂直”更多地作为一种方法来帮助解决问题,因而我们要了解的侧重点也会有所调整,依然有三点:(1)三垂直模型的构成;(2)什么条件下考虑构造三垂直;(3)构造三垂直能带来什么.01三垂直模型的构成△ABC是等腰直角三角形,一条直线过点C,分别过A、B向该直线作垂线,垂足分别为D、E,则△ADC≌△CEB.【小结】尝试用文字来描述三垂直模型:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型.(等腰、直角、作垂直)【思考】“等腰、直角、作垂直”在证明全等中所发挥的作用是什么?等腰——可得一组对应边相等;直角+作垂直——可得两组角对应相等.【弱化条件】(1)如果没有等腰?依然可以构造三垂直,只不过得到的是三垂直相似,而非三垂直全等.如图,有△ADC∽△CEB.特别地,若点C为BD中点,则△ADC∽△CEB∽△ACB.(2)如果没有直角?直角与作垂直是配套的,最终的结果是有三个直角,其价值不在于它们是特殊角,而是它们都相等,所以即便没有直角,换成三个相等的角亦可,即“一线三等角”模型举个关于一线三等角的例题:2018遵义中考-对称章节里见过看个例子就可以了,今儿不聊一线三等角的事.02什么条件下构造三垂直?根据问题一的分析已经很明显了,可以没有等腰,但需要有直角,当然如果是等腰直角那就再好不过了.那看到有直角就考虑构造三垂直?当然也不是,起码问题得和直角相关,并且这个直角是斜着的.引例1-几何图中的构造三垂直引例2-坐标系中的构造三垂直【小结】尤其是在坐标系中,构造三垂直可以帮助计算点坐标或直线解析式,并且触发条件除了直角之外,也可以是其他确定的角,比如45°角.引例3-45°角构造三垂直全等【小结】设计坐标系中构造三垂直,尽可能让直角顶点是已知点,会简便计算,如上题中的第一种作图优于第二种.除了45°之外,坐标系中出现其他的确定角,亦可构造三垂直.引例4-已知角构造三垂直相似这其实本身不应该是一个问题,而是对前文的思考.三垂直是如何帮助我们解决问题的?构造三垂直全等,一方面可以得到相等线段,在几何图形中作等量代换.另外在坐标系中构造三垂直全等,可实现“化斜为直”,用水平或竖直线段刻画图中的点与线,会更方便计算.继续来看相关中考真题:2019宜昌中考2017苏州园区模拟2019十堰中考2019无锡中考2019沈阳中考2016河南中考(居然有备用卷)【写在最后】知其然,知其所以然;知其用,知其何以用.来源:有一点数学,作者刘岳。

解题技巧专题:利用等腰三角形的“三线合一”作辅助线压轴题三种模型全攻略(解析版)

解题技巧专题:利用等腰三角形的“三线合一”作辅助线压轴题三种模型全攻略(解析版)

解题技巧专题:利用等腰三角形的'三线合一'作辅助线压轴题三种模型全攻略【考点导航】目录【典型例题】【类型一等腰三角形中底边有中点时,连中线】【类型二等腰三角形中底边无中点时,作高线】【类型三巧用“角平分线+垂线合一”构造等腰三角形】【典型例题】【类型一等腰三角形中底边有中点时,连中线】1如图,在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,过D 作直线DE 交直线AB 与E ,过D 作直线DF ⊥DE ,并交直线AC 与F .(1)若E点在线段AB 上(非端点),则线段DE 与DF 的数量关系是;(2)若E 点在线段AB 的延长线上,请你作图(用黑色水笔),此时线段DE 与DF 的数量关系是,请说明理由.【答案】(1)DE =DF(2)图见解析,DE =DF ,理由见解析【分析】(1)连接AD ,先根据等腰直角三角形的性质可得AD =BD =CD ,∠B =∠DAF =45°,AD ⊥BC ,再根据垂直的定义、等量代换可得∠BDE =∠ADF ,然后根据三角形全等的判定证出△BDE ≅△ADF ,根据全等三角形的性质即可得出结论;(2)分①当点E 在线段AB 的延长线上,且在BC 的下方时,②当点E 在线段AB 的延长线上,且在BC 的上方时两种情况,参考(1)的思路,根据三角形全等的判定与性质即可得出结论.【详解】(1)解:如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =BD =CD ,∠B =∠DAF =45°,AD ⊥BC ,∴∠BDE +∠ADE =90°,∵DF ⊥DE ,∴∠ADF+∠ADE =90°,∴∠BDE =∠ADF ,在△BDE 和△ADF 中,∠B =∠DAFBD =AD ∠BDE =∠ADF,∴△BDE ≅△ADF ASA ,∴DE =DF ,故答案为:DE =DF .(2)解:DE =DF ,理由如下:①如图,当点E 在线段AB 的延长线上,且在BC 的下方时,如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =BD ,∠ABD =∠DAC =45°,AD ⊥BC ,∴∠DBE =∠DAF =135°,∠ADF +∠BDF =90°,∵DF ⊥DE ,∴∠BDE +∠BDF =90°,∴∠BDE =∠ADF ,在△BDE 和△ADF 中,∠DBE =∠DAFBD =AD ∠BDE =∠ADF,∴△BDE ≅△ADF ASA ,∴DE =DF ;②如图,当点E 在线段AB 的延长线上,且在BC 的上方时,如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =CD ,∠ACD =∠DAB =45°,AD ⊥BC ,∴∠DCF =∠DAE =135°,∠ADE +∠CDE =90°,∵DF ⊥DE ,∴∠CDF +∠CDE =90°,∴∠ADE =∠CDF ,在△ADE 和△CDF 中,∠DAE =∠DCFAD =CD ∠ADE =∠CDF,∴△ADE ≅△CDF ASA ,∴DE =DF ;综上,线段DE 与DF 的数量关系是DE =DF ,故答案为:DE =DF .【点睛】本题考查了等腰直角三角形的性质、三角形全等的判定与性质等知识点,通过作辅助线,构造全等三角形是解题关键.【变式训练】1如图,在等腰直角三角形ABC 中,∠C =90°,AC =a ,点E 为边AC 上任意一点,点D 为AB 的中点,过点D 作DF ⊥DE 交BC 于点F .求证:CE +CF为定值.【答案】证明见解析【分析】连接CD ,证明△CDE ≌△BDF ,得CE =BF ,进一步证明CE +CF =BC =AC =a ,从而得到结论.【详解】证明:连接CD ,如图,∵△ABC 是等腰直角三角形,且D 为AB 的中点,∴CD ⊥AB ,CD 平分∠ACB ,AD =BD =CD∴∠DCA =∠DCB =∠DBC =45°又DE ⊥DF∴∠EDC +∠FDC =90°而∠FDC +∠FDB =90°∴∠EDC =∠FDB在△CDE 和△BDF 中,∠DCE =∠DBFCD =CD∠EDC =∠BDF∴△CDE ≌△BDF∴CE =BF∵BC =AC =a ∴CE +CF =BE +CF =BC =AC =a ,故:CE +CF 为定值.【点睛】此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质,证明CE =BF 是解答此题的关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC ,点P 是斜边AB 的中点,点D ,E 分别在边AC ,BC 上,连接PD ,PE ,若PD ⊥PE.(1)求证:PD =PE ;(2)若点D ,E 分别在边AC ,CB 的延长线上,如图2,其他条件不变,(1)中的结论是否成立?并加以证明;(3)在(1)或(2)的条件下,△PBE 是否能成为等腰三角形?若能,请直接写出∠PEB 的度数(不用说理);若不能,请说明理由.【答案】(1)见解析(2)成立,见解析(3)能成为等腰三角形,此时∠PEB 的度数为22.5°或67.5°或90°或45°【分析】(1)连接PC ,根据等腰直角三角形的性质可得∠DCP =45°=∠B ,从而得到CP =BP ,再由PD ⊥PE ,可得∠DPC =∠EPB ,可证得△DPC ≌△EPB ,即可求证;(2)连接PC ,根据等腰直角三角形的性质可得∠ECP =45°=∠ABC =∠A =∠ACP ,从而得到CP =AP ,再由∵PD ⊥PE ,CP ⊥AB ,可得∠APD =∠CPE ,可证得△APD ≌△CPE ,即可;(3)根据等腰三角形的性质,分四种情况讨论,即可求解.【详解】(1)明∶连接PC,∵∠ACB =90°,AC =BC ,∴∠A =∠B =45°,∵P 为斜边AB 的中点,∴CP ⊥AB ,∴∠DCP =45°=∠B ,∴CP =BP ,∵PD ⊥PE ,∴∠DPC +∠CPE =∠CPE +∠EPB =90°,∴∠DPC =∠EPB ,在△DPC 和△EPB 中,∠DCP =∠BPC =PB ∠DPC =∠EPB,∴△DPC ≌△EPB ASA ,∴PD =PE ;(2)解:PD =PE 仍成立,理由如下:连接CP,∵∠C =90°,AC =BC ,∴∠A =∠ABC =45°,∵P 为斜边AB 的中点,∴CP ⊥AB ,∴∠ECP =45°=∠ABC =∠A =∠ACP ,∴CP =AP ,又∵PD ⊥PE ,CP ⊥AB ,∴∠DPE =∠CPA =90°,∴∠DPE +∠CPD =∠CPA +∠CPD ,∴∠APD =∠CPE ,在△APD 和△CPE 中,∠PAD =∠PCEPC =PA ∠APD =∠CPE,∴△APD ≌△CPE ASA ,∴PD =PE ;(3)解:△PBE 能成为等腰三角形,①当BE =BP ,点E 在CB 的延长线上时,则∠E =∠BPE ,又∵∠E +∠BPE =∠ABC =45°,∴∠PEB =22.5°;②当BE =BP ,点E 在CB 上时,则∠PEB =∠BPE =12180°-45° =67.5°;③当EP =EB 时,则∠B =∠BPE =45°,∴∠PEB =180°-∠B -∠BPE =90°;④当EP =PB ,点E 和C 重合,∴∠PEB =∠B =45°;综上所述,△PBE 能成为等腰三角形,∠PEB 的度数为22.5°或67.5°或90°或45°.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的性质,全等三角形的判定和性质,利用分类讨论思想解答是解题的关键.3在Rt△ABC中,AC=BC,∠ACB=90°,点O为AB的中点.(1)若∠EOF=90°,两边分别交AC,BC于E,F两点.①如图1,当点E,F分别在边AC和BC上时,求证:OE=OF;②如图2,当点E,F分别在AC和CB的延长线上时,连接EF,若OE=6,则S△EOF=.(2)如图3,若∠EOF=45°,两边分别交边AC于E,交BC的延长线于F,连接EF,若CF=3,EF=5,试求AE的长.【答案】(1)①见解析;②18(2)2【分析】(1)①由“ASA”可证△AOE≌△COF,可得OE=OF;②由“ASA”可证△COE≌△BOF,可得OE=OF=6,即可求解;(2)由“ASA”可证△COF≌△AOH,可得CF=AH=3,OF=OH,由“SAS”可证△EOF≌△EOH.,可得EF=EH=5,即可求解.【详解】(1)①证明:如图1,连接OC,∵AC=BC,∠ACB=90°,∴∠=∠B=45°.∵点O为AB的中点,∴∠AOC=∠EOF=90°,∴△AOC和△BOC是等腰直角三角形,∴AO=CO=BO,∴∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF;②解:如图2,连接OC,同理可证:AO=CO=BO,∠ABC=∠ACO=45°,∴∠OCE=∠OBF=135°,∵∠AOC=∠EOF=90°,∴∠COE=∠BOF,∴△COE≌△BOF(ASA),∴OE=OF=6,×OE⋅OF=18,∴SΔEOF=12故答案为:18;(2)解:如图3,连接CO,过点O作HO⊥FO,交CA的延长线于点H,∵AC=BC,∠ACB=90°,点O为AB的中点,∴AO=CO=B0,∠AOC=∠FOH=90°,∠BAC=∠BCO=45°,∴.∠COF=∠AOH,∠OCF=∠OAH=135°,∴△COF≌△AOH(ASA),∴CF=AH=3,OF=OH,∵∠EOF=45°,∠FOH=90°,∴∠EOF=∠EOH=45°,又∵OF=OH,EO=EO,∴△EOF≌△EOH(SAS),∴EF=EH=5,∴.AE=EH-AH=2.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.【类型二等腰三角形中底边无中点时,作高线】1如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.(1)如图1,求证:BD=CE;(2)如图2,当AD=CD时,过点C作CM⊥AD于点M,如果DM=2,求CD-BD的值.【答案】(1)见解析(2)4【分析】(1)过A作AH⊥BC于点H,根据三线合一可得:BH=CH,DH=EH,即可证明;(2)过A作AH⊥BC于点H,易证△AHD≌△CMD,可得MD=DH,即可求解.【详解】(1)证明:如图过A作AH⊥BC于点H,∵AB=AC,AH⊥BC,∴BH=CH,∵AD=AE,∴DH=EH,∴BD=CE;(2)解:过A作AH⊥BC于点H,在△AHD 和△CMD 中,∠CDM =∠ADH∠CMD =∠AHD =90°CD =AD∴△AHD ≌△CMD AAS ,∴DH =MD ,∴CD -BD =CH +DH -BH -DH =2DH =2MD =4.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质“三线合一”,熟练掌握全等三角形的判定方法是解题的关键.【变式训练】1如图,△ADB 与△BCA 均为等腰三角形,AD =AB =CB ,且∠ABC =90°,E 为DB 延长线上一点,∠DAB =2∠EAC.(1)若∠EAC =20°,求∠CBE 的度数;(2)求证:AE ⊥EC ;(3)若BE =a ,AE =b ,CE =c ,求△ABC 的面积(用含a ,b ,c 的式子表示).【答案】(1)20°(2)见解析(3)12a 2+12bc 【分析】(1)先,是等腰三角形性质与三角形内角和定理求出∠D =∠DBA =70°,即可由∠CBE =180°-∠DBA -∠ABC 求解;(2)过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,证明△BAF ≌△CBG AAS ,得出AF =BG ,BF =CG ,进而求得∠AEF =∠ACB =45°,∠CEG =∠AEF =45°,即可得出∠AEC =90°,从而得出结论;(3)由(2)可知CG =BF ,AF =EF ,从而有CG =BF =EF -BE =AF -BE ,再根据S △ABC =S △AEB +S △AEC -S △BEC ,则有S △ABC =12BE ⋅AF +12AE ⋅EC -12BE ⋅CG =12BE AF -CG +12AE ⋅EC =12BE ⋅BE +12AE ⋅EC ,即可求解.【详解】(1)解:∵∠EAC =20°,∠DAB =2∠EAC ,∴∠BAD =40°,∵AD =AB ,∴∠D =∠DBA =12180°-∠BAD =12180°-40° =70°,又∵∠ABC =90°,∴∠CBE =180°-70°-90°=20°.(2)证明:过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,∴∠AFB =∠ABC =∠CGB =90°,又∵AD =AB =CB ,∴∠BAC =∠ACB =45°,∠FAB =12∠DAB =∠CAE ,∵∠FAB +∠FBA =∠FBA +∠CBG =90°,∴∠FAB =∠CBG =∠CAE ,∴在△BAF 和△CBG 中,∠BAF =∠CBG∠AFB =∠CGB AB =BC,∴△BAF ≌△CBG AAS ,∴AF =BG ,BF =CG ,∵∠CBG =∠CAE ,设AE 、BC 交于点O ,则∠AEF =180°-∠CBG -∠BOE∠ACB =180°-∠CAE -∠AOC又∠BOE =∠AOC ,∴∠AEF =∠ACB =45°,∴AF =EF =BG ,BF =CG ,∴BF =EG =CG ,∴∠CEG =∠AEF =45°,∴∠AEC =90°,∴AE ⊥EC .(3)解:由(2)可知CG =BF ,AF =EF ,∴CG =BF =EF -BE =AF -BE ,∵S △ABC =S △AEB +S △AEC -S △BEC ,∴S △ABC =12BE ⋅AF +12AE ⋅EC -12BE ⋅CG .=12BE AF -CG +12AE ⋅EC =12BE ⋅BE +12AE ⋅EC =12a 2+12bc .【点睛】本题考查等腰三角形的性质与判定,等腰直角三角形的性质,三角形内角和,三角形外角性质,全等三角形的判定与性质,三角形面积,属三角形综合题目,难度适中.2已知OP 平分∠MON ,如图1所示,点B 在射线OP 上,过点B 作BA ⊥OM 于点A ,在射线ON 上取一点C ,使得BC =BO .(1)若线段OA =3cm ,求线段OC 的长;(2)如图2,点D 是线段OA 上一点,作∠DBE ,使得∠DBE =∠ABO ,∠DBE 的另一边交ON 于点E ,连接DE .①∠OBC =2∠DBE 是否成立,请说明理由;②请判断三条线段CE ,OD ,DE 的数量关系,并说明理由.【答案】(1)6cm(2)①∠OBC =2∠DBE 成立,理由见解析;②CE =OD +DE ,理由见解析【分析】(1)如图所示,过点B作BH⊥OC于H,由三线合一定理得到OC=2OH,由角平分线的定义得到∠BOA=∠BOH,进一步证明△BAO≌△BHO,得到OH=OA=3cm,则OC=2OH=6cm;(2)①如图所示,过点B作BH⊥OC于H,由三线合一定理得到∠OBC=2∠OBH,同(1)可得△BAO≌△BHO,则∠OBH=∠OBA,由∠DBE=∠ABO,即可推出∠OBC=2∠OBH=2∠DBE;②如图所示,在CE上截取CQ=OD,连接BQ,先证明∠BOD=∠BCQ,进而证明△BOD≌△BCQ,得到BD=BQ,∠OBD=∠CBQ,进一步证明∠EBQ=∠EBD,从而证明△EBD≌△EBQ,得到DE=QE,由CE=CQ+QE可证明CE=OD+DE.【详解】(1)解:如图所示,过点B作BH⊥OC于H,∵BC=OB,BH⊥OC,∴OH=CH,即OC=2OH,∵OP平分∠MON,∴∠BOA=∠BOH,∵BA⊥OM,BH⊥OC,∴∠BAO=∠BHO=90°,又∵OB=OB,∴△BAO≌△BHO AAS,∴OH=OA=3cm,∴OC=2OH=6cm(2)解:①∠OBC=2∠DBE成立,理由如下:如图所示,过点B作BH⊥OC于H,∵BC=OB,BH⊥OC,∴∠OBH=∠CBH,即∠OBC=2∠OBH,同(1)可得△BAO≌△BHO,∴∠OBH=∠OBA,∵∠DBE=∠ABO,∴∠DBE=∠OBH,∴∠OBC=2∠OBH=2∠DBE;②CE=OD+DE,理由如下:如图所示,在CE上截取CQ=OD,连接BQ,∵OB=BC,∴∠BOC=∠BCO,∵△BAO≌△BHO,∴∠BOA=∠BOH,∴∠BOD=∠BCQ,∴△BOD≌△BCQ SAS,∴BD=BQ,∠OBD=∠CBQ,∠OBC,∵∠DBE=12∠OBC,∴∠OBD+∠ODE=12∴∠CBQ+∠ODE=1∠OBC,∴∠EBQ =12∠OBC ,∴∠EBQ =∠EBD ,又∵EB =EB ,∴△EBD ≌△EBQ SAS ,∴DE =QE ,∵CE =CQ +QE ,∴CE =OD +DE .【点睛】本题主要考查了全等三角形的性质与判定,三线合一定理,正确作出辅助线构造全等三角形是解题的关键.【类型三巧用“角平分线+垂线合一”构造等腰三角形】1如图,在△ABC 中,AD 平分∠BAC ,E 是BC 的中点,过点E 作FG ⊥AD 交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF =AG ;(2)BF =CG .【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明△AHF ≌△AHG ,即可得出AF =AG ;(2)过点C 作CM ∥AB 交FG 于点M ,由△AHF ≌△AHG 可得∠AFH =∠G ,根据平行线的性质得出∠CMG =∠AFH ,可得∠CMG =∠G ,进而得出CM =CG ,再根据据ASA 证明△BEF ≌△CEM ,得出BF =CM ,等量代换即可得到BF =CG .【详解】(1)证明:∵AD 平分∠BAC ,∴∠FAH =∠GAH ,∵FG ⊥AH ,∴∠AHF =∠AHG =90°,在△AHF 和△AHG 中,∠FAH =∠GAHAH =AH ∠AHF =∠AHG,∴△AHF ≌△AHG ASA,∴AF =AG ;(2)证明:过点C 作CM ∥AB 交FG 于点M ,∵△AHF ≌△AHG ,∴∠AFH =∠G ,∵CM ∥AB ,∴∠CMG =∠AFH ,∴∠CMG =∠G ,∴CM =CG ,∵E 是BC 的中点,∴BE =CE ,∵CM ∥AB ,∴∠B =∠ECM ,在△BEF 和△CEM 中,∠B =∠ECMBE =CE ∠BEF =∠CEM,∴△BEF ≌△CEM ASA ,∴BF =CM ,∴BF =CG .【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】1如图所示,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若BD =1,BC =3,求:线段AC的长.【答案】5【分析】延长BD 交AC 于点E ,由题意可推出BE =AE ,依据等角的余角相等,即可得等腰三角形BCE ,可推出BC =CE ,AE =BE =2BD ,根据BD =1,BC =3,即可求出AC 的长度.【详解】解∶延长BD 交AC 于点E ,∵∠A =∠ABD ,∴BE =AE ,∵BD ⊥CD ,∴BE ⊥CD ,∴∠BDC =∠EDC =90°,∴∠BCD +∠EBC =∠ECD +∠BEC =90°,∵CD 平分∠ACB ,∴∠BCD =∠ECD ,∴∠EBC =∠BEC ,∴BC =CE,∵BE ⊥CD ,∴BE =2BD ,∵BD =1,BC =3,∴BE =2,CE =3,∴AE =BE =2,∴AC =AE +EC =2+3=5.【点睛】本题主要考查等腰三角形的判定与性质,解题的关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.2如图,AD 为△ABC的角平分线.(1)如图1,若CE ⊥AD 于点F ,交AB 于点E ,AB =8,AC =5.则BE =.(2)如图2,若∠C =2∠B ,点E 在AB 上,且AE =AC ,AB =a ,AC =b ,求CD 的长;(用含a 、b 的式子表示)(3)如图3,BG ⊥AD ,点G 在AD 的延长线上,连接CG ,若△ACG 的面积是7,求△ABC 的面积.【答案】(1)3(2)a -b(3)14【分析】(1)利用ASA 证明△AEF ≌△ACF ,得出AE =AC =5,再利用BE =AB -AE 即可求得答案;(2)利用SAS 证明△AED ≌△ACD ,得出∠AED =∠C ,ED =CD ,由题意可得出BE =AB -AE =a -b ,再利用等角对等边证得DE =BE ,即可得出答案;(3)延长AC 、BG 交于H ,先证明△ABG ≌△AHG ,得出:BG =GH ,S △ABG =S △AHG ,利用等底等高的两个三角形面积相等可得S △CBG =S △CGH ,设S △CBG =S △CGH =x ,即可得出答案.【详解】(1)解:∵AD 平分∠BAC ,∴∠EAF =∠CAF ,∵CE ⊥AD ,∴∠AFE =∠AFC =90°,在△AEF 和△ACF 中,∠EAF =∠CAFAF =AF ∠AFE =∠AFC,∴△AEF ≌△ACF ASA ∴AE =AC =5,∵AB =8,∴BE =AB -AE =8-5=3;故答案为:3.(2)解:∵AD 平分∠BAC ,∴∠EAD =∠CAD ,在△AED 和△ACD 中,AE =AC∠EAD =∠CAD AD =AD,∴△AED ≌△ACD SAS ,∴∠AED =∠C ,ED =CD ,∵AE =AC ,AB =a ,AC =b ,∴BE =AB -AE =a -b ,在△BDE 中,∠AED =∠B +∠BDE ,∴∠C =∠B +∠BDE ,∵∠C =2∠B ,∴∠B =∠BDE ,∴DE =BE =a -b ,∴CD =a -b ;(3)解:如图,延长AC 、BG 交于H ,∵AD 平分∠BAC ,∴∠BAG =∠HAG ,∵BG ⊥AD ,∴∠AGB =∠AGH =90°,在△ABG 和△AHG 中,∠BAG =∠HAGAG =AG ∠AGB =∠AGH,∴△ABG ≌△AHG ASA ,∴BG =GH ,S △ABG =S △AHG ,∴S △CBG =S △CGH ,设S △CBG =S △CGH =x ,∵S △ACG =7,∴S △AGH =S △ACG +S △CGH =7+x ,∴S △ABG =S △AHG =7+x ,∴S △ABH =27+x =14+2x ,∴S △ABC =S △ABH -S △CBG +S △CGH =14+2x -x +x =14.【点睛】本题考查了角平分线定义,三角形面积,全等三角形的判定和性质,等腰三角形判定和性质等,熟练掌握全等三角形的判定和性质是解题关键.3△ABC 中,∠ACB =90°,AC =BC ,点D 是BC 边上的一个动点,连接AD 并延长,过点B 作BF ⊥AD 交AD 延长线于点F.(1)如图1,若AD 平分∠BAC ,AD =6,求BF 的值;(2)如图2,M 是FB 延长线上一点,连接AM ,当AD 平分∠MAC 时,试探究AC 、CD 、AM 之间的数量关系并说明理由;(3)如图3,连接CF ,①求证:∠AFC =45°;②S △BCF =354,S △ACF =21,求AF 的值.【答案】(1)3(2)AC +CD =AM ,理由见解析(3)①证明见解析;②12【分析】(1)如图,分别延长AC ,BF 交于点E .证明△ADC ≌△BEC ASA ,得到BE =AD =6,再证明△ABF ≌△AEF ,即可得到BF =EF =12BE =3;(2)如图,分别延长BF ,AC 交于点E ,由(1)可得△ACD ≌△BCE ,得CD =CE ,再证△AFM ≌△AFE 得到AM =AE ,由此可得结论;(3)如图所示,在AD 上截取AH =BF ,证明△ACH ≌△BCF ,得到CH =CF ,∠ACH =∠BCF ,进一步证明∠HCF =90°,则∠CFH =∠CHF =180°-∠HCF 2=45°;②如图所示,过点C 作CG ⊥HF 于G ,则△CGH 、△CGF 都是等腰直角三角形,可得GH =GF =GC ,由全等三角形的性质得到S △ACH =S △BCF =354则S △CHF =S △ACF -S △ACH =494,据此求出HF =7,则CG =3.5,进一步求出AH =5则AF =AH +HF =12.【详解】(1)解:如图,分别延长AC ,BF 交于点E .∵BF ⊥AD ,∴∠AFB =∠ACB=90°,又∵∠ADC =∠BDF ,∴∠DAC =∠EBC .在△ADC 和△BEC 中,∠DAC =∠EBCAC =BC∠ACD =∠BCE =90°∴△ADC ≌△BEC ASA .∴BE =AD =6;∵BF ⊥AD ,∴∠AFB =∠AFE =90°,∵AD 平分∠BAC ,∴∠BAF =∠EAF .在△ABF 和△AEF 中,∠BAF =∠EAFAF =AF∠AFB =∠AFE∴△ABF ≌△AEF ASA .∴BF =EF =12BE =3;(2)解:AC +CD =AM ,理由如下:如图所示,延长MF ,AC 交于点E .由(1)可得,△ADC ≌△BCE ,∴CD =CE .∵BF ⊥AD ,∴∠AFM =∠AFE =90°,∵AF 平分∠MAE ,∴∠MAF =∠EAF .在△AMF 和△AEF 中,∠MAF =∠EAFAF =AF∠AFM =∠AFE∴△AFM ≌△AFE ASA .∴AM =AE .∵AE =AC +CE =AC +CD .∴AC +CD =AM .(3)解:①如图所示,在AD 上截取AH =BF ,在△ACH 和△BCF 中,AH =BF∠CAH =∠CBF AC =BC,∴△ACH ≌△BCF SAS ,∴CH =CF ,∠ACH =∠BCF ,∵∠ACH +∠BCH =90°,∴∠BCF +∠BCH =90°,即∠HCF =90°,∴∠CFH =∠CHF =180°-∠HCF 2=45°;②如图所示,过点C 作CG ⊥HF 于G ,∴∠GCH =GCF =45°,∴△CGH 、△CGF 都是等腰直角三角形,∴GH =GF =GC ,∵△ACH ≌△BCF ,∴S △ACH =S △BCF =354∴S △CHF=S △ACF -S △ACH =494,∴12HF ⋅CG =494,即12HF ⋅12HF =494,∴HF =7,∴CG=3.5,∴1 2AH×3.5=354,∴AH=5,∴AF=AH+HF=12.【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,三角形内角和定理,三角形面积,等腰直角三角形的性质与判定等等,正确作出辅助线构造全等三角形是解题的关键.4(2022春·河北石家庄·八年级校考期中)(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP平分∠MON.点A为OM上一点,过点A作AC⊥OP,垂足为C,延长AC交ON于点B,可根据证明△AOC≌△BOC,则AO=BO,AC= BC(即点C为AB的中点).(2)【类比解答】如图2,在△ABC中,CD平分∠ACB,AE⊥CD于E,若∠EAC=63°,∠B=37°,通过上述构造全等的办法,可求得∠DAE=.(3)【拓展延伸】如图3,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,试探究BE和CD的数量关系,并证明你的结论.(4)【实际应用】如图4是一块肥沃的三角形土地,其中AC边与灌渠相邻,李伯伯想在这块地中划出一块直角三角形土地进行水稻试验,故进行如下操作:①用量角器取∠ACB的角平分线CD;②过点A作AD⊥CD于D.已知BC=13,AC=10,△ABC面积为20,则划出的△ACD的面积是多少?请直接写出答案.【答案】(1)ASA(2)26°(3)BE=12CD,证明见解析(4)△ACD的面积是10013【分析】(1)证△AOC≌△BOC(ASA),得AO=BO,AC=BC即可;(2)延长AE交BC于点F,由问题情境可知,AC=FC,再由等腰三角形的性质得∠EFC=∠EAC=63°,然后由三角形的外角性质即可得出结论;(3)拓展延伸延长BE、CA交于点F,证△ABF≌△ACD(ASA),得BF=CD,再由问题情境可知,BE=FE =12BF ,即可得出结论;(4)实际应用延长AD 交BC 于E ,由问题情境可知,AD =ED ,EC =AC =10,则S △ACD =S △ECD ,再由三角形面积关系得S △ACE =1013S △ABC =20013,即可得出结论.【详解】(1)解:∵OP 平分∠MON ,∴∠AOC =∠BOC ,∵AC ⊥OP ,∴∠ACO =∠BCO ,∵OC =OC ,∴△AOC ≌△BOC (ASA ),∴AO =BO ,AC =BC ,故答案为:ASA ;(2)解:如图2,延长AE 交BC 于点F ,由可知,AC =FC ,∴∠EFC =∠EAC =63°,∵∠EFC =∠B +∠DAE ,∴∠DAE =∠EFC -∠B =63°-37°=26°,故答案为:26°;(3)解:BE =12CD ,证明如下:如图3,延长BE 、CA 交于点F ,则∠BAF =180°-∠BAC =90°,∵BE ⊥CD ,∴∠BED =90°=∠BAC ,∵∠BDC =∠ABF +∠BED =∠ACD +∠BAC ,∴∠ABF =∠ACD ,又∵AB =AC ,∴△ABF ≌△ACD (ASA ),∴BF =CD ,由问题情境可知,BE =FE =12BF ,∴BE =12CD ;(4)解:如图4,延长AD 交BC 于E ,由问题情境可知,AD =ED ,EC =AC =10,∴S △ACD =S △ECD ,∵S △ABC =20,∴S △ACE =1013S △ABC =20013,∴S △ACD =12S △ACE =10013,答:△ACD 的面积是10013.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质、三角形的外角性质、角平分线定义以及三角形面积等知识,本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。

中考数学几何经典模型之“三垂直模型”.doc

中考数学几何经典模型之“三垂直模型”.doc

中考数学几何经典模型之“三垂直模型”两个全等的三角形△ACD≌△BEC,拼成如图形状,使得A、C、B三点共线。

条件:△ACD≌△BEC结论:1、△DCE是等腰直角三角形2、AB=AD+BE二、模型变形:条件:△ABD≌△BEC结论:1、BD⊥CE2、AC=BE-AD三、模型应用:在下列各图中构造出三垂直模型:1、△OCD为等腰直角三角形2、四边形OABC为正方形“三垂直模型”是一个应用非常广泛的模型,它可以应用在三角形,矩形,平面直角坐标系,网格,一次函数,反比例函数,三角函数,二次函数以及圆等诸多的中考重要考点之中,所以掌握好这一模型会使你在中考中技高一筹,下面看一道典型例题,从这道题大家可以体会到“三垂直模型”的强大之处。

例题分析:如图,在△ABC中,∠C=90°,D、E分别为BC、AC上一点,BD=AC,DC=AE,BE与AD交于点P,求∠ADC+∠BEC.如图,过点B作BF⊥BC,且BF=AE=CD,连接AF,∠FBC=90°∵∠C=90°,∴AC⊥BC,∠FBC=∠DCA.∴BF∥AC,∴四边形AFBE为平行四边形.∴∠BFA=∠AEB.在△BDF和△CAD中,BF=CD∠FBC=∠DCABD=CA∴△BDF≌△CAD(SAS).∴∠BFD=∠ADC,∠BDF=∠DAC,DF=DA.∵∠ADC+∠DAC=90°,∴∠ADC+∠BDF=90°,∴∠ADF=90°,∴∠DFA=∠DAF=45°.∵∠AEB+∠BEC=180°,∴∠AFB+∠BEC=180°,∴∠BFD+∠DFA+∠BEC=180°,∴∠ADC+∠AFD+∠BEC=180°,∠ADC+∠BEC=135°.故答案为:135.。

三垂直全等模型

三垂直全等模型

三垂直全等模型模型 三垂直全等模型如图:∠D =∠BCA =∠E =90°,BC =AC .结论:Rt △BCD ≌Rt △CAE .模型分析说到三垂直模型,不得不说一下弦图,弦图的运用在初中直角三角形中占有举足轻重的地位,很多利用垂直求角,勾股定理求边长,相似求边长都会用到从弦图支离出来的一部分几何图形去求解.图①和图②就是我们经常会见到的两种弦图. 图①图②三垂直图形变形如下图③、图④,这也是由弦图演变而来的.图③A图④DE ABC例1 如图,AB ⊥BC ,CD ⊥BC ,AE ⊥DE ,AE =DE ,求证:AB +CD =BC . DAB证明:∵AE ⊥DE ,AB ⊥BC ,DC ⊥BC ,∴∠AED =∠B =∠C =90°.∴∠A +∠AEB =∠AEB +∠CED =90°.∴∠BAE =∠CED .在△ABE 和△ECD 中,B C A CED AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△ABE ≌△ECD . A∴AB =EC ,BE =CD .∴AB +CD =EC +BE =BC.例2 如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE 于D ,AD =2.5cm ,BE =0.8cm ,则DE 的长为多少? EDA解答:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°.∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CEB ≌△ADC .∴BE =DC =0.8cm ,CE =AD =2.5cm .∴DE =CE -CD =2.5-0.8=1.7cm .例3 如图,在平面直角坐标系中,等腰Rt △ABC 有两个顶点在坐标轴上,求第三个顶点的坐标. xy图①BA (0,3)C (-2,0)O x y 图②C (0,3)A O B (-1,0)解答:(1)如图③,过点B 作BD ⊥x 轴于点D .∴∠BCD +∠DBC =90°.由等腰Rt △ABC 可知,BC =AC ,∠ACB =90°,∴∠BCD +∠ACO =90°.∴∠DBC =∠ACO .在△BCD 和△CAO 中,BDC AOC DBC ACO BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BCD ≌△CAO .∴CD =OA ,BD =OC .∵OA =3,OC =2.∴CD =3,BD =2.∴OD =5.∴B (-5,2). xy图③BA (0,3)C (-2,0)OD(2)如图④,过点A 作AD ⊥y 轴于点D .在△ACD 和△CBO 中,ADC COB DAC OCB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBO .∴CD =OB ,AD =CO .∵B (-1,0),C (0,3)∴OB =1,OC =3.∴AD =3,OD =2.∴OD =5.∴A (3,2). xy图④C (0,3)A OB (-1,0)D1.如图,正方形ABCD ,BE =CF .求证:(1)AE =BF ;(2)AE ⊥BF .FA证明:(1)∵四边形ABCD 是正方形,∴AB =BD ,∠ABC =∠BCD =90°.在△ABE 和△BCF 中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△BCF .∴AE =BF .(2)∵△ABE ≌△BCF .∴∠BAE =∠CBF .∵∠ABE =90°,∴∠BAE +∠AEB =90°.∴∠CBF +∠AEB =90°.∴∠BGE =90°,∴AE ⊥BF .2.直线l 上有三个正方形a 、b 、c ,若a 、c 的面积分别是5和11,则b 的面积是_____. c b aD A解答:∵a 、b 、c 都是正方形,∴AC =CD ,∠ACD =90°.∵∠ACB +∠DCE =∠ACB +∠BAC =90°,∴∠BAC =∠DCE .在△ABC 和△CBE 中,ABC CED BAC DCE AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△CDE .∴AB =CE ,BC =DE .在Rt △ABC 中,2AC =2AB +2BC =2AB +2DE即b S =a S +c S =5+11=16.3.已知,△ABC 中,∠BAC =90°,AB =AC ,点P 为BC 上一动点(BP <CP ),分别过B 、C 作BE ⊥AP 于E 、CF ⊥AP 于F .(1)求证:EF =CF -BE ;(2)若P 为BC 延长线上一点,其它条件不变,则线段BE 、CF 、EF 是否存在某种确定的数量关系?画图并直接写出你的结论.FC A BPP解答:∵BE ⊥AP ,CF ⊥AP ,∴∠AEB =∠AFC =90°.∴∠F AC +∠ACF =90°,∵∠BAC =90°,∴∠BAE +∠F AC =90°,∴∠BAE =∠ACF .在△ABE 和△CAF 中,AEB AFC BAE ACF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CAF .∴AE =CF ,BE =AF .∵EF =AE -AF ,∴EF =CF -BE .(2)如图,EF =BE +CF .理由:同(1)易证△ABE ≌△CAF .∴AE =CF ,BE =AF .∵EF =AE +AF ,∴EF = BE + CF . FA4.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,设∠BCD =α,以D 为旋转中心,将 腰DC 绕点D 逆时针旋转90°至DE .(1)当α=45°时,求△EAD 的面积;(2)当α=45°时,求△EAD 的面积;(3)当0°<α<90°,猜想△EAD 的面积与α大小有无关系?若有关,写出△EAD 的面积S 与α的关系式;若无关,请证明结论.D解答:(1)1;(2)1;(3)过点D 作DG ⊥BC 于点G ,过点E 作EF ⊥AD 交AD 延长线于点F .∵AD ∥BC ,DG ⊥BC ,∴∠GDF =90°.又∵∠EDC =90°,∴∠1=∠2.在△CGD 和△EFD 中,12DGE DFE CD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DCG ≌△DEF∴EF =CG ,∵AD ∥BC ,AB ⊥BC ,AD =2,BC =3,∴BG =AD =2,∴CG =1.∴EAD S =12AD ·EF =1. ∴△EAD 的面积与α大小无关. 12FD5.向△ABC 的外侧作正方形ABDE 、正方形ACFG ,过A 作AH ⊥BC 于H ,AH 的反向延长线与EG 交于点P . 求证:BC =2AP . PE AG解答:过点G 作GM ⊥AP 于点M ,过点E 作EN ⊥AP 交AP 延长线于点N .∵四边形ACFG 是正方形,∴AC =AG ,∠CAG =90°.∴∠CAH +∠GAM =90°.又∵AH ⊥BC ,∴∠CAH +∠ACH =90°.∴∠ACH =∠GAM .在△ACH 和△GAM 中,AHC GMA ACH GAM AC GA ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△ACH ≌△GAM∴CH =AM ,AH =GM .同理可证△ABH ≌△EAN∴BH =AN ,AH =EN .∴EN =GM .在△EPN 和△GPM 中, EPN GPM ENP GMP EN GM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EPN ≌△GPM . ∴NP =MP ,∴BC =BH +CH=AN +AM=AP +PN +AP -PM =2AP . P EAG M。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

45°45°C BA D CB A题型一:等腰直角三角形模型思路导航等腰直角三角形数学模型思路:⑴利用特殊边特殊角证题(AC=BC 或904545︒︒°,,).如图1; ⑵常见辅助线为作高,利用三线合一的性质解决问题.如图2; ⑶补全为正方形.如图3,4.图1 图2图3 图4全等三角形的经典模型(一)ABCOMN AB COMN典题精练【例1】 已知:如图所示,Rt △ABC 中,AB =AC ,90BAC ∠=°,O 为BC 的中点,⑴写出点O 到△ABC 的三个顶点A 、B 、C 的距离的关系(不要求证明)⑵如果点M 、N 分别在线段AC 、AB 上移动,且在移动中保持 AN =CM .试判断△OMN 的形状,并证明你的结论. ⑶如果点M 、N 分别在线段CA 、AB 的延长线上移动,且在移动中保持AN =CM ,试判断⑵中结论是否依然成立,如果是请给出证明. 【解析】 ⑴OA =OB =OC⑵连接OA ,∵OA =OC 45∠=∠=BAO C ° AN =CM ∴△ANO ≌△CMO∴ON =OM∴∠=∠NOA MOC∴90∠+∠=∠+∠=︒NOA BON MOC BON ∴90∠=︒NOM∴△OMN 是等腰直角三角形⑶△ONM 依然为等腰直角三角形, 证明:∵∠BAC =90°,AB =AC ,O 为BC 中点 ∴∠BAO =∠OAC =∠ABC =∠ACB =45°, ∴AO =BO =OC ,∵在△ANO 和△CMO 中, AN CM BAO C AO CO =⎧⎪∠=∠⎨⎪=⎩∴△ANO ≌△CMO (SAS ) ∴ON =OM ,∠AON =∠COM , 又∵∠COM -∠AOM =90°, ∴△OMN 为等腰直角三角形.【例2】 两个全等的含30,60角的三角板ADE 和三角板ABC ,如图所示放置,,,E A C 三点在一条直线上,连接BD ,取BD 的中点M ,连接ME ,MC .试判断EMC △的形状,并说明理由.【解析】EMC △是等腰直角三角形. 证明:连接AM .由题意,得,90,90.DE AC DAE BAC DAB =∠+∠=∠= ∴DAB △为等腰直角三角形. ∵DM MB =,MEDCBA ABCOM NMEDCBAFE DCBANM 12A B CDE F312A BCDEF 3∴,45MA MB DM MDA MAB ==∠=∠=.∴105MDE MAC ∠=∠=, ∴EDM △≌CAM △.∴,EM MC DME AMC =∠=∠.又90EMC EMA AMC EMA DME ∠=∠+∠=∠+∠=. ∴CM EM ⊥,∴EMC △是等腰直角三角形.【例3】 已知:如图,ABC △中,AB AC =,90BAC ∠=°,D 是AC 的中点,AF BD ⊥于E ,交BC 于F ,连接DF . 求证:ADB CDF ∠=∠. 【解析】 证法一:如图,过点A 作AN BC ⊥于N ,交BD 于M .∵AB AC =,90BAC ∠=°, ∴345DAM ∠=∠=°.∵45C ∠=°,∴3C ∠=∠.∵AF BD ⊥,∴190BAE ∠+∠=°∵90BAC ∠=°,∴290BAE ∠+∠=°. ∴12∠=∠.在ABM △和CAF △中, 123AB AC C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABM CAF △≌△.∴AM CF =. 在ADM △和CDF △中, AD CD DAM C AM CF =⎧⎪∠=∠⎨⎪=⎩∴ADM CDF △≌△. ∴ADB CDF ∠=∠.证法二:如图,作CM AC ⊥交AF 的延长线于M . ∵AF BD ⊥,∴3290∠+∠=°, ∵90BAC ∠=°, ∴1290∠+∠=°, ∴13∠=∠.在ACM △和BAD △中, 1390AC ABACM BAD ∠=∠⎧⎪=⎨⎪∠=∠=⎩° ∴ACM BAD △≌△.∴M ADB ∠=∠,AD CM = ∵AD DC =,∴CM CD =. 在CMF △和CDF △中,PC B A P C B AD 45=⎧⎪∠=∠=⎨⎪=⎩CF CF MCF DCF CM CD ° ∴CMF CDF △≌△.∴M CDF ∠=∠ ∴ADB CDF ∠=∠.【例4】 如图,等腰直角ABC △中,90AC BC ACB =∠=,°,P 为ABC △部一点,满足 PB PC AP AC ==,,求证:15BCP ∠=︒.【解析】 补全正方形ACBD ,连接DP ,易证ADP △是等边三角形,60DAP ∠=︒,45BAD ∠=︒, ∴15BAP ∠=︒,30PAC ∠=︒,∴75∠=︒ACP , ∴15BCP ∠=︒.【探究对象】等腰直角三角形添补成正方形的几种常见题型 在解有关等腰直角三角形中的一些问题,若遇到不易解决或解法比较复杂时,可将等腰直角三角形引辅助线转化成正方形,再利用正方形的一些性质来解,常常可以起到化难为易的效果,从而顺利地求解。

例4为求角度的应用,其他应用探究如下:【探究一】证角等【备选1】如图,Rt △ABC 中,∠BAC =90°,AB =AC ,M 为AC 中点,连结BM ,作AD ⊥BM 交BC 于点D ,连结DM ,求证:∠AMB =∠CMD .21NFA BCDM E EMDCBA【解析】 作等腰Rt △ABC 关于BC 对称的等腰Rt △BFC ,延长AD 交CF 于点N ,∵AN ⊥BM ,由正方形的性质,可得AN =BM ,易证Rt △ABM ≌Rt △CAN ,∴∠AMB =∠CND ,CN =AM , ∵M 为AC 中点,∴CM =CN ,∵∠1=∠2,可证得△CMD ≌△CND ,∴∠CND =∠CMD , ∴∠AMB =∠CMD .【探究二】判定三角形形状【备选2】如图,Rt △ABC 中,∠BAC = 90°,AB =AC ,AD =CE ,AN ⊥BD 于点M ,延长BD 交NE 的延长线于点F ,试判定△DEF 的形状.ABCD E FNMKHM NFE D C BA【解析】 作等腰Rt △ABC 关于BC 对称的等腰Rt △BHC ,可知四边形ABHC 为正方形,延长AN 交HC 于点K , ∵AK ⊥BD ,可知AK =BD ,易证:Rt △ABD ≌Rt △CAK , ∴∠ADB =∠CKN ,CK =AD , ∵AD =EC ,∴CK =CE ,易证△CKN ≌△CEN ,∴∠CKN =∠CEN ,易证∠EDF =∠DEF ,∴△DEF 为等腰三角形.【探究三】利用等积变形求面积 【备选3】如图,Rt △ABC 中,∠A =90°,AB =AC ,D 为BC 上一点,DE ∥AC ,DF ∥AB ,且BE =4,CF =3,求S 矩形DF AE .GMN FED C B AF EDCB A【解析】 作等腰Rt △ABC 关于BC 的对称的等腰Rt △GCB ,可知四边形ABGC 为正方形,分别延长FD 、ED 交BG 、CG 于点N 、M , 可知DN =EB =4,DM =FC =3, 由正方形对称性质,可知S 矩形DF AE =S 矩形DMGN =DM ·DN =3 4=12.【探究四】求线段长【备选4】如图,△ABC 中,AD ⊥BC 于点D ,∠BAC =45°,BD =3,CD =2,求AD 的长.GFED CBADCBA【分析】此题若用面积公式结合勾股定理再列方程组求解是可以的,但解法太繁琐,本题尽管已知条件不是等腰直角三角形,但∵∠BAC =45°,若分别以AB 、AC 为对称轴作Rt △ADB 的对称直角三角形和Rt △ADC 的对称直角三角形,这样就出现两边相等且夹角为90°的图形,满足等腰直角三角形的条件,然后再引辅助线使之转化为正方形.【解析】 以AB 为轴作Rt △ADB 的对称的Rt △AEB ,再以AC 为轴作Rt △ADC 的对称的Rt △AFC .可知BE =BD =3,FC =CD =2,延长EB 、FC 交点G ,∵∠BAC =45°, 由对称性,可得∠EAF =90°,且AE =AD =AF , 易证四边形AFGE 为正方形,且边长等于AD , 设AD =x ,则BG =x -3,CG =x -2,在Rt △BCG 中,由勾股定理,得()()222235x x -+-=, 解得x =6,即AD =6.【探究五】求最小值【备选5】如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,M 为AC 的中点,P 为斜边AB 上的动点,求PM +PC 的最小值.M PDBCAMPB C A【解析】 将原图形通过引辅助线化归为正方形,即作Rt △ACB 关于AB 对称的Rt △ADB ,可知四边形ACBD 为正方形,连接CD ,可知点C 关于AB 的对称点D ,连接MD 交AB 于点P ,连接CP ,则PM +PC 的值为最小,最小值为:PM +PC =DM=C 1ABC ED D E(C )B AC 1C 1AB C ED 1AB CEDEDCBA 21题型二:三垂直模型常见三垂直模型例题精讲【引例】 已知AB ⊥BD ,ED ⊥BD ,AB =CD ,BC =DE ,⑴求证:AC ⊥CE ;⑵若将△CDE 沿CB 方向平移得到①②③④等不同情形,1AB C D =,其余条件不变,试判断AC ⊥C 1E 这一结论是否成立?若成立,给予证 明;若不成立,请说明理由.① ② ③ ④【解析】 ⑴∵AB ⊥BD ,ED ⊥BD∴90∠=∠=︒B D 在ABC △与CDE△中 =⎧⎪∠=∠⎨⎪=⎩AB CDB D BC DE ∴ABC CDE △≌△(SAS )∴1∠=∠E ∵290∠+∠=︒E∴90∠=︒ACE ,即AC ⊥CE⑵ 图①②③④四种情形中,结论永远成立,证明方法与⑴完全类似,只要证明1ABC C DE △≌△∴1∠=∠ACB C ED∵1190∠+∠=︒C ED DC E∴190∠+∠=︒DC E ACBxx∴AC⊥C1E典题精练【例5】正方形ABCD中,点A、B的坐标分别为()010,,()84,,点C在第一象限.求正方形边长及顶点C的坐标.(计算应用:在直角三角形中,两条直角边的平方和等于斜边的平方.)【解析】过点C作CG⊥x轴于G,过B作BE⊥y轴于E,并反向延长交CG于F 点A、B的坐标分别为()010,,()84,∴BE=8,AE=6,∴AB=10∵四边形ABCD是正方形,∴AB=BC∵1390∠+∠=︒2390∠+∠=︒∴12∠=∠∵90AEB BFC∠=∠=︒∴△AEB≌△BFC∴CF=BE=8,BF=AE=6∴CG=12EF=14∴C(14,12),正方形的边长为10【点评】此题中三垂直模型:【例6】如图所示,在直角梯形ABCD中,90ABC∠=︒,AD BC∥,AB BC=,E是AB的中点,CE BD⊥.⑴求证:BE AD=;⑵求证:AC是线段ED的垂直平分线;⑶DBC△是等腰三角形吗?请说明理由.【解析】⑴∵90ABC∠=︒,BD EC⊥,∴9090ECB DBC ABD DBC∠+∠=︒∠+∠=︒,,∴ECB ABD∠=∠,∵90ABC DAB∠=∠=︒,AB BC=,∴BAD CBE△≌△,∴AD BE=.⑵∵E是AB中点,∴EB EA=由⑴得:AD BE=,∴AE AD=∵AD BC∥,∴45CAD ACB∠=∠=︒,∵45BAC∠=︒,∴BAC DAC∠=∠由等腰三角形的性质,得:EM MD AM DE=⊥,即AC是线段ED的垂直平分线.⑶DBC△是等腰三角形,CD BD=由⑵得:CD CE=,由⑴得:CE BD=∴CD BD=,∴DBC△是等腰三角形.巅峰突破【例7】⑴如图1,△ABC是等边三角形,D、E分别是AB、BC上的点,且BD=CE,连接AE、CD相交于点P.请你补全图形,并直接写出∠APD的度数= ;⑵如图2,Rt△ABC中,∠B=90°,M、N分别是AB、BC上的点,且AM=BC、BM=CN,连接AN、CM相交于点P.请你猜想∠APM= °,并写出你的推理过程.【解析】⑴图略,60°⑵45°证明:作AE⊥AB且AE CN BM==.可证EAM△≌MBC△∴ME MC=,.AME BCM∠=∠∵90,CMB MCB∠+∠=︒∴90.CMB AME∠+∠=︒∴90.EMC∠=︒∴EMC△是等腰直角三角形,45.MCE∠=︒又△AEC ≌△CAN(SAS)∴.ECA NAC∠=∠∴EC∥AN.∴45.APM ECM∠=∠=︒EABCMNP图2图1P NMCB ACB AE D CBAABC DEF 复习巩固题型一 等腰直角三角形模型 巩固练习【练习1】 如图,△ACB 、△ECD 均为等腰直角三角形,则图中与△BDC 全等的三角形为_________.【解析】 △AEC【练习2】 如图,已知Rt ABC △中90ACB ∠=°,AC BC =,D 是BC 的中点,CE AD ⊥,垂足为E .BF AC ∥,交CE 的延长线于点F .求证:2AC BF =.【解析】 ∵90ACB ∠=°,BF AC ∥,∴90ACD CBF ∠=∠=°, 90ADC CAD ∠+∠=°. ∵CE AD ⊥,∴90FCB ADC ∠+∠=°, ∴CAD FCB ∠=∠. 又∵AC CB =,∴ADC CFB △≌△. ∴DC FB =.∵D 是BC 的中点, ∴2BC BF =, 即2AC BF =. 题型二 三垂直模型 巩固练习【练习3】 已知:如图,四边形ABCD 是矩形(AD >AB ),点E 在BC 上,且AE =AD ,DF ⊥AE ,垂足为F .请探求DF 与AB 有何数量关系?写出你所得到的结论并给予证明.【解析】 经探求,结论是:DF = AB .证明如下:∵四边形ABCD 是矩形,∴ ∠B = 90 , AD ∥BC , ∴ ∠DAF = ∠AEB .∵ DF ⊥AE , ∴ ∠AFD = 90,∵ AE = AD ,∴ABE DFA △≌△. ∴ AB = DF .【练习4】 如图,ABC △中,AC BC =,90BCA ∠=°,D 是AB 上任意一点,AE CD ⊥交CD 延长线于E ,BF CD ⊥于F .求证:EF BF AE =-.【解析】 根据条件,ACE ∠、CBF ∠都与BCF ∠互余,∴ACE CBF ∠=∠. 在ACE △和CBF △中,F A DC E B图2图1G GA B C D E FF E D C B A AC CB =,90AEC CFB ∠=∠=°,∴ACE CBF △≌△.则CE BF =,AE CF =,∴EF CE CF BF AE =-=-.【练习5】 四边形ABCD 是正方形.⑴如图1,点G 是BC 边上任意一点(不与B 、C 两点重合),连接AG ,作BF ⊥AG 于点F ,DE ⊥AG 于点E .求证:△ABF ≌△DAE ;⑵在⑴中,线段EF 与AF 、BF 的等量关系是 (直接写出结论即可,不需要证明);⑶如图2,点G 是CD 边上任意一点(不与C 、D 两点重合),连接AG ,作BF ⊥AG 于点F ,DE ⊥AG 于点E .那么图中全等三角形是 ,线段EF 与AF 、BF 的等量关系是 (直接写出结论即可,不需要证明).【解析】 ⑴在正方形ABCD 中,AB=AD ,90∠=BAD °∴90BAF DAE ∠+∠=°90∠+∠=︒BAF ABF∴ABF DAE ∠=∠在△ABF 和△DAE 中,,,∠=∠⎧⎪∠=∠⎨⎪=⎩ABF DAE AFB DEA AB DA ∴ABF DAE △≌△(AAS )⑵EF AF BF =-⑶△ABF ≌△DAEEF BF AF=-E CD B A F P Q M C B A课后测测试1. 问题:已知ABC △中,2BAC ACB ∠=∠,点D 是ABC △的一点,且AD CD =,BD BA =.探究DBC ∠与ABC ∠度数的比值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明. 当90BAC ∠=︒时,依问题中的条件补全右图.观察图形,AB 与AC 的数量关系为________;当推出15DAC ∠=︒时,可进一步推出DBC ∠的度数为_______; 可得到DBC ∠与ABC ∠度数的比值为_________.【解析】 相等;15° ;1:3测试2. 已知:如图,在△ABC 中,90ACB CD AB ∠=︒⊥,于点D ,点E 在AC 上,CE =BC ,过E 点作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【解析】 ∵FE AC ⊥于点E ,90ACB ∠=°,∴90FEC ACB ∠=∠=°.∴90F ECF ∠+∠=°.又∵CD AB ⊥于点D ,∴90A ECF ∠+∠=°.∴A F ∠=∠.在ABC △和FCE △中,,,,A F ACB FEC BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC FCE △≌△.∴AB FC =.测试3. 如图, Rt △ABC 中,∠C =90°,10cm AC =,5cm BC =,一条线段PQ =AB ,P ,Q 两点分别在AC 上和过A 点且垂直于AC 的射线AM 上运动. 当△ABC 和△APQ 全等时,点Q 到点A 的距离为___________ .【解析】 5cm 或10cm.。

相关文档
最新文档