正交试验结果的极差分析法
正交试验设计的理论分析方法及应用

正交试验设计的理论分析方法及应用一、本文概述正交试验设计是一种高效、系统的试验设计方法,广泛应用于工程、农业、医学等多个领域。
本文旨在深入探讨正交试验设计的理论分析方法及其应用。
我们将对正交试验设计的基本概念进行简要介绍,包括正交表、正交性等关键要素。
随后,本文将重点阐述正交试验设计的理论分析方法,包括试验设计原则、误差分析、方差分析等方面。
通过这些理论分析方法,我们可以有效地评估试验结果的可靠性和有效性。
在应用领域方面,本文将通过具体案例展示正交试验设计在多个领域的实际应用。
例如,在工程领域,正交试验设计可用于优化产品设计参数,提高产品质量;在农业领域,正交试验设计可用于研究作物生长条件,提高农作物产量;在医学领域,正交试验设计可用于药物筛选和临床试验,提高药物研发效率。
通过这些案例,我们将展示正交试验设计在实际问题中的独特优势和广泛应用价值。
本文还将对正交试验设计的未来发展进行展望,探讨其在新技术、新领域的应用前景。
通过本文的阐述,我们期望能够帮助读者更好地理解和应用正交试验设计,为推动相关领域的研究和实践提供有益的参考。
二、正交试验设计的基本原理与特点正交试验设计是一种高效、系统的试验设计方法,其核心原理在于通过正交表来安排试验,使得试验点分布均匀且具有代表性。
正交表是一种特殊类型的表格,其每一行代表一种试验条件组合,每一列则代表一个试验因素的不同水平。
通过正交表,研究者可以方便地选择出具有代表性的试验点,从而有效地减少试验次数,提高试验效率。
均衡分散性:正交表的设计保证了试验点在试验范围内分布均匀,每个试验点都具有代表性,从而能够全面反映试验因素与试验指标之间的关系。
整齐可比性:由于正交表的特殊结构,不同试验点之间具有良好的可比性。
这使得研究者可以方便地比较不同试验条件下的试验结果,从而得出准确的结论。
灵活性:正交试验设计可以根据实际需要进行调整和优化。
例如,当试验因素或水平发生变化时,可以通过调整正交表来适应新的试验需求。
第七章_极差分析

第一节 单指标正交试验设计及极差分析
在试验研究中,有时通过一轮试验不一 定能选出最优条件,特别是在缺乏有关资料 的情况下,往往要探索多次。这时要充分利 用因素与指标趋势图,确定下一步试验的研 究方向。
第二节
多指标正交试验设计及极差分析
在实际生产和科研中,一个试验往往要 同时考察几个指标,如液体葡萄糖生产工艺 试验,就同时考察四个指标:(1)产率,要 求越高越好;(2)还原糖含量,要求在32% 至40%之间;(3)透明度,要求比浊数越小 越好;(4)色泽,要求比色数越小越好。这 种考察的指标多于两个的正交试验,就称为 多指标正交试验。
第一节 单指标正交试验设计及极差分析
本例的最优工艺条件A2B3C3D1并不在实 施的9个试验之中,这表明优化结果不仅反映 了已做的试验信息。而且反映了全面试验信 息,因此,我们尽可放心的按正交表设计的 试验方案进行部分试验,而没有必要进行全 面试验。
第一节 单指标正交试验设计及极差分析
本例得出的最优工艺条件,只有在试验所 考虑的范围内才有意义,超出了这个范围, 情况可能发生变化。欲扩大适用范围,必须 再进行扩大范围的试验,能否扩大其适用范 围应有再次试验结果分析决定。如试验只使 用了一种果胶酶,如果改用其它果胶酶,本 例所找出的最优条件就不一定是最优条件, 就需要再次试验。
D 2(155) 1(150) 3(160) 1(150) 3(160) 2(155) 3(160) 2(155) 1(150) 67.0 63.1 64.4 22.3 21.0 21.5 1.3 8.9 6.8 6.2 2.97 2.27 2.07 0.90 10.3 9.0 8.2 3.43 3.00 2.73 0.7
第七章 正交试验设计的极差分析
2-4-3正交试验结果的极差分析法.pptx

试验条件是完全一样的(综合可比性),可进行直接比较。 如果因素A对试验指标无影响时,那么kA1、kA2、kA3应该相 等,不相等时说明,A因素的水平变动对试验结果有影响。
根据kA1、kA2、kA3的大小可以判断A1、A2、A3对试验指标 的影响大小。kA值愈接近要求值的水平是A因素的优水平。
K1
X
23.6
Y
2.6
Z
3.4
K2 21.8 2.4 2.7
4
K3 19.4 2.3 3.1
《高性能混凝土试验与检测》课程
学习情境2:高性能混凝土 拌合物性能检测及配合比设计
正交试验结果的极差分析法
主讲人: 高妮
正交试验结果的极差分析法
Kjm为第j列因素m水平所
对应的试验指标和,kjm
为Kjm平均值。由kjm大小
可以判断第j列因素优水
计算简便,直观,简单易懂,是平正和交优试组验合结。果分析最
例2:根据转化率试验结果计算极差R,并分析影响转化率因素的主次 顺序。
解例:计算的k值和R值如下表:
温度
时间
加碱量
以上计算后分析得到下面的试验结论
❖ 各条件的最优值: 温度3(90℃), 时间2(120分钟) ,加碱量2(6%) 。最佳工艺条件是 以上三个最优水平 的组合。
❖ 对转化率影响最大 的因素是温度,其 次是加碱量,时间 的影响最小。
(3) 绘制因素与指标趋势图
以各因素水平为横坐标,试验指标的平均值(kjm)为纵坐标 ,绘制因素与指标趋势图。由因素与指标趋势图可以更直观地看 出试验指标随着因素水平的变化而变化的趋势,可为进一步试验 指明方向。
极差分析法——精选推荐

直观分析法是通过对每一因素的平均极差来分析问题。
极差就是平均效果中最大值和最小值的差。
有了极差,就可以找到影响指标的主要因素,并可以帮助我们找到最佳因素水平组合。
第二节正交试验分析方法现在我们按表3-2-2进行试验,得到表3-2-3所示的试验结果。
我们如何分析试验结果,以得到上节中介绍的正交试验可以解决的三个问题呢?下面介绍正交试验的分析方法。
表3-2-3 铸铁性能试验参数一、直接对比法直接对比法就是对试验结果进行简单的直接对比。
对比表3-2-3的试验结果,可以看出第4号试验铸铁的抗拉强度最高,而第1 号试验抗拉强度最低。
这说明A1B2C2成分的铸铁强度最高。
这符合人们目前对铸铁性能的认识,即硅和锰提高铸铁的强度,而碳使强度降低。
进一步仔细观察,可以发现,抗拉强度较高的两组试验,硅含量都在高水平上,碳和锰却没有如此明显的规律。
这说明,在本试验中,硅是影响铸铁强度的主要因素。
直接对比法虽然对试验结果给出了一定的说明,但是这个说明是定性的,而且不能肯定地告诉我们最佳的成分组合是否包含小上述四组试验中。
显然这种分析方法虽然简单,但是不能令人满意。
二、直观分析法直观分析法是通过对每一因素的平均极差来分析问题。
所谓极差就是平均效果中最大值和最小值的差。
有了极差,就可以找到影响指标的主要因素,并可以帮助我们找到最佳因素水平组合。
直观分析法的具体做法如下:1. 首先计算各因素每个水平的平均效果和极差。
一般用罗马数字表示水平效果,用大写R表示极差,因素用角标表示。
根据表3-2-3试验结果,可以计算得=(240+280)/2=260=(250+270)/2=260R A==260-260=0用同样的方法,可得=(240+250)/2=245=(280+270)/2=275R B=275-245=30=(240+270)/2=255=(280+250)/2=265R C=265-255=10将计算结果加到表3-2-3中,得表3-2-4。
正交试验结果的极差分析法

正交试验结果的极差分析法正交试验方法能得到科技工作者的重视,在实践中得到广泛的应用,原因之一是不仅试验的次数减少,而且用相应的方法对试验结果进行分析可以引出许多有价值的结论。
因此,在正交试验中,如果不对试验结果进行认真的分析,并明确地引出应该引出的结论,那就失去用正交试验法的意义和价值。
下面以L4(23)表为例讨论正交试验结果的极差分析法。
表4-13 L4 (2 3)正交试验计算表在表4-13中:I j——第j列“1”水平所对应的试验指标的数值之和。
Ⅱj——第j列“2”水平所对应的试验指标的数值之和。
(第j列有“3”,“4”水平时)k j——第j列同一水平出现的次数。
等于试验的次数(n)除以第j列的水平数。
——第j列“1”水平所对应的试验指标的平均值。
——第j列“2”水平所对应的试验指标的平均值。
D j——第j列的极差。
等于第j列各水平对应的试验指标平均值中的最大值减最小值,即用极差法分析正交试验结果应引出以下几个结论:①在试验范围内,各列对试验指标的影响从大到小的排队。
某列的极差最大,表示该列的数值在试验范围内变化时,使试验指标数值的变化最大。
所以各列对试验指标的影响从大到小的排队,就是各列极差D的数值从大到小的排队。
②试验指标随各因素的变化趋势。
③使试验指标最好的适宜的操作条件(适宜的因素水平搭配)。
④对所得结论和进一步研究方向的讨论。
例4-5要求对例4-4的试验问题,写出应用正交试验设计方法的全过程,用极差法分析正交实验的结果。
解:试验目的:提高磺化反应的乙酰胺苯的收率。
试验指标:乙酰胺苯的收率表4-14因素水平表应考虑的交互作用:A×B,A×C选择的正交表:L8(27),表头设计及计算结果均见表4-15。
应该引出的四个结论如下:1.各列对试验指标影响大小的排队问题。
因为极差D3=D4=4.75最大,依次是D1=2.75,D2=D7=2.25,D6=1.75,最小是D5=0.75。
正交检验的极差分析和方差分析

为满足此要求,一般考虑用最小偏差平方和原则, 也就是使观测值与真值的偏差平方和达到最小.
4.2.2 参数点估计
由(4-4)可知,上述偏差平方和 令下列各偏导数为零
(i=1,2,…,k)
4.2.2 参数点估计
由
解得 由
解得
(4-7) (4-8)
4.2.2 参数点估计
并由此得 的估计量
至此,求得参数 的估计量
容易看出,自由度之间也有类似于分解定理的关系
(4-13)
4.2.4 显著性检验
参数 假设 检验 的假 设条 件
观测值(i=1,2,…,k;j=1,2,…,m) 相互独立
在水平Ai条件下, Yij(j=1,2,…m) 服从正态分布N
4.2.4 显著性检验
要判断在因素A的k个水平条件下真值之间是否 有显著性差异,
(4-9)
4.2.2 参数点估计
按照上述原则求参数估计量的方法称为最小二
乘法,
称为最小二乘估计量.
我们还可以证明 。
分别是参数
的无偏估计量
将 和 分别用它们的估计量代替,可以得到试验 误差 的估计量 ,
(4-10)
4.2.3 分解定理 自由度
为了由观测值的偏差中分析出各水平的效应,我们 研究三种偏差: , 和 .
8.2.1 数学模型和数据结构
为了便于比较和分析因素A的水平Ai对指标影响 的大小,通常把 再分解为
(i=1,2,…,k)
(4-5)
其中,
称为一般平均(Grand Mean),它是比
较作用大小的一个基点;
4.2.1 数学模型和数据结构
并且称 为第i个水平Ai的效应.它表示水平的真值比一般
水平差多少。满足约束条件
正交试验结果的极差分析与方差分析
实验报告实验三:正交试验结果的极差分析与方差分析课程名称考查学期姓名学号专业成绩任课教师实验三:正交试验结果的极差分析与方差分析一、实验目标熟练使用Excel和SPSS软件进行正交试验设计和结果分析二、实验要求按照1人/组的样式,所有成员都应该根据实验内容完成相应的任务。
三、仪器设备笔记本电脑与数据分析软件Excel、SPSS。
四、实验内容1. 正交试验数据的极差分析(Excel)大枣的微波干燥工艺研究,试验因素选取A微波功率(W)、B干燥时间(min)、C载样量(kg/m2),以干燥大枣中总黄酮的含量为指标(越高越好),试选出最优工艺条件。
表3-1. 因素水平表水平试验因素A(微波功率/W)B(干燥时间/min)C(载样量/kg/m2)1150105 22501510 33502015表3-2. 干燥大枣中的总黄酮含量试验号微波功率A干燥时间B空列载样量C总黄酮含量1(mg/g)总黄酮含量2(mg/g)11111272.6 278.9 21222251.7 250.331333245.2 247.2 42123289.7 279.6 52231275.8 268.8 62312258.7 257.7 73132246.6 246.2 83213231.4 232.1 93321222.1 228.6表3-3 干燥大枣中的总黄酮含量极差分析试验号列号重复试样指标和1 2 3 41 2A B C1 1 1 1 1 272.6 278.9 551.52 1 2 2 2 251.7 250.3 5023 1 3 3 3 245.2 247.2 492.44 2 1 2 3 289.7 279.6 569.35 2 2 3 1 275.8 268.8 544.66 2 3 1 2 258.7 257.7 516.47 3 1 3 2 246.6 246.2 492.88 3 2 1 3 231.4 232.1 463.59 3 3 2 1 222.1 228.6 450.7K11545.9 1613.6 1531.4 1546.8K21630.3 1510.1 1522.0 1511.2K31407.0 1459.5 1529.8 1525.2k1257.650 268.933 255.233 257.800k2271.717 251.683 253.667 251.867k3234.500 243.250 254.967 254.200R 37.217 25.683 1.567 5.933较优水平A2B1C1因为指标越大越好,所以为因素A的2水平,即A2较好。
正交检验的极差分析和方差分析教材
正交检验的极差分析和方差分析教材正交检验的极差分析和方差分析引言:正交检验的极差分析和方差分析是统计学中常用的两种分析方法。
它们被广泛应用于实验设计和数据分析中,可以帮助我们判断变量之间的差异是否显著,并且确定是哪些因素对变量影响最为显著。
本文将重点介绍正交检验的极差分析和方差分析的基本原理和应用方法。
一、正交检验的极差分析1.1 基本原理正交检验的极差分析是通过观察不同水平的自变量对因变量的影响,推断不同水平之间的差异是否显著的一种方法。
它基于方差分析的原理,通过计算不同水平之间的平均差和标准差,判断不同水平之间的差异是否超过了预期的随机误差范围,从而得出结论。
1.2 应用方法首先,确定研究的自变量和因变量,并确定自变量的水平。
然后,通过随机抽样的方式获取样本数据,并计算每个水平下的极差。
接下来,计算整体样本数据的均值和方差,以及不同水平之间的平均差和标准差。
最后,使用统计方法,比较差异是否显著,并进一步推断不同水平之间的差异。
1.3 实例分析以某品牌洗衣机的不同水平温度对洗涤效果(洗涤时间)为例,通过极差分析探究不同水平温度下洗涤效果是否存在显著差异。
首先,选择3个不同水平的温度:40℃、60℃和80℃。
然后,使用这3个水平的温度进行多次洗涤实验,每次实验记录洗涤时间。
接下来,计算每个水平下的极差,并计算整体样本数据的均值和方差。
最后,使用正交检验的极差分析方法,比较不同水平之间的差异是否显著。
二、方差分析2.1 基本原理方差分析是通过比较不同组之间的方差大小,来判断不同组之间的差异是否显著的一种方法。
它基于总体方差和组内方差之间的关系,通过计算F统计量来比较差异是否显著。
2.2 应用方法首先,确定研究的自变量和因变量,并确定不同组别。
然后,通过随机抽样的方式获取样本数据,并计算每个组别的均值和方差。
接下来,计算总体样本数据的均值和方差,以及组内方差和组间方差。
最后,使用统计方法,计算F统计量,并比较差异是否显著。
正交实验设计及结果分析
正交试验设计对于单因素或两因素试验,因其因素少,试验的设计、实施与分析都比较简单。
但在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,则试验的规模将很大,往往因试验条件的限制而难于实施。
正交试验设计就是安排多因素试验、寻求最优水平组合的一种高效率试验设计方法。
1正交试验设计的概念及原理1.1正交试验设计的基本概念正交试验设计是利用正交表来安排与分析多因素试验的一种设计方法。
它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验的,通过对这部分试验结果的分析了解全面试验的情况,找岀最优的水平组合。
例如:设计一个三因素、3水平的试验A因素,设A、A?> As3个水平;B因素,设B、B2、Bs3个水平;C因素,设G、G、G 3个水平,各因素的水平之间全部可能组合有27种。
全面试验:可以分析各因素的效应,交互作用,也可选岀最优水平组合。
但全面试验包含的水平组合数较多(图示的27个节点),工作量大,在有些情况下无法完成。
若试验的主要目的是寻求最优水平组合,则可利用正交表来设计安排试验。
全面试验法示意图三因素、三水平全面试验方案卫具e8G正交试验设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。
正因为正交试验是用部分试验来代替全面试验的,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能岀现交互作用的混杂。
虽然正交试验设计有上述不足,但它能通过部分试验找到最优水平组合,因而很受实际工作者青睐。
如对于上述3因素3水平试验,若不考虑交互作用,可利用正交表1_9(34)安排,试验方案仅包含9个水平组合,就能反映试验方案包含27个水平组合的全面试验的情况,找出最佳的生产条件1.2正交试验设计的基本原理正交设计就是从选优区全面试验点(水平组合)中挑选出有代表性的部分试验点(水平组合)来进行试验。
上图中标有试验号的九个“(・)”就是利用正交表L(34)从27个试验点中挑选出来的9个试验点。
SPSSAU正交实验及极差分析步骤说明
极差分析正交试验正交设计 SPSSAU极差分析Contents1背景 (1)2理论 (2)3操作 (3)4 SPSSAU输出结果 (4)5文字分析 (4)6剖析 (5)正交试验设计进行分析的方法包括两种,一种是极差分析(也称直观分析法),二是方差分析法。
如果使用方差分析,可使用S P S S A U进阶方法里面的多因素方差,也或者通用方法里面的方差分析进行研究。
极差分析是一种直观式的分析方法,其也称作R法,通过计算R值(因素极差值)来判断因素的优劣情况,当然还可判断某因素时的最佳水平情况,从而得到最终组合。
特别提示:极差分析是针对正交试验设计数据,比如使用S P S S A U【医学/实验研究--正交设计】数据得到正交表,进行试验得到试验数据后需要进行直观式分析。
1背景当前有一项研究,研究大豆出油率分别与3个因素的关系情况,分别是萃取液,温度和处理时间。
首先使用S P S S A U的正交设计得到正交表L9.3.4,总共进行9次试验收集完成试验数据后进行分析,希望找出3个因素时各水平的最佳大豆出油率组合。
另外,本案例数据如下表:表格中水平数量使用数字表示,比如因子2(温度)里面的数字1表示20度,数字2表示35度。
2理论极差分析是一种直观式分析方法,一般我们希望先评价因素优劣,比如本案例中三个因素的优劣,评价标题是通过R值(因素极差值)进行评价;而具体水平的优劣可通过K a v g值,即每个水平时试验数据的平均值,对于K a v g值的大小即可得到水平优劣的对比。
最终结合因素优劣和水平优劣,即可找出最佳试验组合。
特别提示:极差分析时,涉及相关指标的计算说明如下:K值:每因子每水平时试验证数据Y的加和值K a v g值:每因子每水平时试验证数据Y的平均值最佳水平:每因子时,K a v g值最大时对应的水平R:每因子时,K a v g值的最大值减去K a v g值的最小值水平数量:每因子时的水平数量每水平重复数r:每个水平平均实验次数折算系数d:每因子时,水平数量对应的折算系数d值R’:折算系数d*R*S q r t(每水平重复数r)如果是混合型正交表,R值(因素极差值)需要进行校正,即使用R’值,R’=折算系数d*R*S q r t(每水平重复数r),其中折算系数d是结合水平数量查表得到,每水平重复数r指每水平平均实验次数。