垂径定理—巩固练习(基础)

合集下载

垂径定理实例练习题

垂径定理实例练习题

垂径定理实例练习题
根据垂径定理,设有一个圆,有一个直径和一个点位于该圆上,连接该点与直径的两个端点,则连接该点与圆心的线段垂直于直径。

下面是一些关于垂径定理的实例练题:
1. 问题描述:在一个圆上,有一条直径AB,并且连接圆上一
点C与直径的两个端点A和B,证明线段AC与线段BC互相垂直。

解答:因为AC连接了圆上的一点与圆心,所以根据垂径定理,线段AC与直径AB垂直。

同理,线段BC与直径AB也垂直。

因此,线段AC与线段BC互相垂直,证毕。

2. 问题描述:在圆P上,有一条直径EF,并且连接了圆上一
点D与直径的两个端点E和F。

已知EF长度为10厘米,点D离
圆心的距离为8厘米,求线段DF的长度。

解答:根据垂径定理,因为点D连接了圆上的一点与圆心,所以线段DF垂直于直径EF。

由于EF长度为10厘米,根据直角三角
形的性质,可以使用毕达哥拉斯定理计算线段DF的长度。

根据毕达哥拉斯定理,我们有:
其中,c代表斜边(即线段EF),a和b代表直角边(即线段DF和DE)。

已知EF长度为10厘米,代入公式可得:
解方程可得DF的值为6厘米,即线段DF的长度为6厘米。

以上是垂径定理的一些实例练习题的讲解。

希望能够帮助你理解和应用垂径定理。

如有任何问题,请随时向我提问。

九年级数学《垂径定理及其应用》专题练习

九年级数学《垂径定理及其应用》专题练习

《垂径定理及其应用》小节基础练习知识点1、垂径定理的辨析垂径定理:垂直于弦的直径,平分弦且平分弦所对的两条弧.换言之:(1)平分弦(不是直径)的直径,垂直于弦且平分弦所对的两条弧;(2)平分弦所对的两条弧的直径,垂直平分弦;(3)弦的垂直平分线,必过圆心且平分弦所对的两条弧.例1、看下列图形,是否能使用垂径定理?知识点2、垂径定理的应用例2、如图,1 400 多年前,我国隋代建造的赵州石拱桥主桥拱是圆弧形,它的跨度(弧所对的弦长)是 37 m ,拱高(弧的中点到弦的距离)为 7.23 m ,求赵州桥主桥拱的半径(精确到 0.1 m ).C D OA B变式训练1、如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.82、已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.基础练习1.如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是( )A.AE=BE B.=C.OE=DE D.∠DEB=90°2.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图所示,若油面的宽AB=160cm,则油的最大深度为( )(A)40cm (B)60cm (C)80cm (D)100cm3.下列命题中,正确的是( )A、经过两点只能作一个圆B、垂直于弦的直径平分弦所对的两条弧C、圆是轴对称图形,任意一条直径是它的对称轴D、平分弦的直径必平分弦所对的两条弧4.在半径为2的圆中,弦AC长为1,M为AC中点,过M点最长的弦为BD,则四边形ABCD的面积为 .5.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是12mm,测得钢珠顶端离零件表面的距离为9 mm,如图所示,则这个小孔的直径AB= mm.6.如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC 的长为 .7.如图,点A,B,C在圆O上,OC⊥AB,垂足为D,若⊙O的半径是10cm,AB=16cm,则CD= cm.8.将一张半径为4的圆形纸片(如图①)连续对折两次后展开得折痕AB、CD,且AB⊥CD,垂足为M(如图②),之后将纸片如图③翻折,使点B与点M重合,折痕EF与AB相交于点N,连接AE、AF(如图④),则△AEF的面积是__________.9.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P,则点P的坐标为__________.10.已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F 两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.11.已知⊙O的半径为12cm,弦AB=16cm.(1)求圆心O到弦AB的距离;(2)如果弦AB的长度保持不变,两个端点在圆周上滑动,那么弦AB的中点形成什么样的图形?。

垂径定理练习题及答案

垂径定理练习题及答案

5、如图,AB 是⊙O 的直径,半径 OC⊥AB,P 是AB 延长线上一点,PD 切⊙O 于点 D,CD 交 AB 于点 E,判断
△PDE的形状,并说明理由。
6。21.如图,半径 OA⊥OB,P 是 OB 延长线上一点,PA 交⊙O于 D,过 D 作⊙O 的切线 CE 交PO于 C 点
,求证:PC=CD.
22。如图,将半
径为 2 cm 的圆形纸片折叠后,圆弧恰好经过圆心 O ,那么折痕 AB
的长为



23。如图,⊙O 的的半径为 5,直径 AB⊥弦 CD,垂足为 E,CD=6,那么∠B的余切值为_________
三。解答题 1。⊙O 的弦AB长为 10,半径长R为 7,OC 是弦AB的弦心距,求OC的长 2。⊙O 的半径长为 50cm,弦 AB 长50cm.求:〔1)点 O 到 AB 的距离;〔2〕∠AOB 的大小 3。如图,直径是 50cm 圆柱形油槽装入油后,油深CD 为 15cm,求油面宽度 AB
4.AB 是⊙O 的弦,AB=8cm,OC⊥AB 与C,OC=3cm,那么⊙O 的半径为 cm
5。如图,⊙O 的直径 AB 垂直于弦 CD,垂足为 E,假设∠COD=120°,OE=3 厘米,那么 CD=厘米
A
y
P
O
C
ED
B
6.半径图为4 6cm 的
A O
B
x
圆中,垂直平分半径 OA的弦长为 cm。
7。如图,⊙O的半径长为25,弦 AB 长为48,C是弧 AB的中点.求 AC 的长.
8。:在△△ABC的外接圆的半径。
O
9.本市新建的滴水湖是圆形人工湖。为测量该湖的半径,小杰和小丽沿湖边选取 A
B

垂径定理—巩固练习

垂径定理—巩固练习

垂径定理—巩固练习【基础练习】一、选择题1.下列结论正确的是()A.经过圆心的直线是圆的对称轴 B.直径是圆的对称轴C.与圆相交的直线是圆的对称轴 D.与直径相交的直线是圆的对称轴2.下列命题中错误的有( ).(1)弦的垂直平分线经过圆心 (2)平分弦的直径垂直于弦(3)梯形的对角线互相平分 (4)圆的对称轴是直径A.1个 B.2个 C.3个 D.4个3.如图所示,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD于E,则图中不大于半圆的相等弧有( ).A.l对 B.2对 C.3对 D.4对第3题第5题4.如图,已知⊙O的直径AB⊥CD于点E,则下列结论一定错误的是()A.CE=DE B.AE=OE C .=D.△OCE≌△ODE5.如图所示,矩形ABCD与⊙O相交于M、N、F、E,若AM=2,DE=1,EF=8,•则MN的长为() A.2 B.4 C.6 D.86.已知⊙O的直径AB=12cm,P为OB中点,过P作弦CD与AB相交成30°角,则弦CD的长为().A.315cm B .310cm C.35cm D.33cm二、填空题7.垂直于弦的直径的性质定理是__________________________________.8.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.9.圆的半径为5cm,圆心到弦AB的距离为4cm,则AB=______cm.10.如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.10题图 11题图 12题图11.如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则AB=____cm,∠AOB=______°.12.如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=____,O点到AB的距离=______.三、解答题13.如图,有一座拱桥是圆弧形,它的跨度为60米,拱高18米,当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PN=4米时是否要采取紧急措施?14. 如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,求⊙O半径.15.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)请证明:E是OB的中点;(2)若AB=8,求CD的长.【提高练习】一、选择题1.如图所示,三角形ABC的各顶点都在⊙O上,AC=BC,CD平分∠ACB,交圆O于点D,下列结论:①CD是⊙O的直径;②CD平分弦AB;③»»AC BC=;④»»AD BD=;⑤CD⊥AB.其中正确的有()A.2个 B.3个 C.4个D.5个2.下面四个命题中正确的是( ).A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心3.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB 的长为()A.2 B.3 C.4 D.5第3题第5题第6题4.⊙O的半径OA=1,弦AB、AC的长分别是2、3,则∠BAC的度数为( ).A.15° B.45° C.75° D.15°或75°5.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB 于点D,交AC于点E,则的度数为()COBDAA .25°B . 30°C . 50°D . 65° 6.如图,EF 是⊙O 的直径,AB 是弦,EF=10cm ,AB=8cm ,则E 、F 两点到直线AB 的距离之和为( ).A .3cmB .4cmC .8cmD .6cm 二、填空题7.如图,⊙O 的弦AB 垂直于CD ,E 为垂足,AE =3,BE =7,则圆心O 到CD 的距离是______. 8.如图,P 为⊙O 的弦AB 上的点,P A =6,PB =2,⊙O 的半径为5,则OP =______.7题图 8题图 9题图 9.如图,⊙O 的弦AB 垂直于AC ,AB =6cm ,AC =4cm ,则⊙O 的半径等于______cm . 10.如图,AB 是⊙O 的直径,弦CD⊥AB,垂足为E ,连接AC .若∠CAB=22.5°,CD=8cm ,则⊙O 的半径为 cm .11.在图11中,半圆的直径AB=4cm ,O 为圆心,半径OE ⊥AB ,F 为OE 的中点,CD ∥AB ,则弦CD 的长为 .(第12题)12.如图,点A 、B 是⊙O 上两点,AB=10,点P 是⊙O 上的动点(P 与A ,B 不重合)连结AP ,PB ,过点O 分别作OE ⊥AP 于点E ,OF ⊥PB 于点F ,则EF= . 三、解答题13.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,CD=15,35OE OC ∶∶,求弦AB 和AC 的长.14.如图所示,C 为¼ACB的中点,CD 为直径,弦AB 交CD 于P 点,PE ⊥BC 于E ,若BC=10cm ,且CE :BE=3:2,求弦AB 的长.15.如图所示,已知O 是∠MPN 的平分线上的一点,以O 为圆心的圆与角的两边分别交于点A 、B 和C 、D.⑴求证:PB=PD.⑵若角的顶点P 在圆上或圆内,⑴中的结论还成立吗?若不成立,请说明理AEOFBP由;若成立,请加以证明.16.如图,⊙O 的两条弦AB 、CD 交于点E ,OE 平分∠BED. (1)求证:AB=CD ;(2)若∠BED=60°,EO=2,求DE ﹣AE 的值.EODCBA【基础答案与解析】一、选择题1.【答案】A;【解析】图形的对称轴是直线,圆的对称轴是过圆心的直线,或直径所在的直线.2.【答案】C;【解析】(1)正确;(2)“平分弦(该弦不是直径)的直径垂直于弦”才是正确的,所以(2)不正确;(3)对角线互相平分就是平行四边形,而不是梯形了,所以(3)不正确;(4)圆的对称轴是直径所在的直线,所以(4)不正确.故选C.3.【答案】C;【解析】»»AB AB=;»»AC AD=;»»BC BD=.4.【答案】B;【解析】∵⊙O的直径AB⊥CD于点E,∴CE=DE,弧CB=弧BD,在△OCE和△ODE中,,∴△OCE≌△ODE,故选B5.【答案】C;【解析】过O作OH⊥CD并延长,交AB于P,易得DH=5,而AM=2,∴MP=3,MN=2MP=2×3=6.6.【答案】A;【解析】作OH⊥CD于H,连接OD,则OH=32, OD=6,可求DH=3152,CD=2DH=315.二、填空题7.【答案】垂直于弦的直径平分弦,并且平分弦所对的两条弧.8.【答案】;【解析】连接OC,如图所示:∵AB是⊙O的直径,CD⊥AB,∴CE=CD=2,∠OEC=90°,设OC=OA=x,则OE=x﹣1,根据勾股定理得:CE2+OE2=OC2,即22+(x﹣1)2=x2,解得:x=;故答案为:.9.【答案】6;10.【答案】8;11.【答案】o63,120;12.【答案】a22,a21;三、解答题13.【答案与解析】设圆弧所在圆的半径为R,则R2-(R-18)2=302,∴R=34当拱顶高水面4米时,有,∴不用采取紧急措施.14.【答案与解析】连结OC.设AP=k,PB=5k,∵ AB为⊙O直径,∴半径111()(5)3222OC AB AP PB k k k==+=+=.且OP =OA -PA =3k -k =2k . ∵ AB ⊥CD 于P , ∴ CP =12CD =5. 在Rt △COP 中用勾股定理,有222OC PC PO =+, ∴ 222(3)5(2)k k =+.即2525k =,∴ 5k =(取正根),∴ 半径335OC k ==(cm).15.【答案与解析】(1)证明:连接AC ,如图∵直径AB 垂直于弦CD 于点E , ∴,∴AC=AD ,∵过圆心O 的线CF ⊥AD ,∴AF=DF ,即CF 是AD 的中垂线, ∴AC=CD , ∴AC=AD=CD .即:△ACD 是等边三角形, ∴∠FCD=30°, 在Rt △COE 中,,∴,∴点E 为OB 的中点;(2)解:在Rt △OCE 中,AB=8,∴,又∵BE=OE , ∴OE=2, ∴,∴.【提高答案与解析】 一、选择题 1.【答案】D .【解析】由圆的对称性、等腰三角形的三线合一的性质可得到5个结论都是正确的. 2.【答案】D .【解析】根据垂径定理及其推论来判断. 3.【答案】B . 【解析】由垂径定理得HD=2,由勾股定理得HB=1,设圆O 的半径为R ,在Rt △ODH 中,则()()22221R R =+-,由此得R=32, 所以AB=3.故选 B. 4.【答案】D .【解析】分弦AB 、AC 在圆心的同侧和异侧讨论. 5.【答案】C ;【解析】连接CD ,∵在△ABC 中,∠C=90°,∠A=25°, ∴∠ABC=90°﹣25°=65°, ∵BC=CD,∴∠CDB=∠ABC=65°,∴∠BCD=180°﹣∠CDB﹣∠CBD=180°﹣65°﹣65°=50°,∴=50°.故选C .6.【答案】D .【解析】E 、F 两点到直线AB 的距离之和为圆心O 到AB 距离的2倍. 二、填空题 7.【答案】2. 8.【答案】.13 9.【答案】.13 10.【答案】42 .【解析】解:连接OC ,如图所示:∵AB 是⊙O 的直径,弦CD⊥AB,∴CE=DE=CD=4cm ,∵OA=OC,∴∠A=∠OCA=22.5°, ∵∠COE 为△AOC 的外角, ∴∠COE=45°,∴△COE 为等腰直角三角形, ∴OC=CE=4cm , 故答案为:411.【答案】23cm .【解析】连接OC,易求CF= 3. CD=23cm . 12.【答案】5.【解析】易证EF 是△APB 的中位线,EF=15.2AB =三、解答题13.【答案与解析】连结OA ,∵CD=15,35OE OC =∶∶,∴OA=OC=7.5,OE=4.5,CE=3, ∴222222227.5 4.562126335AE OA OE AB AE AC AE CE =-=-====+=+=,14.【答案与解析】因为C 为¼ACB的中点,CD 为直径,弦AB 交CD 于P 点,所以 CD ⊥AB. 由BC=10cm ,且CE :BE=3:2,得CE=6cm ,BE=4cm ,设,,BP a CP b ==则22222221046a b a b ⎧+=⎪⎨-=-⎪⎩解得210a =,2410AB a cm ==.15.【答案与解析】(1)证明:过O 作OE ⊥PB 于E ,OF ⊥PD 于F.∵ PO 平分∠MPN ∴ OE=OF ,PE=PF ∴ AB=CD ,BE=DF ∴ PE+BE=PF+DF ∴ PB=PD(2)上述结论仍成立.如下图所示.证明略.A A E EP O P O F FC C PA=PC PA=PC16.【答案与解析】 解:(1)过点O 作AB 、CD 的垂线,垂足为M 、N ,如图1,图1NMEODCBA∵OE 平分∠BED,且OM⊥AB,ON⊥CD, ∴OM=ON, ∴AB=CD;(2)如图2所示,A BC DOEMN图2由(1)知,OM=ON ,AB=CD ,OM⊥AB,ON⊥CD, ∴DN=CN=AM=BM,在Rt△EON 与Rt△EOM 中,∵,∴Rt△EON≌Rt△EOM(HL ),∴N E=ME ,∴CD﹣DN ﹣NE=AB ﹣BM ﹣ME , 即AE=CE ,∴DE﹣AE=DE ﹣CE=DN+NE ﹣CE=CN+NE ﹣CE=2NE , ∵∠BED=60°,OE 平分∠BED, ∴∠NEO=BED=30°,∴ON=OE=1,在Rt△EON 中,由勾股定理得:NE==, ∴DE﹣AE=2NE=2.。

九年级数学:垂径定理练习(第2课时)(含答案)

九年级数学:垂径定理练习(第2课时)(含答案)

九年级数学:垂径定理练习(第2课时)(含答案)1.平分弦(____________)的直径垂直于弦,并且平分弦所对的弧.2.平分弧的直径垂直平分弧所对的弦.3.垂径定理解读:(1)过圆心;(2)平分弦(不是直径);(3)垂直于弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧.若一条直线具备这五项中任意两项,则必具备另外三项.A组基础训练1.下列命题正确的有( )①垂直于弦的直径平分弦②平分弦的直径必垂直于弦,并且平分弦所对的两条弧③平分弦的直线必过圆心④弦所对的两条弧的中点连线垂直平分弦A.1个 B.2个 C.3个 D.4个2.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于( )A.8 B.2 C.10 D.5第2题图3.如图,已知⊙O的半径为2cm,弦AB长23cm,则这条弦的中点C到弦所对劣弧的中点D 的距离为( )第3题图A .1cmB .2cm C.2cm D.3cm4.如图,一条公路弯道处是一段圆弧AB ︵,点O 是这条弧所在圆的圆心,C 是AB ︵的中点,OC 与AB 相交于点D.已知AB =120m ,CD =20m ,那么这段弯道的半径为( )第4题图A .200mB .2003mC .100mD .1003m5.如图,AB 为⊙O 的直径,CD 是弦,AB 与CD 相交于点E.若要得到结论AB⊥CD ,还需添加的条件是________________________________.(不添加其他辅助线)第5题图6.如图,AB ,CD 是⊙O 的直径,D 是AE ︵的中点,AE 与CD 交于点F ,若OF =3,则BE 的长为________.第6题图7.如图所示,AB 是半圆的直径,O 是圆心,C 是半圆上一点,E 是AC ︵的中点,OE 交弦AC 于点D.若AC =8cm ,DE =2cm ,则OD 的长为________.第7题图8.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为________.第8题图9.如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,求⊙O的半径.第9题图10.(绍兴中考)如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为10cm,求该脸盆的半径.第10题图B组自主提高11.如图所示,某游乐场的摩天轮⊙P的最高处A到地面l的距离是23m,最低处B到地面l的距离是3m,从B处乘摩天轮绕一周需3分钟,小明从B处乘摩天轮一周的过程中,当他到地面l的距离恰好是18m的时候应为第________分钟.第11题图11.如图,AB ,CD 是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA +PC 的最小值为________.第12题图13.已知:如图,A 、B 、C 为⊙O 上三点,点D 、E 分别为AB ︵、AC ︵的中点,连结DE ,分别交AB 、AC 于点F 、G ,求证:AF =AG.第13题图C 组 综合运用14.如图,隧道的截面由圆弧AED 和矩形ABCD 构成,矩形的长BC 为12m ,宽AB 为3m ,隧道的顶端E (圆弧AED 的中点)高出道路(BC )7m.(1)求圆弧AED 所在圆的半径;(2)如果该隧道内设双行道,现有一辆超高货运卡车高6.5m ,宽2.3m ,问这辆货运卡车能否通过该隧道.第14题图3.3 垂径定理(第2课时)【课堂笔记】1.不是直径【课时训练】1-4.BDAC5.CE =DE 或AC ︵=AD ︵或BC ︵=BD ︵6.67.3cm8.(1,3)9.连结OA 交BC 于点D,连结OC,OB,∵AB =AC =13,∴AB ︵=AC ︵,∴∠AOB =∠AOC ,∵OB =OC,∴AO ⊥BC,CD =12BC =12.在Rt △ACD 中,AC =13,CD =12,所以AD =132-122=5,设⊙O 的半径为r,则在Rt △OCD 中,OD =r -5,CD =12,OC =r,所以(r -5)2+122=r 2,计算得出r =16.9.答:⊙O 的半径为16.9.第10题图10.如图,设圆的圆心为O,连结OA,OC,OC 与AB 交于点D,设⊙O 半径为R,∵OC ⊥AB,∴AD =DB =12AB =20,∠ADO =90°,在Rt △AOD 中,∵OA 2=OD 2+AD 2,∴R 2=202+(R -10)2,∴R =25,即该脸盆的半径为25cm.11.1或212.7 2第13题图13.连OD、OE,交AB、AC于M、N,∵OD=OE=r,∴∠ODE=∠OED,而D,E分别为弧AB,弧AC的中点,∴OD、OE分别垂直于AB、AC,则有∠DFB=∠EGC,∴∠AFG=∠AGF,∴AF=AG.14.(1)设圆心为点O,半径为R,连结OE交AD于F点,连结OA,OD,由垂径定理,得OF垂直平分AD,AF=6,OF=R-(7-3)=R-4,由勾股定理,得AF2+OF2=OA2,即:62+(R-4)2=R2,解得R=6.5米;(2)能通过,但要小心.车宽GH=2.3,圆的半径OH=6.5,由勾股定理,得OG= 6.52-2.32≈6.08,G点与BC的距离为7-6.5+6.08=6.58>6.5;能通过.第14题图。

垂径定理练习题

垂径定理练习题

北师大版九年级下3.3 垂径定理一.选择题(共10小题)1.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm2.如图,⊙O的弦AB=8,半径OC⊥AB,垂足为D,且CD=2,⊙O的半径等于()A.4 B.5 C.6 D.83.如图,AB是⊙O的弦,半径OC⊥AB于点D,连接AO并延长,交⊙O于点E,连接BE,DE.若DE=3DO,AB=5,则△ODE的面积为()A.5√58B.5√54C.2√5D.524.已知:如图,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,则CD的长为()A.4 √2B.4 C.3 √2D.5 √25.如图,CD是⊙O的直径,弦AB⊥CD,垂足为M,若CM=8,DM=12,则AB等于()A.4 √3B.8 √2C.8 √6D.4 √66.如图,AB是⊙O的直径,弦CD交AB于点P,AP=3,BP=7,∠APC=30°,则CD的长为()A.√6B.2 √6C.4 √6D.87.工程上常用钢珠来测量零件上小孔的宽口,如果钢珠的直径为10mm,钢珠上顶端离零件上表面的距离为8mm,如图,则这个零件小孔的宽口AB等于()mm.A.4 B.6 C.7 D.88.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()A.6.5米B.9米C.13米D.15米9.如图1所示是一款带毛刷的圆形扫地机器人,它的俯视图如图2所示,⊙O的直径为40cm,毛刷的一端为固定点P,另一端为点C,CP=10√2cm,毛刷绕着点P旋转形成的圆弧交⊙O于点A,B,且A,P,B三点在同一直线上.毛刷在旋转过程中,与⊙O交于点D,则CD的最大长度为()A.20√2cm B.(20−10√2)cm C.(20√2−20)cm D.10√2cm10.如图,AC是⊙O的直径,BD⊥AC,连接AB,OB,OD,作DE∥AB交⊙O于点E,若AC=8,BD=4,则DE的长为()A.4 B.4√2C.3 D.3√2二.填空题(共4小题)11.如图,AB是⊙O的弦,OC⊥AB于点D,交⊙O于点C,若AB=8,OD=3,那么⊙O的半径为______ .12.如图,一个底部呈球形的烧瓶,瓶内液体的最大深度CD=2cm,截面圆中弦AB长为10cm,那么球的半径OB长为______ .13.如图,将一个球放在空心的透明圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=16cm,球的最高点到地面的距离为36cm,则球的半径为 ______ cm.(玻璃瓶厚度忽略不计)14.筒车是我国古代发明的一种水利灌溉工具,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图1.唐代陈廷章在《水轮赋》中写道“水能利物,轮乃曲成”.如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为8米,若点C为运行轨道的最低点,点C到弦AB所在直线的距离是2,则⊙O的半径长为 ______ 米.三.解答题(共5小题)15.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?16.如图,CD为⊙O的直径,CD⊥AB,垂足为F,AO⊥BC,垂足为E,BC=2 √3.(1)求AB的长;(2)求⊙O的半径.17.如图,一座石桥的主桥拱是圆弧形,某时刻测得水面AB宽度为6米,拱高CD(弧的中点到水面的距离)为1米.(1)求主桥拱所在圆的半径;(2)若水面下降1米,求此时水面的宽度.18.如图,在⊙O中,直径AB⊥CD于点F,连接DO并延长交AC于点E,且DE⊥AC(1)求证:CE=DF;(2)求∠BOD的度数.19.如图,在⊙O中,AB,AC为互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D,E.(1)求证:四边形ADOE是正方形;(2)若AC=4,求⊙O的半径.。

垂径定理典型例题及练习(供参考)

典型例题分析:例题1、 基本概念1.下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心2.下列命题中,正确的是( ).A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧例题2、垂径定理1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是________cm.2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm.3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1)求证:四边形OEHF 是正方形.(2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长.5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=21BF.O A E F例题3、度数问题1、已知:在⊙O中,弦cm12=AB,O点到AB的距离等于AB的一半,求:AOB∠的度数和圆的半径.2、已知:⊙O的半径1=OA,弦AB、AC的长分别是2、3.求BAC∠的度数。

例题4、相交问题如图,已知⊙O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,∠BED=30°,求CD的长.例题5、平行问题在直径为50cm的⊙O中,弦AB=40cm,弦CD=48cm,且AB∥CD,求:AB与CD之间的距离.例题6、同心圆问题如图,在两个同心圆中,大圆的弦AB,交小圆于C、D两点,设大圆和小圆的半径分别为ba,.求证:22baBDAD-=⋅.例题7、平行与相似已知:如图,AB是⊙O的直径,CD是弦,于CDAE⊥E,CDBF⊥于F.求证:FDEC=.A BDCEO作 业:一、概念题1.下列命题中错误的有()(1)弦的垂直平分线经过圆心(2)平分弦的直径垂直于弦(3)梯形的对角线互相平分(4)圆的对称轴是直径A .1个B .2个C .3个D .4个2、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( )(A )5OM 3≤≤ (B )5OM 4≤≤(C )5OM 3<< (D )5OM 4<<3.如图,如果AB 为⊙O 直径,弦AB CD ⊥,垂足为E ,那么下列结论中错误的是( )A .DE CE =B .C .BAD BAC ∠=∠ D .AD AC >4.如图,AB 是⊙O 直径,CD 是⊙O 的弦,CD AB ⊥于E ,则图中不大于半圆的相等弧有( )对。

垂径定理练习题答案

垂径定理练习题答案垂径定理练习题答案垂径定理是解决几何问题的重要定理之一,它在许多几何证明和计算中起着重要的作用。

本文将通过几个垂径定理的练习题来探讨其应用。

练习题一:在一个直角三角形ABC中,AB = 5 cm,BC = 12 cm。

点D是AC 边上的一个点,使得BD是三角形ABC的高。

求BD的长度。

解答:根据垂径定理,如果一条线段与另一条线段垂直且过其中点,那么这条线段就是另一条线段的垂径。

在这个问题中,BD是三角形ABC的高,所以BD 与AC垂直。

又因为BD过AC的中点,所以BD是AC的垂径。

根据垂径定理,AC的长度等于BD的两倍。

所以AC = 2BD。

根据勾股定理,可以得到AC的长度:AC² = AB² + BC²AC² = 5² + 12²AC² = 25 + 144AC² = 169AC = √169AC = 13 cm将AC的长度代入前面的等式中,可以得到:13 = 2BDBD = 13 / 2BD = 6.5 cm所以BD的长度为6.5 cm。

练习题二:在一个平行四边形ABCD中,对角线AC与BD相交于点O。

已知AB = 8 cm,AD = 6 cm,求AC的长度。

解答:根据垂径定理,如果一条线段与另一条线段垂直且过其中点,那么这条线段就是另一条线段的垂径。

在这个问题中,对角线AC与BD相交于点O,所以AC与BD垂直。

又因为AC过BD的中点,所以AC是BD的垂径。

根据垂径定理,BD的长度等于AC的两倍。

所以BD = 2AC。

根据平行四边形的性质,对角线互相平分。

所以AO = OC,BO = OD。

根据勾股定理,可以得到AO和BO的长度:AO² = AB² + BO²AO² = 8² + (AC/2)²AO² = 64 + (AC/2)²BO² = AD² + BD²BO² = 6² + (2AC)²BO² = 36 + 4AC²由于AO = OC,所以AO² = OC²。

垂径定理练习题及答案

垂径定理一.选择题★1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4B..7D.8答案:D★★2.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.2B..4D.5答案:B★★3.过⊙O内一点M的最长弦为10 cm,最短弦长为,则OM 的长为()A.B.C.D.答案:C★★4.如图,xx同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.1个单位D.15个单位答案:B★★5.如图,的直径垂直弦于,且是半径的中点,,则直径的长是()A.B.C.D.答案:D★★6.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心答案:D★★★7.如图,某公园的一座xx是圆弧形(劣弧),其跨度为,拱的半径为,则拱高为()A.B.C.D.米答案:B★★★8.⊙O的半径为,弦AB//CD,且AB=,CD=,则AB与CD之间的距离为()A.B.C.或D.或答案:D★★★9.已知等腰△ABC的三个顶点都在半径为5的⊙Oxx,如果底边BC的长为8,那么BC边xx的高为()A.2B..2或8D.3答案:C二.填空题★1.已知AB是⊙O的弦,AB=,OC⊥AB与C,OC=,则⊙O的半径为cm答案:5 cm★2.在直径为的圆中,弦的长为,则它的弦心距为cm答案:3 cm★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于答案:6★★4.已知AB是⊙O的弦,AB=,OC⊥AB与C,OC=,则⊙O的半径为cm答案:5 cm★★5.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD =120°,OE=,则CD=厘米图 4答案: cm★★6.半径为的圆中,垂直平分半径OA的弦长为cm.答案: cm★★7.过⊙O内一点M的最长的弦长为,最短的弦长为,则OM 的长等于cm答案:★★8.已知AB是⊙O的直径,弦CD⊥AB,E为垂足,CD=8,OE=1,则AB=____________答案:★★9.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB的长是答案:6★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=,半径OA=,则中间柱CD的高度为m答案:4★★11.如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2)和A(2,0),则点B的坐标是答案:(6,0)OD=cm★★12.如图,AB是⊙O的直径,OD⊥AC于点D,BC=,则Array答案:3★★13.如图,矩形ABCD与圆心在AB上的圆O交于点G、B、F、E,GB=10,EF=8,那么AD=答案:3★★14.如图,⊙O 的半径是,P 是⊙O 外一点,PO=,∠P=30º,则AB=cmPBAO答案:6★★★15.⊙O 的半径为,弦AB∥CD,AB =,CD =,那么AB 和CD 的距离是Cm答案: 或★★★16.已知AB 是圆O 的弦,半径OC 垂直AB ,交AB 于D ,若AB=8,CD=2,则圆的半径为答案:5★★★17.一个圆弧形门拱的拱高为,跨度为,那么这个门拱的半径为米答案:★★★18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米答案:7或1★★★19.如图,是一个隧道的截面,如果xx为,净高为,那么这个隧道所在圆的半径是___________米答案:5★★★20.如图,AB为半圆直径,O 为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D。

垂径定理精选题35道

垂径定理精选题35道一.选择题(共15小题)1.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.82.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.3.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD 的长为()A.B.2C.2D.84.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.45.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4 cm6.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC 的长为()A.cm B.cm C.cm或cm D.cm或cm7.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.18.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5 9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.610.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,OC=3,则EC的长为()A.B.8C.D.11.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6B.8C.10D.1212.点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.3cm B.4cm C.5cm D.6cm13.⊙O的半径为5,M是圆外一点,MO=6,∠OMA=30°,则弦AB的长为()A.4B.6C.6D.814.如图,CD为⊙O直径,CD⊥AB于点F,AE⊥BC于E,AE过圆心O,且AO=1.则四边形BEOF的面积为()A.B.C.D.15.△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A.B.C.D.二.填空题(共14小题)16.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为.17.如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O 于点D,则CD的最大值为.18.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.19.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D 两点,点E为⊙G上一动点,CF⊥AE于F,则弦AB的长度为;当点E在⊙G 的运动过程中,线段FG的长度的最小值为.20.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.21.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.22.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.23.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为cm.24.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=cm.25.如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.26.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为cm.27.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为.28.如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为.29.如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为.三.解答题(共6小题)30.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.31.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.32.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.33.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,BC=3.(1)求AB的长;(2)求⊙O的半径.34.如图,四边形ABCD内接于⊙O,OC=4,AC=4.(1)求点O到AC的距离;(2)求∠ADC的度数.35.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.垂径定理精选题35道参考答案与试题解析一.选择题(共15小题)1.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.8【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.2.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.【分析】PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.3.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD 的长为()A.B.2C.2D.8【分析】作OH⊥CD于H,连接OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连接OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=∠APC=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.4.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4【分析】连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF=CF,进而证得DF=BC,根据三角形中位线定理求得OF=BC=DF,从而求得BC=DF=2,利用勾股定理即可求得AC.【解答】解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.【点评】本题考查了垂径定理,三角形全等的判定和性质,三角形中位线定理,熟练掌握性质定理是解题的关键.5.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4 cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm).故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC 的长为()A.cm B.cm C.cm或cm D.cm或cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:如图,连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.1【分析】根据垂径定理以及勾股定理即可求答案.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AD=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选:C.【点评】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.8.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5【分析】由垂线段最短可知当OM⊥AB时最短,当OM是半径时最长.根据垂径定理求最短长度.【解答】解:如图,连接OA,作OM⊥AB于M,∵⊙O的直径为10,∴半径为5,∴OM的最大值为5,∵OM⊥AB于M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM====4;此时OM最短,所以OM长的取值范围是4≤OM≤5.故选:B.【点评】本题考查了垂径定理、勾股定理,解决本题的关键是确定OM的最小值,所以求OM的范围问题又被转化为求弦的弦心距问题,而解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.6【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣∠BOC)=30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2,∴BC=4.故选:B.【点评】此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.注意掌握辅助线的作法,注意数形结合思想的应用.10.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,OC=3,则EC的长为()A.B.8C.D.【分析】根据垂径定理求出AC=BC,根据三角形的中位线求出BE,再根据勾股定理求出EC即可.【解答】解:连接BE,∵AE为⊙O直径,∴∠ABE=90°,∵OD⊥AB,OD过O,∴AC=BC=AB==4,∵AO=OE,∴BE=2OC,∵OC=3,∴BE=6,在Rt△CBE中,EC===2,故选:D.【点评】本题考查了垂径定理,勾股定理,三角形的中位线等知识点,能根据垂径定理求出AC=BC是解此题的关键.11.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6B.8C.10D.12【分析】连接OC,根据题意OE=OC﹣1,CE=3,结合勾股定理,可求出OC的长度,即可求出直径的长度.【解答】解:连接OC,∵弦CD⊥AB于E,CD=6,AE=1,∴OE=OC﹣1,CE=3,∴OC2=(OC﹣1)2+32,∴OC=5,∴AB=10.故选:C.【点评】本题主要考查了垂径定理、勾股定理,解题的关键在于连接OC,构建直角三角形,根据勾股定理求半径OC的长度.12.点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.3cm B.4cm C.5cm D.6cm【分析】根据直径是圆中最长的弦,知该圆的直径;最短弦即是过点P且垂直于过点P 的直径的弦;根据垂径定理即可求得CP的长,再进一步根据勾股定理,可以求得OP的长.【解答】解:如图所示,CD⊥AB于点P.根据题意,得:AB=10cm,CD=6cm.∵AB是直径,且CD⊥AB,∴CP=CD=3cm.根据勾股定理,得OP===4(cm).故选:B.【点评】此题综合运用了垂径定理和勾股定理.正确理解圆中,过一点的最长的弦和最短的弦是解题的关键.13.⊙O的半径为5,M是圆外一点,MO=6,∠OMA=30°,则弦AB的长为()A.4B.6C.6D.8【分析】过O作OC⊥AB于C,连接OA,根据含30°角的直角三角形的性质得出OC=MO=3,根据勾股定理求出AC,再根据垂径定理得出AB=2AC,最后求出答案即可.【解答】解:过O作OC⊥AB于C,连接OA,则∠OCA=90°,∵MO=6,∠OMA=30°,∴OC=MO=3,在Rt△OCA中,由勾股定理得:AC===4,∵OC⊥AB,OC过O,∴BC=AC,即AB=2AC=2×4=8,故选:D.【点评】本题考查了含30°角的直角三角形的性质,勾股定理,垂径定理等知识点,能熟记垂直于弦的直径平分弦是解此题的关键.14.如图,CD为⊙O直径,CD⊥AB于点F,AE⊥BC于E,AE过圆心O,且AO=1.则四边形BEOF的面积为()A.B.C.D.【分析】根据垂径定理求出AF=BF,CE=BE,=,求出∠AOD=2∠C,求出∠AOD=2∠A,求出∠A=30°,解直角三角形求出OF和BF,求出OE、BE、BF,根据三角形的面积公式求出即可.【解答】解:∵CD为直径,CD⊥AB,∴=,∴∠AOD=2∠C,∵CD⊥AB,AE⊥BC,∴∠AFO=∠CEO=90°,在△AFO和△CEO中∴△AFO≌△CEO(AAS),∴∠C=∠A,∴∠AOD=2∠A,∵∠AFO=90°,∴∠A=30°,∵AO=1,∴OF=AO=,AF=OF=,同理CE=,OE=,连接OB,∵CD⊥AB,AE⊥BC,CD、AE过O,∴由垂径定理得:BF=AF=,BE=CE=,∴四边形BEOF的面积S=S△BFO+S△BEO=××+=,故选:C.【点评】本题考查了垂径定理,圆周角定理,解直角三角形等知识点,能够综合运用定理进行推理是解此题的关键.15.△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A.B.C.D.【分析】在Rt△ABC中,由勾股定理可直接求得AB的长;过C作CM⊥AB,交AB于点M,由垂径定理可得M为AE的中点,在Rt△ACM中,根据勾股定理得AM的长,从而得到AE的长.【解答】解:在Rt△ABC中,∵AC=3,BC=4,∴AB==5.过C作CM⊥AB,交AB于点M,如图所示,由垂径定理可得M为AE的中点,∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AE=2AM=.故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二.填空题(共14小题)16.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【解答】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴OD==4.故答案为4.【点评】题考查了垂径定理、勾股定理,本题非常重要,学生要熟练掌握.17.如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.【分析】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出即可.【解答】解:连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=×1=,即CD的最大值为,故答案为:.【点评】本题考查了垂线段最短,勾股定理和垂径定理等知识点,能求出点C的位置是解此题的关键.18.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.【分析】连接OC,由垂径定理得出CE=CD=2,设OC=OA=x,则OE=x﹣1,由勾股定理得出CE2+OE2=OC2,得出方程,解方程即可.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,CD⊥AB,∴CE=CD=2,∠OEC=90°,设OC=OA=x,则OE=x﹣1,根据勾股定理得:CE2+OE2=OC2,即22+(x﹣1)2=x2,解得:x=;故答案为:.【点评】本题考查了垂径定理、勾股定理、解方程;熟练掌握垂径定理,并能进行推理计算是解决问题的关键.19.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D 两点,点E为⊙G上一动点,CF⊥AE于F,则弦AB的长度为2;当点E在⊙G的运动过程中,线段FG的长度的最小值为﹣1.【分析】作GM⊥AC于M,连接AG.因为∠AFC=90°,推出点F在以AC为直径的⊙M上推出当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM,想办法求出FM、GM即可解决问题;【解答】解:作GM⊥AC于M,连接AG.∵GO⊥AB,∴OA=OB,在Rt△AGO中,∵AG=2,OG=1,∴AG=2OG,OA==,∴∠GAO=30°,AB=2AO=2,∴∠AGO=60°,∵GC=GA,∴∠GCA=∠GAC,∵∠AGO=∠GCA+∠GAC,∴∠GCA=∠GAC=30°,∴AC=2OA=2,MG=CG=1,∵∠AFC=90°,∴点F在以AC为直径的⊙M上,当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM=﹣1.故答案为2,﹣1.【点评】本题考查垂径定理、直角三角形30度角的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.20.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为(﹣1,﹣2).【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点D的坐标即可.【解答】解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD=DB=DA==,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),【点评】此题考查垂径定理,关键是根据垂径定理得出圆心位置.21.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.【分析】由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,此时线段EF=2EH=20E•sin∠EOH=20E•sin60°,因此当半径OE最短时,EF最短,连接OE,OF,过O点作OH⊥EF,垂足为H,在Rt△ADB中,解直角三角形求直径AD,由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,在Rt△EOH中,解直角三角形求EH,由垂径定理可知EF=2EH.【解答】解:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,如图,连接OE,OF,过O点作OH⊥EF,垂足为H,∵在Rt△ADB中,∠ABC=45°,AB=2,∴AD=BD=2,即此时圆的直径为2,由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,∴在Rt△EOH中,EH=OE•sin∠EOH=1×=,由垂径定理可知EF=2EH=.故答案为:.【点评】本题考查了垂径定理,圆周角定理,解直角三角形的综合运用.关键是根据运动变化,找出满足条件的最小圆,再解直角三角形.22.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是2或14cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可,小心别漏解.【解答】解:①当弦AB和CD在圆心同侧时,连接OA,OC,过点O作OE⊥AB于点E并延长交CD于点F.如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF﹣OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.【点评】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.23.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为4cm.【分析】连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=4cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=4cm,故答案为:4【点评】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.24.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=8cm.【分析】根据垂径定理,可得AC的长,根据勾股定理,可得OC的长,根据线段的和差,可得答案.【解答】解:由垂径定理,AC=AB=12cm.由半径相等,得OA=OD=13cm.由勾股定理,得OC===5.由线段的和差,得CD=OD﹣OC=13﹣5=8cm,故答案为:8.【点评】本题考查了垂径定理,利用垂径定理得出直角三角形OAC是解题关键,又利用了勾股定理.25.如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为2.【分析】设直线AB交y轴于C,过O作OD⊥AB于D,先求出A、C坐标,得到OA、OC长度,可得∠CAO=30°,Rt△AOD中求出AD长度,从而根据垂径定理可得答案.【解答】解:设直线AB交y轴于C,过O作OD⊥AB于D,如图:在y=x+中,令x=0得y=,∴C(0,),OC=,在y=x+中令y=0得x+=0,解得x=﹣2,∴A(﹣2,0),OA=2,Rt△AOC中,tan∠CAO===,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×=,∵OD⊥AB,∴AD=BD=,∴AB=2,故答案为:2.【点评】本题考查一次函数、锐角三角函数及垂径定理等综合知识,解题的关键是利用tan∠CAO=得到∠CAO=30°.26.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为1或7cm.【分析】作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,利用平行线的性质OF⊥CD,根据垂径定理得到AE=BE=4,CF=DF=3,则利用勾股定理可计算出OE=3,OF=4,讨论:当点O在AB与CD之间时,EF=OF+OE;当点O不在AB与CD 之间时,EF=OF﹣OE.【解答】解:作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,∵AB∥CD,OE⊥AB,∴OF⊥CD,∴AE=BE=AB=4cm,CF=DF=CD=3cm,在Rt△OAE中,OE===3cm,在Rt△OCF中,OF===4cm,当点O在AB与CD之间时,如图1,EF=OF+OE=4+3=7cm;当点O不在AB与CD之间时,如图2,EF=OF﹣OE=4﹣3=1cm;综上所述,AB与CD之间的距离为1cm或7cm.故答案为1或7.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.注意分类讨论.27.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为4.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故答案为4.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.28.如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为3.【分析】根据垂径定理由CD⊥AB得到CH=CD=4,再根据勾股定理计算出OH=3.【解答】解:连接OC,∵CD⊥AB,∴CH=DH=CD=×8=4,∵直径AB=10,∴OC=5,在Rt△OCH中,OH==3,故答案为:3.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.29.如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为20.【分析】延长AO交BC于D,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长;过O作BC的垂线,设垂足为E;在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长;由垂径定理知BC=2BE,由此得解.【解答】解:延长AO交BC于D,作OE⊥BC于E;∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=12;∴OD=4,又∵∠ADB=60°,∴DE=OD=2;∴BE=10;∴BC=2BE=20;故答案为20.【点评】此题主要考查了等边三角形的判定和性质以及垂径定理的应用.三.解答题(共6小题)30.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.【分析】(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;【解答】解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.【点评】本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧.31.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.【分析】(1)先根据同角的余角相等得到∠CNM=∠B,利用等量代换得到∠AND=∠B,利用同弧所对的圆周角相等得到∠D=∠B,则得∠AND=∠D,利用等角对等边可得出结论;(2)先根据垂径定理求出AE的长,连接AO,设OE的长为x,则DE=NE=x+1,OA =OD=2x+1,在Rt△AOE中根据勾股定理可得出x的值,进而得出结论.【解答】(1)证明:∵CD⊥AB∴∠CEB=90°∴∠C+∠B=90°,同理∠C+∠CNM=90°∴∠CNM=∠B∵∠CNM=∠AND∴∠AND=∠B,∵,∴∠D=∠B,∴∠AND=∠D,∴AN=AD;(2)解:设OE的长为x,连接OA∵AN=AD,CD⊥AB∴DE=NE=x+1,∴OD=OE+ED=x+x+1=2x+1,∴OA=OD=2x+1,∴在Rt△OAE中OE2+AE2=OA2,∴x2+42=(2x+1)2.解得x=或x=﹣3(不合题意,舍去),∴OA=2x+1=2×+1=,即⊙O的半径为.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.32.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.【分析】(1)由OD⊥AC知AD=DC,同理得出CE=EB,从而知DE=AB,据此可得答案;(2)作OH⊥AB于点H,连接OA,根据题意得出OH=3,AH=4,利用勾股定理可得答案.【解答】解:(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵AB=8,∴DE=4.(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.【点评】本题主要考查垂径定理,解题的关键是掌握垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了中位线定理与勾股定理.33.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,BC=3.(1)求AB的长;(2)求⊙O的半径.【分析】(1)连接AC,如图,利用垂径定理可判断CD垂直平分AB,则CA=CB=3,同理可得AE垂直平分BC,所以AB=AC=3;(2)先证明△ABC为等边三角形,则AE平分∠BAC,所以∠OAF=30°,然后利用含30度的直角三角形三边的关系求出OA即可.【解答】解:(1)连接AC,如图,∵CD⊥AB,∴AF=BF,即CD垂直平分AB,∴CA=CB=3,∵AO⊥BC,∴CE=BE,即AE垂直平分BC,∴AB=AC=3;(2)∵AB=AC=BC,∴△ABC为等边三角形,∴∠BAC=60°,∴AE⊥BC,∴AE平分∠BAC,即∠OAF=30°,在Rt△OAF中,∵OF=AF=×=,∴OA=2OF=,即⊙O的半径为.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.34.如图,四边形ABCD内接于⊙O,OC=4,AC=4.(1)求点O到AC的距离;(2)求∠ADC的度数.【分析】(1)作OM⊥AC于M,根据等腰直角三角形的性质得到AM=CM=2,根据勾股定理即可得到结论;(2)连接OA,根据等腰直角三角形的性质得到∠MOC=∠MCO=45°,求得∠AOC=90°,根据圆内接四边形的性质即可得到结论.【解答】解:(1)作OM⊥AC于M,∵AC=4,∴AM=CM=2,∵OC=4,∴OM==2;(2)连接OA,∵OM=MC,∠OMC=90°,∴∠MOC=∠MCO=45°,∵OA=OC,∴∠OAM=45°,∴∠AOC=90°,∴∠B=45°,∵∠D+∠B=180°,∴∠D=135°.【点评】本题考查了垂径定理,勾股定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.35.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.【分析】过O点作半径OD⊥AB于E,如图,利用垂径定理得到AE=BE=4,再利用勾股定理计算出OE,然后计算出DE的长即可.【解答】解:过O点作半径OD⊥AB于E,如图,∴AE=BE=AB=×8=4(m),在Rt△AEO中,OE===3(m),∴ED=OD﹣OE=5﹣3=2(m),答:筒车工作时,盛水桶在水面以下的最大深度为2m.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最全中学生学习资料整理
9.圆的半径为 5cm,圆心到弦 AB 的距离为 4cm,则 AB=______cm. 10.如图,CD 为⊙O 的直径,AB⊥CD 于 E,DE=8cm,CE=2cm,则 AB=______cm.
10 题图
11 题图
12 题图
11.如图,⊙O 的半径 OC 为 6cm,弦 AB 垂直平分 OC,则 AB=______cm,∠AOB=______°.
A. 3 15cm B. 3 10cm C. 3 5cm
D. 3 3cm
二、填空题 7.垂直于弦的直径的性质定理是____________________________________________. 8.(2020•黔西南州)如图,AB 是⊙O 的直径,CD 为⊙O 的一条弦,CD⊥AB 于点 E,已知 CD=4,AE=1, 则⊙O 的半径为 .
A.CE=DE
B.AE=OE
C. =
D.△OCE≌△ODE
5.如图所示,矩形 ABCD 与⊙O 相交于 M、N、F、E,若 AM=2,DE=1,EF=8,则 MN 的长为( )
A.2
B.4
C.6
D.8
6.已知⊙O 的直径 AB=12cm,P 为 OB 中点,过 P 作弦 CD 与 AB 相交成 30°角,则弦 CD 的长为( ).
最全中学生学习资料整理
垂径定理—巩固练习(基础)
【巩固练习】
一、选择题
1.下列结论正确的是( )
A.经过圆心的直线是圆的对称轴
B.直径是圆的对称轴
C.与圆相交的直线是圆的对称轴
D.与直径相交的直线是圆的对称轴
2.下列命题中错误的有( ).
(1)弦的垂直平分线经过圆心
(2)平分弦的直径垂直于弦
(3)梯形的对角线互相平分
14. 如图所示,AB 是⊙O 的直径,弦 CD⊥AB 于点 P,CD=10cm,AP:PB=1:5,求⊙O 半径.
15.(2020•绵阳模拟)如图,已知圆 O 的直径 AB 垂直于弦 CD 于点 E,连接 CO 并延长交 AD 于点 F, 且 CF⊥AD. (1)请证明:E 是 OB 的中点; (2)若 AB=8,求 CD 的长.
最全中学生学习资料整理
【答案与解析】 一、选择题 1.【答案】A;
【解析】图形的对称轴是直线,圆的对称轴是过圆心的直线,或直径所在的直线. 2.【答案】C;
【解析】(1)正确; (2)“平分弦(该弦不是直径)的直径垂直于弦”才是正确的,所以(2)不正确; (3)对角线互相平分就是平行四边形,而不是梯形了,所以(3)不正确; (4)圆的对称轴是直径所在的直线,所以(4)不正确.故选 C.



∴点 E 为 OB 的中点;
(2)解:在 Rt△OCE 中,AB=8,


又∵BE=OE, ∴OE=2,



最全中学生学习资料整理

2
2
2
且 OP=OA-PA=3k-k=2k.
∵ AB⊥CD 于 P,
∴ CP= 1 CD =5. 2
在 Rt△COP 中用勾股定理,有 OC 2 PC 2 PO2 ,
∴ (3k)2 52 (2k)2 .
即 5k 2 25 ,∴ k 5 (取正根),
∴ 半径 OC 3k 3 5 (cm).
三、解答题 13.【答案与解析】
设圆弧所在圆的半径为 R,则 R2-(R-18)2=302, ∴R=34
当拱顶高水面 4 米时,有

∴不用采取紧急措施.
14.【答案与解析】
连结 OC.设 AP=k,PB=5k,
∵ AB 为⊙O 直径,
∴ 半径 OC 1 AB 1 (AP PB) 1 (k 5k ) 3k .
12.如图,AB 为⊙O 的弦,∠AOB=90°,AB=a,则 OA=______,O 点到 AB 的距离=______.
三、解答题 13.如图,有一座拱桥是圆弧形,它的跨度为 60 米,拱高 18 米,当洪水泛滥到跨度只有 30 米时,要采 取紧急措施,若拱顶离水面只有 4 米,即 PN=4 米时是否要采取紧急措施?
(4)圆的对称轴是直径
A.1 个
B.2 个
C.3 个
D.4 个
3.如图所示,AB 是⊙O 的直径,CD 是⊙O 的弦,AB⊥CD 于 E,则图中不大于半圆的相等弧有( ).
A.l 对
B.2 对
C.3 对
D.4 对
第3题
第5题
4.(2020•广元)如图,已知⊙O 的直径 AB⊥CD 于点 E,则下列结论一定错误的是( )
∴CE= CD=2,∠OEC=90°,
设 OC=OA=x,则 OE=x﹣1, 根据勾股定理得:CE2+OE2=OC2, 即 22+(x﹣1)2=x2,
解得:x= ;
故答案为: .
9.【答案】6; 10.【答案】8;
11.【答案】 6 3, 120o ;
最全中学生学习资料整理
12.【答案】 2 a , 1 a ; 22
3.【答案】C;
【解析】 AB AB ; AC AD ; BC BD .
4.【答案】B; 【解析】∵⊙O 的直径 AB⊥CD 于点 E, ∴CE=DE,弧 CB=弧 BD, 在△OCE 和△ODE 中,

∴△OCE≌△ODE, 故选 B
5.【答案】C; 【解析】过 O 作 OH⊥CD 并延长,交 AB 于 P,易得 DH=5,而 AM=2,∴MP=3,MN=2MP=2×3=6.
6.【答案】A;
【解析】作 OH⊥CD 于 H,连接 OD,则 OH= 3 , OD=6,可求 DH= 3 15 ,CD=2DH= 3 15 .
2Hale Waihona Puke 2二、填空题 7.【答案】垂直于弦的直径平分弦,并且平分弦所对的两条弧.
8.【答案】 ;
【解析】连接 OC,如图所示: ∵AB 是⊙O 的直径,CD⊥AB,
15.【答案与解析】 (1)证明:连接 AC,如图 ∵直径 AB 垂直于弦 CD 于点 E,


∴AC=AD, ∵过圆心 O 的线 CF⊥AD, ∴AF=DF,即 CF 是 AD 的中垂线, ∴AC=CD, ∴AC=AD=CD. 即:△ACD 是等边三角形, ∴∠FCD=30°,
在 Rt△COE 中,
相关文档
最新文档