不定积分的换元法
高等数学b学习资料-3.2不定积分的换元积分法

解 令 t 1x2 x2t21,xdxtdt,
x5
1
x2
dx
(t2 1)2 tdt t
(t42t21)dt
1t52t3tC1(84x23x4)1x2C .
53
15
例5
求
1 dx.
1ex
解 令 t 1ex ext21,
x ln t2 1, dxt22t1dt,
1
a2(t1si2n t)C 22
a 2arx c 1 sxia 2 n x 2 C . 2 a2
ax t
a2x2
例2 求
1 dx (a0). x2a2
解 令 xatat,n t 2, 2 d x a s2 e td tc ,
1 dx x2 a2
1 ase2tcdt asetc
可由 a24b的符号确 . 定
a24b0, x21 a xbd x(xm 1)2ndx a24b0, x21 ax bdx (x1m)2dx a24b0, x21 a xbd x(xm 1 )x (n)dx
例5 求 taxn dx. 解 tanxdx csionxxsdx c1oxd s(cox)s
c1oxsd(co x)s lc nx o C s.
( 使用了三角函数恒等变形 )
ta x d x n lc n x o C s .
同理可得 cx o d x tls nx i n C .
例6 (1) 求 se x d x c. sx e d x c ls nx e tca x C n .
x5 1x2d x(s t)5 i1 n s2 itc n to d t s si5tn c2 o td ts
( 应用“凑微分”即可求出结果 )
不定积分的换元积分法

csc xdx ln csc x cot x C .
21
应用第一类换元法的常见的积分类型如下:
1.
2. x
1 f (ax b)dx f (ax b)d(ax b) ; a
n 1
f (axn b)dx
1 f (axn b)d(axn b) ; na
这类求不定积分的方法,称为第二换元 法.
32
例11 解
dx 求 1 3 - x .
设 t 3 x,则 x 3 t 2 , dx 2tdt .
dx 2t dt 2 1 t 1 dt 1 t 1 t 1 3 x 1 2 (1 )dt 1 t
8
例1 解 所以
求 sin 2 xdx .
1 设 t 2 x ,则 dt 2dx ,即 dx dt . 2
1 1 sin 2 xdx sin tdt cos t C , 2 2
再将 t 2 x 代入,得
1 sin 2 xdx cos 2 x C . 2
2
x 1 (9) cos xdx sin 2 x C 2 4
28
1 1 C (10) dx 2 2(2 x 3) (2 x 3)
(11)
x 1 ( x 2 2 x 3)
2 1 4
2 2 dx ( x 2 x 3) C 3
3 2 2
3 4
于是
利用复合函数求导公式,可以验证(4.3.1) 的正确性.
3
实际上,由 d F ( ( x)) C F ( x) ( x) dx f ( x) ( x) , 可知公式(4.3.1)成立.利用公式(4.3.1)来计 算不定积分,就是第一换元法,亦称为凑微分 法.
5-2 不定积分的换元积分法

1 2 xdx (2) xe dx
(1)
5 x2
1 3 1 1 2 1 2 x 2 C (1 2 x ) 2 d (1 2 x ) 2 3 2
x (3) dx 2 2 3x
e 10
1
5 x2
1 5 x2 d (5 x ) e C 10
1 (2) 2 dx; a x
1 a 2 x 2 dx;
x a 2 x 2 dx
1 1 x x (3) dx; dx; dx; dx 3 2 2 5 1 x (1 x ) 1 x (1 x )
19
换元积分法
二、第二换元积分法
第一换元法中 ( x) u f [ ( x)] ( x)dx
1 ln1 2 ln x C 2
1 1 ln x d (ln x ) 1 x
x
1 1 1 d (1 2ln x ) 1 x (1 2ln x ) 2
x
11
换元积分法
利用基本积分表的公式把被积函数中的一部分凑成 中间变量的微分,常见的有:
1 dx d ax b a 1 n 1 x dx d x n n e x dx d(e x ) cos xdx d(sin x ) sec 2 xdx d(tan x ) 1
1 (t 1) 1 1 1 x dx 1 t 2tdt 2 1 t dt 1 2 (1 )dt 1 t
2t 2ln 1 t C
2 x 2 ln( 1 x) C
23
换元积分法
练习 求下列函数的不定积分 x 1 (1) x x 1dx; (2) 3 dx . 3x 1
不定积分的换元积分法

有时计算复杂:在某些情况下,换元后需要进行的计算可 能较为复杂,需要较高的计算能力。
不定积分换元法的发展趋势
理论研究不断深入
随着数学理论的发展,不定积分换元法 的理论体系不断完善,研究不断深入。
VS
应用领域不断拓展
随着科技的发展,不定积分换元法的应用 领域越来越广泛,不仅在数学、物理等领 域得到广泛应用,也逐渐拓展到工程、经 济等领域。
不定积分的换元积分法
2023-12-23
CONTENTS 目录
• 不定积分的概念 • 换元积分法的基本思想 • 常用的换元积分法 • 换元积分法的应用实例 • 总结与展望
CHAPTER 01
不定积分的概念
定义与性质
定义
不定积分是微分的逆运算,即求一个 函数的原函数或不定积分。
性质
不定积分具有线性性质、积分常数性 质和积分区间可加性。
第二类换元积分法(变量替换法)
总结词
通过引入新的变量替换原函数中的部分变量,将不定积分转化为容易求解的形式。
详细描述
第二类换元积分法也称为变量替换法。这种方法适用于被积函数中含有根号或分母中含有变量的不定 积分。通过引入新的变量进行替换,可以将不定积分转化为容易求解的形式。常用的替换方法包括三 角函数替换、指数函数替换等。
换元积分法不仅在不定积分和解决实际问题中有应用,在其他数学领域也有广泛的应用。例如,在求 解微分方程、变分法、复变函数等领域中,换元积分法都是一种重要的工具。
通过引入适当的变量替换,可以将复杂的问题转化为更易于处理的形式,从而简化计算或求解过程。
CHAPTER 05
总结与展望
不定积分换元法的优缺点
在不定积分中,如果一个函数可以表示为另一个函数的复合函数,那么可 以通过引入新的变量来简化计算。
不定积分换元法公式

不定积分换元法公式设x=φ(t)是单调的,可导的函数,并且φ'(t)≠0,又设f[φ(t)]φ'(t)具有原函数,则有换元公式∫f(x)dx={∫f[φ(t)]φ'(t)dt} (t=φ^(-1)(x))。
定理(1)设f(u)具有原函数,u=φ(x)可导,则有换元公式∫f[φ(x)]φ'(x)dx=[∫f(u)du] (u=φ(x));定理(2)设x=φ(t)是单调的,可导的函数,并且φ'(t)≠0.又设f[φ(t)]φ'(t)具有原函数,则有换元公式∫f(x)dx={∫f[φ(t)]φ'(t)dt} (t=φ^(-1)(x))。
注意:第二类与第一类换元积分法相反,第二类换元积分法就是由于积分∫f(x)dx不便计算,而改求∫f[φ(t)]φ'(t)dt。
关键是:如何选择变量替换。
把复合函数的微分法反过来用于求不定积分,利用中间变量的代换,得到复合函数的积分法,称为换元积分法,简称换元法,换元法通常分为两类:第一类换元法:设f(u)具有原函数F(U),即。
F'(U)=f(u),∫f(u)du=F(U)+C。
如果u是中间变量,u=φ(x),且设φ(x)可微,那么,根据复合函数微分法有:dF(φ(x))=f(φ(x))φ'(x)dx。
从而根据不定积分的定义就得:∫f[φ(x)]φ'(x)dx=F[φ(x)]+C=[∫f(u)du] (u=φ(x))。
于是有下述定理:定理1:设f(u)具有原函数,u=φ(x)可导,则有换元公式:∫f[φ(x)]φ'(x)dx=[∫f(u)du] (u=φ(x)) (1)。
将所求积分∫φ(x)dx表成∫f[φ(x)]φ'(x)dx就是凑微分过程,然后就是换元,也就是将积分变量x换成u;最后是求原函数,实际上就是∫f[φ(x)]φ'(x)dx不好求。
而∫f(u)du好求,所以先求出后一个不定积分;最后再将变量u换成x。
第3-1不定积分的第一类换元积分法

sin
3
xdx sin x sin xdx (1 cos x)d cos x
2 2
1 3 cos x cos x C 3
sec 6 xdx . 例10.求
解: 原式 = (tan 2 x 1) 2 d tan x d x sec 2
(tan 4 x 2 tan 2 x 1) dtan x
2
x a
2
2
ln |
x2 a2 x a | C1
t a
(C C1 ln a)
x
公式15:
ln x x a C (a 0)
2 2
例17. 求
解:
1 x2 2x 2
dx .
原式
1 ( x 1) 1
2 2
d (x 1)
(由公式2)
1 ln a x ln a x 2a
1 ax C ln C 2a a x
例7. 求
dln x 1 d(1 2 ln x) 解: 原式 = 1 2 ln x 2 1 2 ln x
dx . 例8. 求 x 1 e 解法1 (1 e x ) e x d(1 e x ) dx dx x x 1 e 1 e x ln(1 e x ) C
2 3 1 5 tan x tan x tan x C 3 5
例12. 求 sin 4 x cos 3xdx
1 解: 利用公式 sin cos [sin( ) sin( )] 2 1 原式= (sin 7 x sin x)dx 2 1 1 cos 7 x cos x C 14 2
不定积分(二)

不定积分
例5 求 sin 3xsin 5xdx
解: sin 3xsin 5xdx
1 2
[
c
os(3x
5x)
cos(3x
5x)]dx
1 2
c
os8xdx
1 2
cos(2x)dx
1 2
c
os8xdx
1 2
cos2xdx
1 sin 8x 1 sin 2x C
2 sin 2x
1
(ln
tan
3
x) 2
C
3
不定积分
2、
ln(1 x) x(1
ln x)
xdx
[ln(1
x)
lnΒιβλιοθήκη x]d[ln(1x)
ln
x]
1 [ln(1 x) ln x]2 C 2
1 [ln 1 x ]2 C 2x
[ln(1 x) ln x]
解:1、tan3 xsec3 xdx tan2 x sec2 xdsec x
(sec2x 1)sec2 xd (sec x)
sec4 xd(secx) sec2 xd(secx)
1 sec5 x 1 sec3 x C
C
3
3
不定积分
练习
1、e2xdx
3、x3 sin(x4 1)dx
5、
ln x dx x
7、ex 2 ex dx
2、 4x 1dx
不定积分的换元积分法4.2

f [j ( t )] j ( t )dt
.
最后将t =j1(x)代入f [j(t)]j(t) 的原函数中.
第二类换元法用于求特殊类型的不定积分.
例 21 例18
求
a
2
x
2
d x (a > 0 ).
x
2
a t
a x
2 2
解
设 x a sin t ,
a x
a
2
< t<
2 2
ln | x
x a
2
2
| C
.
三、积分公式小结
(1 ) kdx kx C ,
( 2 ) x dx
m
(k是常数),
x
m 1
1
m 1
C,
(m 1),
(3)
(4)
(5 )
1 x
dx ln | x | C ,
1 dx arctan x C ,
例 23 例21
求
dx x
2
x
2
(a > 0 ).
a
解 那么
当 x> a 时 , 设 x a se c t (0 < t<
x a
2 2
2
t
),
sec
2
a
t 1
a sec
2
2
ta
2
a
a tan t , 于是
dx x a
2 2
2
a sec t tan t a tan t
2
1 3
sin
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 3 1 5 tan x tan x tan x C 3 5
dx . 例9. 求 x 1 e 解法1 x x x d ( 1 e ) (1 e ) e dx d x x 1 ex 1 e x x ln(1 e ) C
解法2
e x d(1 e x ) dx x x 1 e 1 e ln(1 e x ) C
x x x
ln(1 e ) ln[e (e 1)] 两法结果一样
例10. 求 解法1
cos x d sin x dx 2 cos x 1 sin 2 x 1 1 1 d sin x 2 1 sin x 1 sin x 1 ln 1 sin x ln 1 sin x C 2 1 1 sin x ln C 2 1 sin x
例11 . 求
1 cos 2 x 2 解: cos x (cos x) ( ) 2 2 1 ( 1 2 cos 2 x cos 2 x) 4
4 2 2
1 cos 4 x ) 1 ( 1 2 cos 2 x 4 2
3 2 cos 2 x 1 cos 4 x) 1 ( 4 2 2
1 u2
想到公式 du
arctan u C
例3. 求
解:
a
dx
x)2 1 (a
x) d (a x )2 1 (a
想到
du 1 u2
arcsin u C
f [ ( xຫໍສະໝຸດ ] ( x)dx f ( ( x))d ( x)
(凑微分法或配元法)
例4. 求 解:
1 1 cos( m n) xdx cos( m n) xdx 2 2 1 1 [ cos( m n) xd (m n) x 2 mn 1 cos( m n) xd (m n) x] mn 1 1 1 [ sin( m n) x sin( m n) x] C. 2 mn mn
第三章 积分的计算 3-1 不定积分的换元法
1. 不定积分第一换元法 设 F ( y ) f ( y) , 可导, 则有
dF [ ( x)] F ( y) ( x)dx f [ ( x)] ( x)dx F [ ( x)] C F ( y ) C
y ( x )
cos x dx
4 3 2
1 4
3 2 cos 2 x 1 cos 4 x ) dx ( 2 2
1 cos 4 x d ( 4 x) cos 2 x d( 2 x ) d x 8
例12 求
解
sin nx sin mxdx 1 sin nx sin mxdx 2 [cos( m n) x cos(m n) x]dx
dsin x dcos x
(6) (7 )
(8)
x x f ( e )e dx
1 f (ln x) dx x
f (tan x)sec 2 xdx
dtan x
de
x
dln x
例6. 求
dln x 1 d(1 2 ln x) 解: 原式 = 1 2 ln x 2 1 2 ln x
dcos x sin x cos xdx cos x
类似
cos x dx d sin x sin x sin x
例5. 求
解:
1 ( x a) ( x a) 1 1 1 1 ( ) 2 2a x a x a x a 2 2a ( x a)( x a )
常用的几种配元形式:
1 (1) f (ax b)dx a 1 n n 1 (2) f ( x )x dx n 1 n 1 (3) f (x ) dx n x
d(a x b)
dx
n
1 n d x xn
万 能 凑 幂 法
(4) (5)
f (sin x)cos xdx f (cos x)sin xdx
f ( y )d y
或写成
y ( x )
F [ ( x)] C
第一类换元法 第二类换元法
例1. 求
解: 令 u a x b , 则 d u adx , 故 原式 = u
m
1 1 1 m 1 du u C a a m 1
注: 当
时
例2. 求
解:
1 dx 2 x)2 a 1 (a x 1 令 u , 则 du d x a a 1 1 du arctan u C 2 a a 1 u
解法 2
(sec x tan x) sec x tan x sec 2 x sec x tan x dx sec x tan x d (sec x tan x) sec x tan x
同样可证
csc xdx ln csc x cot x C
或
x ln tan C 2
例7. 求
e3
x
x
dx .
3 x
x
解: 原式 = 2 e
2 3 e 3
2 3 x d x e d(3 x ) 3 C
例8. 求 sec 6 xdx .
2 tan xd x 解: 原式 = (tan 2 x 1) 2 d sec
(tan 4 x 2 tan 2 x 1) dtan x
1 dx dx ∴ 原式 = 2a x a xa
d( x a ) 1 d( x a ) xa 2a x a
1 ln x a ln x a 2a
类似地
1 xa C C ln 2a x a