定积分的概念完整版
解释定积分的概念

解释定积分的概念
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
具体来说,定积分定义如下:设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子
区间[x₀,x₁], (x₁,x₂], (x₂,x₃], …, (xₙ-1,xₙ],其中x₀=a,xₙ=b。
a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x
叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。
同时,应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。
一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询数学专业人士。
定积分的概念、性质

三、定积分的性质
§5.1 定积分的概念与性质
一、定积分问题举例
演讲人姓名
二、定积分定义
一、定积分问题举例
曲边梯形 设函数yf(x)在区间[a, b]上非负、连续. 由直线xa、xb、y0及曲线yf (x)所围成的图形称为 曲边梯形, 其中曲线弧称为曲边.
曲边梯形的面积
*
观察与思考
定积分的定义
*
二、定积分定义
例1 用定积分表示极限 解 定积分的定义
*
二、定积分定义
定积分的定义
注: 设f (x)在[0, 1]上连续, 则有
*
定积分的几何意义
这是因为 曲边梯形面积 曲边梯形面积的负值
*
定积分的几何意义
各部分面积的代数和 曲边梯形面积 曲边梯形面积的负值
*
例2
在曲边梯形内摆满小的矩形, 当小矩形的宽度减少时, 小矩形面积之和与曲边梯形面积之间的误差将如何变化? 怎样求曲边梯形的面积?
*
(2)近似代替:
求曲边梯形的面积
(1)分割:
ax0< x1< x2< < xn1< xn b, Dxi=xi-xi1;
小曲边梯形的面积近似为f(xi)Dxi (xi1<xi<xi);
如果在区间[a b]上 f (x)g(x) 则
如果在区间[a b]上 f (x)0 则
性质5
推论2
性质6
设M及m分别是函数f(x)在区间[a b]上的最大值及最小值 则
例4 试证:
证明 设 则在 上, 有 即 故 即
*
性质7(定积分中值定理)
如果函数f(x)在闭区间[a b]上连 续 则在积分区间[a b]上至少存在一个点x 使下式成立 这是因为, 由性质6 ——积分中值公式 由介值定理, 至少存在一点x[a, b], 使 两端乘以ba即得积分中值公式.
定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
(完整版)定积分知识点汇总

(完整版)定积分知识点汇总定积分是高中数学教学的重点难点之一,也是高数的基础知识。
我们通过汇总定积分的相关知识点,帮助同学们更好地掌握定积分的相关知识,以便在考试中取得好的成绩。
一、定积分的定义定积分是对函数在一定区间上的积分,也就是函数在此区间上的面积。
1. 定积分与区间的选取无关,即如果函数在 $[a,b]$ 上是可积的,则定积分$\int_a^b f(x) \mathrm{d}x$ 的值是唯一的。
2. 定积分具有可加性,即对于任意的 $c \in [a,b]$,有 $\int_a^b f(x)\mathrm{d}x = \int_a^c f(x) \mathrm{d}x + \int_c^b f(x) \mathrm{d}x$。
三、定积分的求解方法1. 函数曲线与坐标轴相交的情况:对于函数曲线与 $x$ 轴相交的区间,可以根据定义式直接求出该区间内的面积。
对于函数曲线与 $y$ 轴相交的区间,则要将积分区间平移后,再根据定义式计算面积。
2. 利用基本积分法和牛顿-莱布尼茨公式:可以利用基本积分法求出一个函数的原函数,然后利用牛顿-莱布尼茨公式,即$\int_a^b f(x) \mathrm{d}x = F(b) - F(a)$,其中 $F(x)$ 是 $f(x)$ 的一个原函数。
3. 利用换元积分法:换元积分法是利用一些特殊的代换,将积分式转化为某些基本形式的积分。
常见的代换包括:$u=g(x), x=h(u)$ 和 $\mathrm{d}u = f(x) \mathrm{d}x$。
分部积分法是将原积分式做一个变形,转化成两个积分乘积的形式,从而更容易求解。
5. 利用定积分的对称性:如积分区间对于 $0$ 对称,或者函数具有四象限对称性等,可以根据对称性减少计算量。
1. 几何应用:用定积分可以求解函数曲线与坐标轴围成的图形的面积、体积和质心等几何特征。
利用定积分可以求解质点运动的速度、加速度、位移和质量等物理量。
定积分的概念与性质

定积分的概念与性质在数学中,定积分是一种重要的数学工具,用于求解曲线下的面积以及计算函数的平均值和总和。
本文将介绍定积分的概念与性质,帮助读者更好地理解和应用该概念。
一、定积分的概念定积分是微积分中的一种方法,用于计算曲线下的面积。
它是对函数在给定区间上的求和过程。
我们将一个区间划分成无穷小的小区间,并在每个小区间上选择一个点,然后将每个小区间的函数值和小区间长度相乘,再将这些乘积相加,最终得到定积分的值。
定积分的表示方法是∫[a, b] f(x)dx,其中a和b是积分区间的边界,f(x)是要进行积分的函数。
定积分代表了函数f(x)在[a, b]区间上的总和或者面积。
二、定积分的计算方法1. 用基本定积分公式计算定积分。
对于一些简单的函数,我们可以直接使用基本定积分公式进行计算。
例如,∫x^2 dx = 1/3x^3 + C,其中C是常数。
2. 使用不定积分和积分区间上的定义进行计算。
如果我们已知函数f(x)在区间[a, b]上的原函数F(x),那么定积分的值就等于F(b) - F(a)。
这是因为定积分可以看作是函数在两个边界上的累积变化量。
3. 利用定积分的性质进行计算。
定积分具有线性性质,即∫[a, b] (f(x) + g(x))dx = ∫[a, b] f(x)dx + ∫[a, b] g(x)dx。
此外,如果函数f(x)在区间[a,b]上连续,且f(x)≥0,则定积分的值表示了曲线下的面积。
三、定积分的性质1. 定积分与原函数的关系。
如果函数f(x)在区间[a, b]上连续,且F(x)是f(x)的一个原函数,则∫[a, b] f(x)dx = F(b) - F(a)。
这个公式可以用来计算一些不易积分的函数。
2. 定积分的加法性质。
对于两个函数f(x)和g(x),以及一个常数k,有∫[a, b] (f(x) + g(x))dx = ∫[a, b] f(x)dx + ∫[a, b] g(x)dx,以及∫[a, b] kf(x)dx = k∫[a, b] f(x)dx。
《定积分课件》课件

03 定积分的应用
CHAPTER
面积与体积的计算
总结词
定积分在计算平面图形的面积和三维物体的体积方面具有广 泛应用。
详细描述
利用定积分,可以计算出由曲线围成的平面图形的面积,例 如由y=sinx和y=cosx围成的图形面积。此外,定积分还可以 用于计算三维物体的体积,例如球体、圆柱体和旋转体的体 积。
详细描述
在静水压力问题中,压力分布是深度的函数。通过定积分,我们可以计算任意 深度的压力分布,从而了解水下物体的受力情况。
引力场的强度
总结词
通过定积分计算引力场的强度,理解引 力场的分布规律。
VS
详细描述
在引力场中,场强是位置的函数。通过定 积分,我们可以计算任意位置的场强,从 而了解物体在引力场中的运动规律。
符号表示
02
定积分的符号为∫,读作“拉姆达”。
计算方法
03
定积分的计算方法是通过微积分基本定理,将定积分转化为求
原函数在某点的值。
定积分的几何意义
平面区域面积
定积分可以用来计算平面图形的面积,特别是 当面积元素与坐标轴平行时。
体积
定积分还可以用来计算三维物体的体积,例如 旋转体的体积。
曲线下面积
定积分可以用来计算曲线下在某一区间内的面积。
定积分的计算方法
要点一
总结词
定积分的计算方法包括直接法、换元法和分部积分法等。
要点二
详细描述
定积分的计算可以通过多种方法进行。直接法是根据微积 分基本定理,通过求原函数并计算其差值来得到定积分的 结果。换元法是在积分变量进行换元,使得积分简化。分 部积分法则是通过将两个函数的乘积进行积分,将一个积 分转化为另一个积分,从而简化计算。这些方法在计算定 积分时常常需要结合使用。
定积分的基本概念

定积分的基本概念
一、定积分的基本概念
1.定积分的定义
定积分是指在区间[a,b]中,用函数f(x)的值在x处取的积分,其中x取值于a到b之间的某个点,f(x)的积分称为定积分。
也可以表示为
∫a, bf(x)dx=∫f(x)dx
即:将函数f(x)从x=a到x=b的定积分。
2.定积分的性质
(1)定积分是一种积分的形式,它是在定的一段区间内对某个函数f(x)求积分的形式。
(2)定积分可以表示为:∫f(x)dx=F(b)-F(a),其中F(x)是f(x)的积分函数。
(3)定积分可以表示为:∫a, bf(x)dx=∑[f(x1)+f(x2)+…
+f(xn)],其中x1,x2,…,xn为积分区间[a, b]的各个各点。
(4)定积分是一种表示曲线与坐标轴围成的面积的一种数学工具。
二、定积分的计算
1.定积分的数值计算
数值计算定积分,即把范围[a,b]离散成一定的小段,在每个小段上求f(x)的值,再用这些值进行总和,来求出定积分的近似值。
2.定积分的解析计算
解析计算此类定积分,即首先求出f(x)的积分方程,在范围[a,b]内,求得它的解后,再把范围[a,b]的定积分解析成积分函数F(x)的量对应的差值F(b)-F(a)。
三、定积分的应用
定积分的应用主要是用于求出曲线与坐标轴围成的面积,也可以用于求求解线性微分方程,求解有关动力学问题的时候,还有一些物理的和化学的问题,这些问题用的都是定积分的知识。
定积分的定义

定积分的定义定积分是微积分中的一种重要概念,它广泛应用于物理、计算机科学、经济学、统计学等领域。
在本文中,我们将探讨定积分的定义及其相关概念、定理和应用。
一、定积分的定义定积分的定义是通过限定积分上下限,计算函数在给定区间上的面积的方法。
具体地说,设函数f(x)在区间[a,b]上连续,则在[a,b]上关于x轴的面积为:∫<sub>b</sub><sup>a</sup>f(x)dx其中∫表示积分符号,f(x)dx表示微元,最终结果为面积。
二、交错积分的概念定积分有时会被定义为交错积分的形式,按照这样的定义,定积分是将区间[a,b]分成n等份后,将每等份映射到默区间[a,b],计算总面积面积的方法。
三、定积分的性质定积分具有一个重要的性质,即可加性。
也就是说,如果f(x)连续,则对于[a,b]和[b,c]的任意选取,有:∫<sub>c</sub><sup>b</sup>f(x)dx+∫<sub>b</sub><sup>a</sup>f (x)dx=∫<sub>c</sub><sup>a</sup>f(x)dx这个性质对于求复杂函数的面积非常有用,因为它允许我们将求和区间划分成更小的部分,并在不同部分上执行计算,从而得到总面积。
四、定积分的定理除了性质外,定积分还有一些定理,它们可以更简单地求出某些函数的积分。
其中最著名的是牛顿-莱布尼茨公式,它指出:∫<sub>b</sub><sup>a</sup>f(x)d x=F(b)-F(a)其中F(x)是f(x)的原函数。
另外两个常见的定理是平均值定理和拉格朗日中值定理。
平均值定理指出,如果f(x)在区间[a,b]上连续,则它在[a,b]上的平均值等于1/(b-a)∫<sub>b</sub><sup>a</sup>f(x)dx;拉格朗日中值定理指出,如果f(x)在[a,b]上连续,则在[a,b]上存在一个数c,使得:f(c)=(1/(b-a))∫<sub>b</sub><sup>a</sup>f(x)dx这两个定理为找出区间[a,b]上函数值的平均值或最大值提供了帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国家级优秀教辅读物 ISO9001国际质量管理体系认证
人教性课质标A版选三修2、-2 定积分的性质
Learning English 专业辅导,专业品质
(1)
b
kf(x)dxk
b f(x)dx(k为常数);
a
a
(2)
b
b
a[f1(x)f2(x)]dxa
b
f1(x)dxa
f2(x)dx;
(3) b f(x)dxc f(x)dx b f(x)dx(其中 acb).
复习:如何求曲边梯形的面积? 1、分割;2、近似代替;3、求和;4、取极限
以直代曲
用黄色部分的面积来代替曲边梯形的面积,当曲 边梯形分割的越细,蓝色部分面积就越小,就越接近 曲边梯形的面积.
在区间
[i1, i ] nn
上的左端点和右
端点的函数值来计算有何区别
从小于曲边梯形的面积 从大于曲边梯形的面积
1.5.3定积分的概念
人教复课习标A版选修2-2
Learning English 专业辅导,专业品质
从求曲边梯形面积以及变速直线运动路程 的过程可知,它们都可以通过“四步曲”:分 割、近似代替、求和、取极限得到解决,且都 可以归结为求一个特定形式和的极限.
曲边梯形面积
S lx i0m i n1f(i) xln im i n11 nf(i)
0
0
人教课标A二版选、修定2-积2 分的几何意义
Learning English 专业辅导,专业品质
如果在区间 [a, b ]上函数 f( x)
y
连续且恒有 f( x) 0,那么定
f(b)
积分 b f( x) dx 表示由直线 a
f(a)
x a, x b( a b), y 0和
s
曲线 y f( x)所围成的曲边梯
a x0 x1 xi1 xi xn b
将区[a间 ,b]等分n成 个小区间,在每 间[x个 i1,小 xi] 区
上任取一 ( i i点 1, 2, ,n),作和式
n
i1
n
f(i)x
i1
ba n
f(i) ,
当n时,上述和式某 无个 限常 接数 近,这个
叫做函 f(x数 )在区 [a, 间 b]上的定.积分
a: 积 分 下 限b: 积 分 上 限
[a, b]: 积 分 区 间函 数 ( f x) : 被 积 函 数
x叫 做 积 分 变 量 . f(x)dx叫 做 被 积 式 .
曲 边 梯 形 的 面 积 S 1( fx ) d x1 x 2 d x 1
0
0
3
汽 车 行 驶 的 路 程 S 1 v ( t ) d t 1 ( t2 2 ) d t 5
y A
y=f1(x)
B
D
C
y=f2(x)
oa
b
x
中学生学习报 数学周刊
国家级优秀教辅读物 ISO9001国际质量管理体系认证
人教例课题标A版选修2-2
Learning English 专业辅导,专业品质
例 1 : 利 用 定 积 分 的 定 义 , 计 算 1 x 3 d x 的 值 . 0 解 : 令 fxx3
变速直线运动路程
S lt i0m i n1v(i)tln im i n11 nv(i)
中学生学习报 数学周刊
ቤተ መጻሕፍቲ ባይዱ
国家级优秀教辅读物 ISO9001国际质量管理体系认证
人教概课念标A版选修一2-2、定积分的概念L专e业arn辅in导g E,ng专li业sh品质
一般地,如果函数 f(x)在区间[a,b]上连续,用分点
0
0
3
中学生学习报 数学周刊
国家级优秀教辅读物 ISO9001国际质量管理体系认证
正确理解定积分的概念
ab( f x) dxlni m i n1b na( f i) .
(1)定 积 分 是 一 个 数 值 (极 限 值 ),它 的 值 仅 仅 取 决 于 被 积 函 数 与
积 分 的 上 、下 限 ,而 与 积 分 变 量 用 什 么 字 母 表 示 无 关 ,即
记 a bf( 作 x ) d, xa bf( 即 x ) d x l n ii n m 1b n af( i)
中学生学习报 数学周刊
国家级优秀教辅读物 ISO9001国际质量管理体系认证
人教说课明标A版选定修积2-2分的概念的说明L专e业arn辅in导g E,ng专li业sh品质
b f(x)dx a
(2)近似代替,作和
取ξi
=i (i n
=1,2,L,n),
01x3dxSn= n i=1
f
ni x=i=n1ni 31n=n14
n
i3
i=1
=n14 41n2n+12 =411+n 12
(3)取极限
01x3dx=lni m Sn=lni m 4 11+n 12=4 1
中学生学习报 数学周刊
来无限逼近
来无限逼近
复习
1、 分割 将区间等分成 n 个小区间
i-1 1
2、 以直代曲 对于区间 n , n 上小曲边梯形,
i-1
1
以f n 为长, x= n 为宽小矩形面积近似代
小曲边梯形面积
i-1
3、 作和 S= s1+ s2++ sn=sif n • x
4、取极限 n +,
i-1 f n • xS
bf(x)dxbf(u)dubf(t)dt (称 为 积 分 形 式 的 不 变 性 );
a
a
a
( 2 ) 定 积 分 a bf(x )d (x )与 积 分 区 间 a ,b 息 息 相 关 ,不 同 的 积 分 区 间 ,
所 得 的 积 分 值 也 就 不 同 ,例 如 1 (x 2 1 )d x 与 3 (x 2 1 )d x 的 值 就 不 同 .
(1)分割
在区间[0,1]上等间割地插入n-1个分点,把区间
[0,1]等分成n个小区间 in-1,ni(i=1,2,L,n)每个小区 间的长度为 Δx= i - i -1= 1
nn n
中学生学习报 数学周刊
国家级优秀教辅读物 ISO9001国际质量管理体系认证
人教课标A版选修2-2
Learning English 专业辅导,专业品质
oa
形(图中阴影部分)的 面积 .
y=f(x)
bx
中学生学习报 数学周刊
国家级优秀教辅读物 ISO9001国际质量管理体系认证
人教探课究标A版选课修2本-2P46
Learning English 专业辅导,专业品质
探究
b
b
S a
f1(x)dxa
f2(x)dx
根据定积分的几何 意义,你能用定积 分表示图中阴影部 分的面积吗?