金属材料结构性能

合集下载

金属结构材料冲击性能参数测试与评估

金属结构材料冲击性能参数测试与评估

金属结构材料冲击性能参数测试与评估金属结构材料的冲击性能是评估其在受到冲击载荷下的抗破坏能力的重要指标。

通过测试和评估冲击性能参数,可以科学地设计和选择金属材料,以满足不同工程应用的需求。

本文将介绍金属结构材料冲击性能参数的测试方法与评估方法,为工程师和科研人员提供参考。

一、冲击性能参数的测试方法1. 冲击试验机冲击试验机是测试金属结构材料冲击性能的常用工具。

通过对材料施加冲击载荷,可以测量材料在冲击载荷下的位移、应力和变形等参数。

冲击试验机通常具有高精度的测量系统和可调节的冲击能量,可以模拟不同冲击条件下的实际工作环境。

2. 冲击试验样品制备在进行冲击试验之前,需要制备符合规范要求的试样。

通常,试样要具有代表性,并且能够保证测试结果的可靠性和准确性。

试样的形状和尺寸应根据具体要求进行设计,并进行加工和处理,以确保其与实际工程中的使用条件相似。

3. 冲击试验方法冲击试验方法可以根据具体需要选择。

常见的冲击试验方法包括冲击弯曲试验、冲击拉伸试验和冲击压缩试验等。

每种试验方法都有其特定的应用范围和测试指标。

在进行冲击试验时,需要合理设计试验方案,并确保测试过程中的可重复性和可比性。

4. 冲击性能参数的测量与记录在冲击试验过程中,需要实时测量和记录冲击性能相关的参数。

这些参数通常包括试样的位移、应变、变形和断裂能力等。

通过测量和记录这些参数,可以评估金属结构材料在冲击载荷下的受力状态和破坏机制,为后续的数据分析和评估提供依据。

二、冲击性能参数的评估方法1. 冲击强度评估冲击强度是评估金属结构材料在冲击载荷下抗破坏能力的重要指标。

通过测量冲击试验中试样的吸收能量和最大负荷等参数,可以评估材料的冲击强度。

冲击强度越高,说明材料具有更好的抗冲击破坏能力。

2. 断裂韧性评估断裂韧性是评估金属结构材料在冲击载荷下的抗断裂能力的重要指标。

通过测量冲击试验中试样的裂纹扩展行为和断裂韧性参数,可以评估材料的断裂韧性。

第1章金属材料的性能与结构

第1章金属材料的性能与结构

1.晶体结构的基本知识
由于晶体原子排列呈周期性,因此, 可以从晶格中选取一个能够完全反应晶 格中原子排列特征的最小的几何单元, 来分析晶体中原子排列的规律性,这个 最小的几何单元称为晶胞 。
1.晶体结构的基本知识
晶格
晶胞
1.晶体结构的基本知识
Z c
α
β a
X a γ
b
Y
图1-9 晶胞的晶格常数和轴间夹角的表示法
()
MPa
b
s
e
b
s
e
应变(%)
图1-2 单轴拉伸曲线示意图
2、金属的力学性能的指标一般有哪些? 怎样获得这些指标? 塑性是指金属材料在外力作用下,发生 永久变形而不破坏的能力。在工程中常用 塑性指标来判断金属材料的可成形性,常 用伸长率和断面收缩率来表征。 伸长率指试样在拉伸过程中,拉断标距长 度的延长值(见图1-1)与原始标距长度的 比值,即:
1.2.1 金属
在固态金属中,吸引力与排斥力的大 小以及它们的结合能量都随原子间距离 的变化而发生改变。这样就存在一个原 子间距,此时原子间相互排斥力与吸引 力相等,原子处于稳定平衡状态,该原 子间距即为平衡距离,这时原子之间的 结合能为最低,系统此时最稳定。
1.2.2 金属的晶体结构
1.晶体结构的基本知识 2. 常见金属的晶体结构 3. 晶面指数和晶向指数
第1章 金属材料的性能与结构
§1.1 金属材料的性能 §1.2金属的晶体结构
§1.3合金的相结构
1.1 金属材料的性能
金属材料是金属元素或以金属元素为 主构成的具有金属特性的材料的统称。 金属材料一般分为:黑色金属和有色 金属,黑色金属有钢、铸铁、铬、锰; 其他的金属,如铝、镁、铜、锌等及其 合金都为有色金属。 金属材料的性能包括:力学性能、物 理化学性能、工艺性能、经济性能等。

金属材料的结构和力学性能

金属材料的结构和力学性能

金属材料的结构和力学性能金属材料是人类社会发展过程中不可或缺的重要材料之一。

它们以其独特的结构和力学性能,广泛应用于工业、建筑、交通等领域。

本文将探讨金属材料的结构和力学性能,并探索其在不同领域中的应用。

一、金属材料的结构金属材料的结构是由金属原子的排列方式决定的。

一般来说,金属材料的结构可以分为晶体结构和非晶体结构两种。

晶体结构是指金属原子按照一定的规律排列形成的结构。

最常见的晶体结构是面心立方结构、体心立方结构和简单立方结构。

在面心立方结构中,金属原子分布在一个立方体的八个顶点和六个面心上;在体心立方结构中,金属原子分布在一个立方体的八个顶点和一个立方体的中心;在简单立方结构中,金属原子仅分布在一个立方体的八个顶点上。

这些结构的不同排列方式决定了金属材料的性能。

非晶体结构是指金属原子的排列方式没有规律性。

它们通常具有高度的无序性和非晶性,使得金属材料具有特殊的性能,如高硬度、高强度和高韧性。

非晶体结构常见于特殊的金属合金中,如玻璃金属。

二、金属材料的力学性能金属材料的力学性能是指材料在外力作用下的变形和破坏行为。

主要包括强度、韧性、硬度和延展性等指标。

强度是指金属材料抵抗外力破坏的能力。

它可以分为屈服强度、抗拉强度和抗压强度等。

屈服强度是指金属材料开始发生塑性变形时所承受的最大应力;抗拉强度是指金属材料在拉伸过程中承受的最大应力;抗压强度是指金属材料在压缩过程中承受的最大应力。

这些强度指标直接影响金属材料的使用范围和承载能力。

韧性是指金属材料在受力过程中能够吸收能量的能力。

它是金属材料抵抗断裂的能力的重要指标。

韧性高的金属材料具有较好的抗冲击性和抗疲劳性。

硬度是指金属材料抵抗局部塑性变形的能力。

硬度高的金属材料通常具有较好的耐磨性和耐腐蚀性。

延展性是指金属材料在拉伸过程中能够发生塑性变形的能力。

具有良好延展性的金属材料可以在外力作用下发生较大的变形而不破裂。

三、金属材料的应用金属材料的结构和力学性能使其在各个领域中得到广泛应用。

新型金属材料的结构和性能

新型金属材料的结构和性能

新型金属材料的结构和性能随着科技的发展和工业化的进步,人们对材料的需求越来越高。

传统的金属材料虽然有很好的强度和韧性,但是其密度较大、易锈蚀、无法轻便加工等缺点也制约了其进一步的应用。

为了解决这些问题,科学家们不断地研究和开发新型金属材料。

本文将介绍一些新型金属材料的结构和性能,以及其应用前景。

一、高强度低密度的金属材料高强度低密度的金属材料又被称为轻质金属材料,它包括铝、镁、钛等金属材料及其合金。

由于其密度低,可达传统钢铁的三分之一左右,故被广泛应用于飞船、火箭、航空航天器、汽车等领域。

例如,德国的宝马汽车使用铝合金材料制造汽车的车身和零部件,可以降低汽车的重量,提高燃油经济性和运动性能。

除了轻量化外,高强度低密度的金属材料还具有良好的力学性能和抗腐蚀性。

例如,铝合金具有高强度、良好的可加工性、耐腐蚀性和电导率。

而镁合金具有轻量、高强度、优异的真空密封性和较高的热稳定性,可用于制造航空航天器、汽车零部件、手机等产品。

二、仿生材料仿生材料是一种新型金属材料,它仿照动物或植物的结构和特性制造出来的材料。

例如,锯齿状结构的钢板可提高其抗弯曲性能,肌肉纤维状的材料可使其具有形变功能。

这种材料的研究不仅可以扩展金属材料的应用领域,同时也为生物医学领域的研究提供了新的方法和思路。

三、多级金属材料多级金属材料是将多种金属材料进行复合组合,形成新的高性能金属材料。

例如,用纳米金属粒子掺杂在高强度钢材料中,可以显著提高钢材料的强度和延展性;将铜和银复合可以提高电导率和抗氧化性能。

多级金属材料不仅具有优异的物理化学性能,而且具有良好的材料可塑性,可应用于电子、机械、船舶等领域。

四、新型合金材料新型合金材料是用传统的金属材料与其他元素混合而成的新型材料,与传统材料相比,在抗腐蚀性和耐磨性上有了更好的表现。

例如,钢中掺加Cr、Ni等元素,可提高其抗氧化性和抗腐蚀性;将铁、铜、炭、锡等元素复合,可制成高韧性的多元合金,应用于高压管道等领域。

24种常用金属材料的性能和用途

24种常用金属材料的性能和用途

24种常用金属材料的性能和用途1、45——优质碳素结构钢,是最常用中碳调质钢主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。

小型件宜采用调质处理,大型件宜采用正火处理。

应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。

轴、齿轮、齿条、蜗杆等。

焊接件注意焊前预热,焊后消除应力退火。

2、Q235A(A3钢)——最常用的碳素结构钢主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。

应用举例: 广泛用于一般要求的零件和焊接结构。

如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。

3、40Cr——使用最广泛的钢种之一,属合金结构钢主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。

应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。

4、HT150——灰铸铁应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。

5、35——各种标准件、紧固件的常用材料主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。

冷态下可局部镦粗和拉丝。

淬透性低,正火或调质后使用应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件。

金属材料的结构和性能分析

金属材料的结构和性能分析

金属材料的结构和性能分析金属材料是人们广泛应用的一类材料,它们具有较高的强度、塑性和导电性等特点,适用于制作各种零部件、机器、设备、工具等。

然而,金属材料的性能受其结构的影响较大,不同的结构会导致材料的性能有所不同。

因此,对金属材料的结构和性能进行分析对于选择合适的材料、设计合理的零部件、预测材料的工作寿命等方面均有指导意义。

一、金属材料的结构在金属材料中,原子呈现出有序和规则的排列状态。

这种颗粒有序排列的状态被称为晶体。

晶体中的原子受力形成了一种三维周期结构,其外形规则,呈现出多面体结构。

这种结构具有各向同性(性质与方向无关)的特点。

晶体结构分为立方晶系、四方晶系、六方晶系、三斜晶系、正交晶系和单斜晶系等六类结构。

不同的晶体结构会导致材料的性质发生变化,这也为材料的选择提供一定的依据。

例如,铝、铜、银等材料属于面心立方晶系结构,具有良好的塑性和导电性,适用于制作各种常规零部件。

而碳化硅、硅等材料则采用六方晶系结构,具有良好的高温性能和耐腐蚀性能,适用于制作高温加热元件和耐腐蚀零部件。

二、金属材料的性能金属材料的性能主要包括力学性能、塑性和热性能等方面。

这些性能直接影响着材料在使用时的表现和寿命。

以下是一些常见的金属材料性能分析:1.力学性能力学性能是指材料在受到外力作用下产生的变形、强度以及疲劳寿命等方面的性能。

其中,强度是材料承受外力的能力,通常有屈服点、断裂点等指标来表示。

而变形指材料受到外力时,发生的塑性和弹性变形,这会直接影响着材料在使用时的表现。

此外,疲劳寿命则是材料在反复受到载荷作用下的寿命,该指标与零部件的使用寿命密切相关。

2.塑性塑性是指材料在受力作用下向任意方向发生塑性变形的能力。

由于金属材料的晶体结构具有各向同性的特点,其塑性也表现为各向同性。

材料的塑性不仅可以通过其晶体结构来调控,也可以通过掺杂、热处理等工艺手段来调节。

塑性是金属材料最基本的性能之一,它影响着材料的加工性、成形性以及材料的通用性。

金属的结构与性能

金属的结构与性能

金属的结构与性能⏹纯金属的晶体结构⏹合金的晶体结构纯金属的晶体结构晶体——原子排列长程有序有周期熔点一定材料晶体原子排列长程有序,有周期非晶体——原子排列短程有序,无周期。

性能呈各向异性,一定条件下晶体和非晶体可互相转化。

石英玻璃(非晶体)石英晶体(晶体)一、纯金属的晶体结构(一)晶体的基本概念晶格与晶胞●晶格:用假想的直线将原子中心连接起来所形成的三维空间1、晶格与晶胞用假想的线将原子中心连接起来所形成的维空间格架。

直线的交点(原子中心)称结点。

由结点形成的空间。

点的阵列称空间点阵●晶胞:能代表晶格原子排列规律的最小几何单元。

结点晶体晶胞晶格(空间点阵)晶格与晶胞晶格常数:立方•晶胞各边尺寸a、b、c。

六方•各棱间夹角α、β、γ。

2 晶系:四方●根据晶胞参数不同,将晶体分为七种晶系。

以上的金属具有立方晶系和六方晶系菱方●90%以上的金属具有立方晶系和六方晶系。

=====90︒正交●立方晶系:a b c,αβγ90●六方晶系:a1=a2=a3≠c,α=β=90︒,γ=120︒单斜三斜3原子半径:晶胞中原子密度最大方向上相邻原子间距的一半。

4 晶胞原子数:一个晶胞内所包含的原子数目。

5 配位数:晶格中与任一原子距离最近且相等的原子数目。

6晶胞中原子本身6 致密度:晶胞中原子本身所占的体积百分数。

K=nv’/V=Vrn 334π⨯(二)、金属中常见的晶格类型体心立方晶格面心立方晶格密排六方晶格(bcc)(fcc)(hcp)(二)、金属中常见的晶格类型 1. 体心立方晶格(Body Centered Cubic Lattice, BCC)晶胞原子数晶格常数:a (a =b =c )1/8×8+1=2体心立方结构(b.c.c)原子半径:a 43r 致密度晶格常数:a (a =b =c )晶胞原子数6=41/8×8+1/2×64c晶格常数:a (a =b ), cc/a=1.633晶胞原子数121/2236c/a 1.6331/6×12+1/2×2+3=6a21r =:原子半径配位数:12K ’/V 07474%致密度:K=nv’/V ≈0.74=74%金属中常见晶格类型的基本参数晶格类型体心立方(bcc )面心立方(fcc )密排六方(hcp )晶胞结构a =b =ca =b =c90a =b c/a =1.633α=β=γ=90℃α=β=γ=90℃α=β=90℃γ=120℃晶胞常数晶胞内原子数原子半径致密度配位数0.680.740.7481212α‐Fe 、Mo 、W 、V 、Cr 、β‐Tiγ‐Fe 、Al 、Cu 、Ni 、Au 、AgMg 、Cd 、Zn 、Be 、Ca 、α‐Ti典型金属(三)、立方晶系晶面、晶向表示方法●晶体中一系列原子组成的面称晶面●任意两原子之间的连线称为原子列,其方向称为晶向。

金属材料的组织结构与性能分析

金属材料的组织结构与性能分析

金属材料的组织结构与性能分析1.引言金属材料是一种常见的工程材料,广泛应用于各个领域。

金属材料的组织结构对其性能具有重要影响。

本文将从晶体结构、晶粒结构和缺陷结构三个方面来分析金属材料的组织结构与性能。

2.晶体结构对金属材料性能的影响2.1面心立方(FCC)结构FCC结构的金属材料在空间中具有紧密堆积的密排结构,因此具有良好的塑性和延展性。

典型的FCC结构材料包括铝、铜和银等。

这些金属材料的晶体结构使其具有良好的机械性能和导电性能。

2.2体心立方(BCC)结构BCC结构的金属材料的原子布局呈立方形,中心原子会被其他原子所包围。

BCC结构的金属材料具有良好的韧性和强度。

典型的BCC结构材料包括铁、钢和钨等。

这些金属材料因其晶体结构的特性,因此在高温和高应力环境下表现出优异的性能。

2.3密排六方(HCP)结构HCP结构的金属材料在三轴方向上没有相同的近邻,使其具有良好的蠕变性能。

典型的HCP结构材料包括钛、锆和镁等。

这些金属材料因其晶体结构的特点,在高温和高压环境下表现出优异的性能。

3.晶粒结构对金属材料性能的影响3.1晶粒尺寸晶粒尺寸是指晶体中一个晶粒的大小。

晶粒尺寸的减小会提高金属材料的强度和硬度,但会降低其韧性。

这是因为小尺寸的晶粒会限制晶界的运动和位错的运动。

3.2晶粒定向性晶粒定向性是指晶粒中晶体的取向关系。

晶粒定向性的提高可以增加金属材料的力学性能。

例如,陶瓷涂层中通过控制晶粒的定向性可以提高其耐磨性能。

4.缺陷结构对金属材料性能的影响金属材料中存在各种缺陷结构,不同的缺陷结构对金属材料的性能有着不同的影响。

4.1晶界晶界是相邻晶粒之间的界面。

晶界的存在会限制晶体的运动,并对金属材料的塑性和强度产生影响。

4.2位错位错是晶体中的一个原子或多个原子的错位。

位错的运动会导致金属材料的形变,从而影响其塑性和强度。

5.结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体结构缺陷
缺陷的类型
点缺陷 线缺陷 面缺陷
缺陷的成因
热缺陷 杂质缺陷 非化学计量缺陷
点缺陷(零维缺陷) Point Defect
缺陷尺寸处于原子大小的数量级上,即三维方向上 缺陷的尺寸都很小。
包括:空位(vacancy) 间隙质点(interstitial particle) 错位原子或离子 外来原子或离子(杂质质点)(foreign
第二部分:金属材料
梁玉军 材料科学与化学工程学院
歼10 (中国)
太行发动机(中国)
材料学科二级学科分类表
材料学科
钢 有 冶 金 金 无 硅高 粉 复 腐 材 复 铸 焊
铁 色 金 属 属 机 酸分 末 合 蚀 料 合 造 接
冶 金 物 材 压 非 盐子 冶 材 与 科 材
金 属 理 料 力 金 工材 金 料 防 学 料
particle)
双空位等复合体 点缺陷与材料的电学性质、光学性质、材料的高温 动力学过程等有关。
合金-金属间化合物
A、B两组元相互溶解后所形成的新的物质 既不是A组元的结构,也不是B组元的结构,而 是自身的一种独立的结构。
例如: Fe和C所形成的化合物Fe3C,就是一 种典型的金属化合物。
合金中的固溶体
固溶体的分类
根据溶质原子在溶剂晶体结构中的位置,固溶 体可分为:
1. 置换固溶体(代位固溶体) 2. 间隙固溶体
置换固溶体
特点
置换固溶体:A组元的原子取代了B组元的原子。 当A、 B两个组元的原子直径相差不大时,两个 组元可以以任何比例溶解,形成无限固溶体,反之则 为有限固溶体。
在置换固溶体中,溶质原子位于溶剂晶体结构的 晶格格点上。
置换固溶体 置换固溶体
置换固溶体4
(a)随机置换固溶体 (b)有序置换固溶体
间隙固溶体
特点
间隙固溶体:A组元溶入B组元的的间隙中。只能 形成有限固溶体。
例如:C溶入α-Fe或γ-Fe 所形成的铁素体、奥氏体 。
在间隙固溶体中,溶质原子位于溶剂晶体结构的 晶格间隙。溶质原子在固溶体中的分布可以是随机的, 即呈统计分布;也可以是部分有序或完全有序,在完 全有序固溶体中,异类原子趋于相邻,这种结构亦称 为超点阵或超结构。
金属间化合物
特点
金属间化合物可分为三类, 即由负电性决定的原子价化合物(简称价化合物) 、由电子浓度决定的电子化合物(亦称为电子相)
以及由原子尺寸决定的尺寸因素化合物。 除了这三类由单一元素决定的典型金属间化合物外,
还有许多金属间化合物, 其结构由两个或多个因素决定,称之为复杂化合物。
晶体结构缺陷
冶 化 与 加 属 程料
护与
金 学热工材 与

处料工



金属材料
课程内容 1、金属晶体结构、金属固溶体和晶体缺陷 2、金属材料的力学性能 3、金属合金相图 4、新型金属材料
金属材料
金属材料是由化学元素周 期表中的金属元素组成的材料。 可分为由一种金属元素构成的 单质(纯金属);由两种或两 种以上的金属元素或金属与非 金属元素构成的合金。合金又 可分为固溶体和金属间化合物。
金属的实际晶体结构
实际上,金属是一个多晶体结构, 这种原子排列方位基本一致,但 外形不规则的小晶体,称为晶粒。 由于金属是多晶体结构,单个晶 粒的各向异性彼此相互抵消,金属 就显示出各向同性,若对金属进行 单方向的塑性变形(如冷扎、冷拉 等),使各个晶粒的晶格趋向一致, 则多晶体金属又会显示出各向异性。
间隙固溶体
间隙固溶体
间隙固溶体
随机间隙固溶体 固溶体中的溶质丛聚
合金中的固溶体
固溶体的电学、热学、磁学等物理性 质也随成分而连续变化,但一般都不是线 性关系。固溶体的强度与硬度往往高于各 组元,而塑性则较低。
合金中的固溶体
实际应用:铂、铑单独做热电偶材料使用, 熔点为1450℃,而将铂铑合金做其中的一 根热电偶,铂做另一根热电偶,熔点为 1700℃,若两根热电偶都用铂铑合金而只 是铂铑比例不同,熔点达2000℃以上。
金属的结构
1、体心立方结构
(a)刚球模型
(a)刚球模型
(b)质点模型
(b)质点模型
图1 体心立方晶胞
(c)晶胞原子数
(c)晶胞原子数
金属的结构
2、面心立方结构
(a)刚球模型
(b)质点模型
图2பைடு நூலகம்面心立方晶胞
(c)晶胞原子数
金属的结构
3、密排六方结构
(a)刚球模型
(b)质点模型
图3 密排六方晶胞
(c)晶胞原子数
合金
合金是由两种或两种以上的金属元素, 或金属元素与非金属元素熔合在一起形成的 具有金属特性的新物质。合金的性质与组成 合金的各个相的性质有关,同时也与这些相 在合金中的数量、形状及分布有关。
合金
组元:组成材料的最基本的独立的物质称为“组 元”,组元可以是金属元素或非金属元素(例如: 普通碳钢的组元是Fe与C),也可以是稳定的化 合物。 相:材料中成份、性能、结构相同并以界面互相 分开的均匀的组成部分称为“相”。
缺陷的含义:通常把晶体点阵结构中周期性势 场的畸变称为晶体的结构缺陷。
理想晶体:质点严格按照空间点阵排列。 实际晶体:存在着各种各样的结构的不完整性。
研究缺陷的意义
由于缺陷的存在,才使晶体表现出各种各样的 性质,使材料加工、使用过程中的各种性能得以有 效控制和改变,使材料性能的改善和复合材料的制 备得以实现。因此,了解缺陷的形成及其运动规律, 对材料工艺过程的控制,对材料性能的改善,对于 新型材料的设计、研究与开发具有重要意义。
单质金属
在 103 种 元 素 中 , 除 He,Ne,Ar 等 6 种 惰 性 元素和C、Si、N等16种非金属元素外,其余81 种为金属元素。除Hg之外,单质金属在常温下 呈现固体形态,外观不透明,具有特殊的金属光 泽及良好的导电性和导热性。在力学性质方面, 具有较高的强度、刚度、延展性及耐冲击性。
图4 金属的多晶体结 构示意图
合金的分类
固溶体 金属间化合物
合金的结构按其组元在结晶时彼此作用的不同, 可以分为固溶体、金属化合物、机械混合物三种类型。
合金-固溶体
当金属的晶体结构保持溶剂组元 的晶体结构时,这种合金称为一次固 溶体或端际固溶体,简称为固溶体。
合金-金属间化合物
金属元素与其它金属元素或非金 属元素之间形成合金时,除固溶体外, 还可能形成金属间化合物。
相关文档
最新文档