图形的全等变换

合集下载

图形的全等变换

图形的全等变换

图形的全等变换1、 当对称轴平行时,两次翻折等于一次平移。

(平移的距离=对称轴间距离的2倍)。

2、 当对称轴相交时,两次翻折等于一次旋转。

(旋转角度=对称轴间夹角的2倍)。

3、 当对称轴互相垂直时,两次翻折等于一次中心对称。

三、轴对称1、 常见的轴对称图形及对称轴条数:线段(2)、角(1)、等腰三角形(1)、正n 边形(n)、矩形(2)、菱形(2)、圆(无数)。

2、相关定理:⑴、根据线段的轴对称性,有:线段中垂线上的点到线段两端点的距离相等。

⑵、根据角的轴对称性,有:角平分线上的点到这个角的两边的距离相等。

⑶、根据等腰三角形的轴对称性,有:等腰三角形底边上的中线、底边上的高线、顶角上的角平分线“三线合一”。

⑷、根据等边三角形的轴对称性,有:在Rt △中,30°角所对的直角边等于斜边的一半。

3、典型例题⑴如图,在正方形ABCD 中,P 为AC 上任一点,PE ⊥AB ,PF ⊥BC ,连接EF ,求证:DP=EF 。

⑵如图,在正方形ABCD 中,E 是BC 的中点,AE 与BD 相交于点F ,求证:CF ⊥DE 。

A B C D EFP AB CD E F⑶如图,在四边形ABCD 中,DC ⊥BC 于C ,若AB=100,∠A=45°,∠DBA=75°,∠CBD=30°,求BC 的长。

⑷如图,正方形ABCD 中,BE 平分∠DBC ,CE=1,求AB 的长。

四、平移1、 相关定理:平行线间的平行线段相等。

推论:平行线间的距离处处相等。

2、 典型例题⑴如图,△ABC 是等边三角形,且DE ,EG ,DF 把它分成四个完全相同的等边三角形,试问:若把△ECF 看着是由△DFA 平移得到的,其平移的方向是 ,平移的距离是 。

⑵如图,△DEF 是由△ABC 沿MN 方向平移得到的,若∠A=60°,∠B=50°,AD=3,EF=4,则∠F= ,∠AOE= ,BE= ,EC= 。

6、全等模型汇总--陆老师

6、全等模型汇总--陆老师

全等模型汇总编辑:陆老师2023.10.15【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.【常见模型】【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.【常见模型】【模型解读】将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形,识别旋转型三角形时,涉及对顶角相等、等角加(减)公共角的条件. 【常见模型】【模型解读】基本图形如下:此类图形通常告诉BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.【常见模型】【模型解读】模型主体为两个直角三角形,且两条斜边互相垂直。

【常见模型】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。

【模型图示】公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。

对应操作:左手拉左手(即连结BD),右手拉右手(即连结CE),得。

共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。

寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。

两等边三角形 两等腰直角三角形 两任意等腰三角形 *常见结论:连接BD 、AE 交于点F ,连接CF ,则有以下结论: (1)BCD ACE ≅△△ (2)AE BD = (3)AFB DFE ∠=∠ (4)FC BFE ∠平分【常见模型】(等腰)(等边)(等腰直角)一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

(通用)第一阶段7、图形变换及相似、全等

(通用)第一阶段7、图形变换及相似、全等

第七部分 图形变换与图形的全等、相似 图形变换一、轴对称:如果某个图形沿一条直线翻折后,直线两旁的部分能够完全重合,那么就称这个图形为轴对称图形,这条直线叫做这个图形的对称轴.如果两个图形以一条直线为轴翻折,能够彼此重合,那么就说这两个图形成轴对称。

轴对称的特征:轴对称图形的对称轴垂直平分对称点的连线段;两个图形成轴对称,则这两个图形全等。

二、平移:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动称为平移.平移的特征:平移后对应线段相等且平行或在一条直线上,对应角相等;对应点连线相等且平行或在一条直线上;图形的形状、大小不变。

三、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一定的角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角度称为旋转角.旋转的特征:旋转时每个点都绕旋转中心旋转相同的角度;对应点到旋转中心的距离相等;图形的形状、大小不变。

四、中心对称:如果一个图形绕着某一定点旋转180°后能与自身重合,那么就称这个图形为中心对称图形;如果一个绕着某一定点旋转180°后能与另一个图形重合,那么就称这两个图形成中心对称.这个定点叫对称中心.中心对称的特征:成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。

五、全等变换:能够完全重合的两个图形叫全等图形.一个图形经过平移、翻折、旋转等变换所得到的新图形一定与原图形全等.全等多边形的对应边相等、对应角相等。

六、位似变换:以一个定点为中心,将一个图形进行放大或缩小的变换,叫位似变换. 这个定点叫位似中心.【位似一定相似,相似不一定位似】【中考试题】:1、直线12+=x y 向下平移2个单位后的解析式是,再向右平移2个单位后的解析式是 .2、如图,O 是边长为1的正△ABC 的中心,将△ABC 绕点O逆时针方向旋转180°得△DEF ,则△DEF 与△ABC 重叠部分(图中阴影部分)的面积为 .3、如图,Rt △ABC 中,∠B=90°,AB=3cm ,AC=5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于 cm .4、在同一坐标平面内,下列4个函数①,1)1(22-+=x y②,322+=x y ③,122--=x y ④1212-=x y 的图象不可能 由函数122+=x y 的图象通过平移、轴对称变换得到的是 (填序号).5、如图,矩形ABCO 中,OA 在x 轴上,OC 在y 轴上,且OA=2,AB=5,把△ABC 沿着AC 对折得到△AB ’C ,AB ’交y 轴于D 点,则点B ’的坐标为 .6、如图,将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转15°后,得到△ADE ,则图中阴影部分的面积是 .7、如图,在Rt △ABC 中,∠ACB=90°,∠B=30°,BC=3.点D 是BC 边上一动点(不与B 、C 重合),过点D 作DE ⊥BC交AB 于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处.当△AEF 为直角三角形时,BD 的长为 .8、如图,已知点C 为直线x y =上在第一象限内的一点,直线12+=x y 交y 轴于点A ,交x 轴于点B ,将直线AB 沿射线OC 方向平移23个单位,求平移后的直线的解析式.9、如图,在等边△ABC 内有一点D ,AD=5,BD=6,CD=4,将△ABD 绕点A 逆时针旋转,使AB 与AC 重合,点D 旋转到点E ,则∠CDE 的正切值为 .10、如图,P 是矩形ABCD 下方一点,将△PCD 绕P 点顺时针旋转60°后恰好D 点与A 点重合,得到△PEA ,连结EB .(1)判断△ABE 形状,并说明理由;(2)若AB=2,AD=33,求PE 的长.11、如图,已知矩形纸片ABCD ,AD=2,AB=4.将纸片折叠,使顶点A 与边CD 上的点E 重合,折痕FG 分别与AB 、CD 交于点G 、F ,AE 与FG 交于点O .(1)如图1,求证:A 、G 、E 、F 四点围成的四边形是菱形;(2)如图2,当△AED 的外接圆与△A 相切于点N 时,求证:点N 是线段BC 的中点;(3)在(2)的条件下,求折痕FG 的长.12、已知等腰△OAB 在直角坐标系中的位置如图,点A 的坐标为)3,33(-,点B 的坐标为)0,6(-.(1)若△OAB 关于y 轴的轴对称图形是△''B OA ,请直接写出A 、B 的对称点''B A 、的坐标;(2)若将△OAB 沿x 轴向右平移a 个单位,此时点A 恰好落在反比例函数xy 36=的图象上,求a 的值;(3)若△OAB 绕点O 按逆时针方向旋转30°时点B 恰好落在反比例函数xk y =的图象上,求k 的值.图形的全等一、定义:能够完全重合的两个图形,叫全等形;能够完全重合的两个三角形,叫全等三角形.二、识别:(1)三边对应相等(符号记为“S.S.S.”);(2)两边和夹角对应相等(符号记为“S.A.S.”);(3)两角和夹边对应相等(符号记为“A.S.A.”);(4)两角和其中一个角的对边对应相等(符号记为“A.A.S.”)的两个三角形全等.特殊地,有一条直角边和斜边对应相等的两个直角三角形全等.(记为“H.L.”) 三、性质:(1)全等三角形的对应边相等,对应角相等.(2)全等三角形对应边上的中线、高分别对应相等,对应角的平分线对应相等; 全等三角形的周长相等,面积相等.【中考试题】:1、下列命题正确的是( )A.三个内角对应相等的两个三角形全等 B .有两边对应相等的两个直角三角形全等 C .一边上的高对应相等的两个等腰三角形全等 D .一边相等的两个等腰三角形全等2、如图,正方形ABCD 中,点E 是AD 边中点,BD 、CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE;②BG=4GE;③CHD BHE S S ∆∆=;④∠AHB=∠EHD.其中正确的是 .3、如图,现给出五个等式①AD=BC;②AC=BD;③CE=DE;④∠D=∠C;⑤∠DAB=∠CBA ,请以其中两个为条件,另两个为结论,写出一个正确的命题.(写出已知、求证并证明)4、如图,折叠矩形的一边AD ,使点D 落在BC 上的点F 处,已知AB=8cm ,BC=10cm ,则EC 的长为 .5、如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE=CF ,连结EF 、BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC .(1)求证:OE=OF ;(2)若BC=32,求AB 的长.6、如图,P 是等边△ABC 内的一点,连结P A 、PB 、PC 并以PB 为角的一边作∠PBQ=60°,且BQ=BP ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论;(2)若P A :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由。

初中数学知识点精讲精析 平面图形的全等变换

初中数学知识点精讲精析  平面图形的全等变换

第五节平面图形的全等变换要点精讲1.全等图形的定义两个图形重叠在一起的时候,无论是顶点、边、角都与对应的顶点、边、角完全吻合,而且大小也要完全相同.2.图形重叠的方式(1)平行移动以固定的方向移动,也就是所谓的平行移动在平面上透过平行移动或垂直移动,使原对象的位置产生移动的现象.(2)旋转移动设一个定点为中心然后旋转,称为旋转移动,平面上透过旋转活动产生位移,而图形与所呈现的图像不变,只是观看的角度变得不一样.(3)翻转将平面图形翻转180°,使图形产生位移,此时图的形状并未改变,但图像会从原来的正面转为反面,可以透过从背面看或用镜子反射的方式进行翻转活动,让学生易于理解.相关链接1.在全等变换下,直线变为直线,线段变为线段,射线变为射线;两直线的平行性、垂直性,所成的角度都不变;共线点变为共线点,且保持顺序关系不变;直线上A、B、C 三点的简比AC:BC不变.2.在全等变换下,三角形、多边形和圆分别变为与它们全等的三角形、多边形和圆;封闭图形的面积不变.典型解析1.如图,点D是等边△ABC内一点,如果△ABD绕点A 逆时针旋转后能与△ACE重合,那么旋转了_______度.【答案】60.【解析】∵△ABC为等边三角形,∴AC=AB,∠CAB=60°.又∵△ABD绕点A逆时针旋转后能与△ACE重合,∴AB绕点A逆时针旋转了∠BAC到AC的位置.∴旋转角为60°.中考案例1.(2012四川宜宾3分)如图,在平面直角坐标系中,将△ABC 绕点P 旋转180°得到△DEF ,则点P 的坐标为__________.【答案】(﹣1,﹣1).【解析】∵将△ABC 绕点P 旋转180°得到△DEF ,∴△ABC 和△DEF 关于点P 中心对称. ∴连接AD ,CF ,二者交点即为点P .由图知,P (﹣1,﹣1).或由A (0,1),D (﹣2,﹣3),根据对应点到旋转中心的距离相等的性质得点P 的坐标为(),即(﹣1,﹣1).针对训练1.如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF,则四边形ABFD 的周长为( )A .6B .8C .10D .122.将点A (-3,+2)先沿轴向上平移5个单位,再沿轴向左平移4个单位得到点A ′,则点A ′的坐标是___________.3.如图,EF 是△ABC 的中位线,将△AEF 沿AB 方向平移到△EBD 的位置,点D 在BC 上,已知△AEF 的面积为5,则图中阴影部分的面积为___________.4.如图,在平面直角坐标系中,点A 在x 上,△ABO 是直角三角形,∠ABO=900,点B 的坐标为(-1,2),将△ABO 绕原点O 顺时针旋转900,得到△Al BlO ,则过A1, B 两点的直线解析式为___________.y x5.如图,在等边△ABC 中,D 是边AC 上一点,连接BD .将△BCD 绕点B 逆时针旋转60°得到△BAE ,连接ED .若BC=10,BD=9,则△AED 的周长是___________.6.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA1B1,则∠A1OB=___________.7. 如图,直线与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 旋转90°后得到△AO′B′,则点B′的坐标是________.8.长为20,宽为a 的矩形纸片(10<a <20),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 次操作后,剩下的矩形为正方形,则操作终止.当n=3时,a 的值为______.参考答案3y x 32=+﹣1.【答案】C【解析】根据平移的基本性质作答.根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,故四边形ABFD的边长分别为AD=CF=1个单位,AB+BC+AC=8;AB+BC+CF+DF+AD=10.故其周长为10.2.【答案】(-7,3)【解析】根据点的平移规律,左右移,横坐标减加,纵不变,上下移,纵坐标加减,横不变即可解的答案:∵点A(-3,-2)先沿y轴向上平移5个单位,再沿x轴向左平移4个单位得到点A′,∴A′的坐标是(-3-4,-2+5),即:(-7,3).3.【答案】10【解析】∵EF是△ABC的中位线,∴EF∥BC,∴△AEF∽△ABC.∴EF:BC=1:2,∴S△AEF:S△ABC=1:4.∵△AEF的面积为5,∴S△ABC=20.∵将△AEF沿AB方向平移到△EBD的位置,∴S△EBD=5.∴图中阴影部分的面积为:S△ABC﹣S△EBD﹣S△AEF=20﹣5﹣5=10.4.【答案】y=3x+5【解析】设A(a,0),∵点B 的坐标为(-1,2),∴OA=-a,OB2=12+22=5,AB2=(-1-a)2+22= a2+2 a+5.∵∠ABO=900,∴OA2= AB2+OB2,即a2= a2+2 a+5+5,解得a=-5.即A(-5,0).∵△ABO绕原点O顺时针旋转900,得到△Al BlO,∴Al(0,5).设过A1 、B 两点的直线解析式为y=kx+b,则,解得.∴过A 、B 两点的直线解析式为y=3x+5.5.【答案】19【解析】∵△BCD绕点B逆时针旋转60°得到△BAE,∴根据旋转前、后的图形全等的旋转性质,得,CD= AE,BD=BE.∵△ABC是等边三角形,BC=10,∴AC= BC=10.∴AE+AD=AC=10.又∵旋转角∠DBE=600,∴△DBE是等边三角形.∴DE=BD=9.∴△AED的周长=DE+AE+AD=9+10=19.6.【答案】70°【解析】∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∴∠A1OA=100°.又∵∠AOB=30°,∴∠A1OB=∠A1OA-∠AOB=70°.7.【答案】(﹣1,﹣2)或(5,2).【解析】当y=0时,,解得x=2;当x=0时,y=3.∴点A(2,0),B(0,3).∴OA=2,OB=3,根据旋转不变性可得△AOB≌△AO′B′,∴AO′=OA=2,O′B′=OB=3,①如果△AOB是逆时针旋转90°,则点B′(﹣1,﹣2),②如果△AOB是顺时针旋转90°,则点B′(5,2).综上,点B′的坐标是(﹣1,﹣2)或(5,2).8.【答案】12或15【解析】解:由题意,可知当10<a<20时,第一次操作后剩下的矩形的长为a,宽为20﹣a,所以第二次操作时正方形的边长为20﹣a,第二次操作以后剩下的矩形的两边分别为20﹣a,2a﹣20.此时,分两种情况:①如果20﹣a>2a﹣20,即a<40,那么第三次操作时正方形的边长为2a﹣20.则2a﹣20=(20﹣a)﹣(2a﹣20),解得a=12;②如果20﹣a<2a﹣20,即a>40,那么第三次操作时正方形的边长为20﹣a.则20﹣a=(2a﹣20)﹣(20﹣a),解得a=15.∴当n=3时,a的值为12或15.故答案为:12或15.扩展知识认识和欣赏平移变换、旋转变换、轴对称变换在现实生活实际中的应用,学习运用平移变换、旋转变换、轴对称变换及它们的组合进行一定的图案设计(能画).应用平移变换、旋转变换、轴对称变换将那些分散、远离的条件从图形的某一部位转移到适当的新位置上,得以相对集中,从而达到化繁为简、化难为易、巧妙解题的目的.。

基于“直观想象”的数学核心素养的培养——以图形的全等变换为例

基于“直观想象”的数学核心素养的培养——以图形的全等变换为例

基于“直观想象”的数学核心素养的培养——以图形的全等变换为例“直观想象”是指借助几何直观和空间想象感知事物的形态与变化,是发现和提出数学问题、分析和解决数学问题的重要手段,是探索和形成论证思路、构建抽象结构和进行逻辑推理的基础。

重视“直观想象”核心素养的培养,有利于提高学生运用图形和空间想象进行分析、推理、论证的能力。

图形的全等变换包括平移、轴对称、旋转、中心对称等图形变换,本文以图形全等变换为例,谈谈基于“直观想象”的核心素养在初中数学教学中的培养。

一、积累活动经验,感悟几何直观数学活动经验是指学生个体在具体数学活动基础上获得的经验。

教学时,教师要有意识培养学生的几何直观意识,从几何直观的角度观察、分析、解决问题。

前不久,笔者有幸听取了一节《全等变换》中考复习课,上课伊始,教师先播放了一段视频,画面中一位工作人员正搬动一块瓷砖,瓷砖太重不易搬动,只见他蹲下身子,把瓷砖平放在地面上,先翻折180°,使得保护膜一面着地,再慢慢往前推动,到达目的地边上时,瓷砖的一个顶点与已经堆放在那里的瓷砖的一个顶点重合,绕这点旋转90°,再往上翻折,瓷砖就稳稳地堆放好了。

借助图像,教师引导学生回顾了平移、轴对称、旋转、中心对称等全等变换的概念,在此基础上进一步让学生归纳出各种图形变换的性质。

“胸中有图”从而“心中有数”。

二、关注过程教学,体验空间观念教学过程是数学课程内容的重要组成部分。

老师在空间观念的教学中要重视过程,给学生足够的时间和空间,让他们去探究、去交流、去表达,说出感受,说出想象……通过各种方式留给学生充分感受体验学习过程的空间。

唯有过程充分了,观念和能力才能有所提升。

如图,在△ABC中,点P为BC的中点,延长AB到点D,使得BD=AC,延长AC到点E,使得CE=AB,连接DE。

图1图2图3(1)如图1,连接BE,若∠BAC=60°,试探究BE与AP之间的数量关系并加以证明;(2)请在图2中证明:BC≥ DE。

中考几何图形全等变换探究

中考几何图形全等变换探究
1 . 对 称 变 换 法
三角形中去 , 因为已知 、 Ⅳ分 别是两边 的 中点 , 我们 可 以考
虑用 三 角 形 中 位 线 定 理 来 添 辅 助线. 证明 连结 A C, 取A C 的 中 点 F, 再 连结 F M、 F N, 可 得
对称变换 ( 这里指 的是轴对 称变换 ) 是将 两个 几何 图形 中的一个 图形 看成 是另 一个 图形关 于某 条直 线为 对称轴翻折 1 8 0 。 而得到 的. 用对称变换观点来证 明线段 相等 、 角相 等 、 三角形全等 ……这种 方法叫对称变换法. 例 1 如图 1 , 等腰直角 AA B C中 , LB A C为直 角 , D 为其内部一点 , 且 LA B D=3 0 。 , B D:B A, 求证 : A D= C D . 分析 由于等腰 直角 三角
形 可看 成 是 一 条 对 角 线 将 正 方
F M是 AA DC的 中位 线 , 所 以
FM / / — CD




厶 FM N = CPN.
图2
又 刚 是 AA B C的中位 线- . . . F N ÷A B , F N M=

LB Q N . ‘ . 。 A B=C D, . ’ . F M :F N, F MN= F N M.
解: 将 AA B C 绕 点
整体 旋 转 1 8 0 。 , 如 图 3所 示, 则 点 、 E、 F、 G、 H所处
的位 置 分 别 为 、 、 , 、
G 、 H , 三 个 四边 形 A B ∞ 、
B E F c
A E C E 、 A F C F 均 为 平 行 四
. .
=y+ z . ① 在 AB C H 中, ‘ . ’ F H/ / C H ,

在图形的全等变换中有旋转变换

在图形的全等变换中有旋转变换

在图形的全等变换中有旋转变换,翻折(轴对称)变换和平移变换一次数学活动课上老在图形的全等变换中,有旋转变换,翻折(轴对称)变换和平移变换.一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.(1)第一小组的同学发现,在如图1-1的矩形ABCD 中,AC 、BD 相交于点O ,Rt △ADC可以由Rt △ABC 经过一种变换得到,请你写出这种变换的过程是.(2)第二小组同学将矩形纸片ABCD 按如下顺序进行操作:对折、展平,得折痕EF (如图2-1);再沿GC 折叠,使点B 落在EF 上的点B'处(如图2-2),这样能得到∠B'GC 的大小,你知道∠B'GC 的大小是多少吗?请写出求解过程.(3)第三小组的同学,在一个矩形纸片上按照图3-1的方式剪下△ABC ,其中BA =BC ,将△ABC 沿着直线AC 的方向依次进行平移变换,每次均移动AC 的长度,得到了△CDE 、△EFG 和△GHI ,如图3-2.已知AH =AI ,AC 长为a ,现以AD 、AF 和AH 为三边构成一个新三角形,已知这个新三角形面积小于1515,请你帮助该小组求出a 可能的最大整数值.EFADB C EFADB C B'G(图2-1)(图2-2)A B C DO(图1-1)(4)探究活动结束后,老师给大家留下了一道探究题:如图4-1,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°, 请利用图形变换探究S △AOB'+S △BOC'+S △COA'与3的大小关系.参考答案AC'BO A' C B'(图4-1)。

全等三角形的图形全等变换

全等三角形的图形全等变换
培养其合理猜想、探索、推理、论证能力。培养其独立思考、分析问题、解决问题的能力。
鼓励学生讨论、交流、探究,允许他们有不同的拼图方法和结论,培养其合作精神。
活动九
7.两个全等三角形的综合变换:
学生思考、探究解题思路和方法,小组合作交流;
师作图巡视、指导。
(1)一个长方形沿着一条对角线对折剪开,拼成如图位置的两个三角形,使点B、F、C、D在同一直线上.①求证:AB⊥DE;②若PB=BC,找出一对全等三角形,并证明出它们的正确性。
小结
学生谈感受和收获
培养学生的归纳总结能力
作业
教材P—114 (3)(5)(8)
选做题:上面活动九中的“迁移题”
分层次教学
板书
设计

注意渗透分类思想
活动七
5.两个全等三角形的“旋转”加“平移”变换:
学生演示,师作图指导。
特点:三角形旋转任一角度到不同位置再沿着某条直线平移到不同位置。(如图)
已知:等腰△ABC的直角顶点C放在直线a上,作AD⊥a于D,作BE⊥a于E.找出一对三角形,并证明它们是正确的结论.
结论: △ACD≌△CBE;
让学生从实践演示中探究三角形全等的结论,并迁移出其他正确结论。
活动四
2.两个全等三角形的“翻折”变换:
学生演示,师作图指导。
特点:沿着某条直线 “翻折1800”到不同位置。(如图)或沿着过某个点所在的直线“翻折”1800到不同位置。
结论:△ABC≌△ABD; △ABO≌△CDO.
迁移:连接CD,推导出CD被AB垂直平分;AB平分∠CAD。
全等三角形的图形全等变换
课 题
全等三角形的图形全等变换
讲课教师
学校
时间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的全等变换
一、基本知识(必记)
1、当对称轴平行时,两次翻折等于一次平移。

(平移的距离=对称轴间距离的2倍)。

2、当对称轴相交时,两次翻折等于一次旋转。

(旋转角度=对称轴间夹角的2倍)。

3、当对称轴互相垂直时,两次翻折等于一次中心对称。

三、轴对称
1、常见的轴对称图形及对称轴条数:
线段(2)、角(1)、等腰三角形(1)、正n边形(n)、矩形(2)、菱形(2)、圆(无数)。

2、相关定理:
⑴、根据线段的轴对称性,有:
线段中垂线上的点到线段两端点的距离相等。

⑵、根据角的轴对称性,有:
角平分线上的点到这个角的两边的距离相等。

⑶、根据等腰三角形的轴对称性,有:
等腰三角形底边上的中线、底边上的高线、顶角上的角平分线“三线合一”。

⑷、根据等边三角形的轴对称性,有:
在Rt △中,30°角所对的直角边等于斜边的一半。

3、典型例题
⑴如图,在正方形ABCD 中,P 为AC 上任一点,PE ⊥AB ,PF ⊥BC ,连接EF ,
求证:DP=EF 。

⑵如图,在正方形ABCD 中,E 是BC 的中点,AE 与BD 相交于点F ,
求证:CF ⊥DE 。

⑶如图,在四边形ABCD 中,DC ⊥BC 于C ,若AB=100,∠A=45°, ∠DBA=75°,∠CBD=30°,求BC 的长。

A
B
C
D
E
F P A
B
C
D
E
F A
B
C
D。

相关文档
最新文档