DCDC-电源变换器中电流模式和电压模式相互转化
DCDC电路转换原理(含计算方式)

Io
Io
(3-14)
其值小于等于负载电流Io,由上式得: EI1=U0I0
(3-15)
即输出功率等于输入功率,可将降压斩波器看作直流降压变压器。
第三章 第 20 页
3.1.1 降压斩波电路
m EM / E
t1
/
t1 T
T
负载电流断续的情况: I10=0,且t=tx时,i2=0,利用式(3-7)和式(3-6)
PUSH-PULL
第三章 第 9 页
HALF-BRIDGE
第三章 第 10 页
FULL-BRIDGE
第三章 第 11 页
METHODS OF CONTROL
第三章 第 12 页
直流斩波电路
直流斩波电路(DC Chopper)
将直流电变为另一固定电压或可调电压的直流电; 也称为直接直流--直流变换器(DC/DC Converter); 一般直流斩波是指直接将直流电变为另一直流电,不包括直
流—交流—直流。 广泛应用于直流牵引的变速拖动(使用直流电源时)。
直流斩波电路的种类:
三种基本斩波电路:降压斩波电路、升压斩波电路、升降压斩 波电路;
复合斩波电路——不同基本斩波电路组合; 多相多重斩波电路——相同结构基本斩波电路的组合,可以工
作在两个或四个象限。
第三章 第 13 页
当V处于断态时,设电动机电枢电流为i2,得下式:
I10
I20
I10
a) 电路图 b) 电流连续时 O ton
toff
t
c) 电流断续时
T b)
O
t
io
双向dcdc变换器 (2)

双向 DC-DC 变换器简介双向 DC-DC 变换器是一种可以实现能量在两个方向上传输的电路,能够将能量从一个电源转移到另一个电源。
它在电动车、太阳能系统、电池储能系统等应用中得到广泛应用。
本文将介绍双向 DC-DC 变换器的原理、工作模式和应用。
原理双向 DC-DC 变换器通过两个独立的电感和开关器件实现能量的双向传输。
其拓扑结构常见的有升降压式和升压式两种。
在升降压式拓扑中,输入电源可以比输出电源的电压高或低;而在升压式拓扑中,输入电源的电压必须比输出电源的电压高。
下面介绍升降压式和升压式拓扑的工作原理:升降压式拓扑升降压式拓扑常用的桥式电感拓扑是最常见的升降压式拓扑。
其电路图和工作原理如下:升降压式拓扑升降压式拓扑在升降压式拓扑中,当开关 SW1 和 SW2 关闭时,电感 L1 储存电能;当 SW1和 SW2 开启时,通过二极管 D1 转移到电容 C1 上。
同样,当开关 SW3 和 SW4 关闭时,电感 L2 储存电能;当 SW3 和 SW4 开启时,通过二极管 D2 转移到电容 C2 上。
升压式拓扑升压式拓扑常用的桶式电感拓扑是最常见的升压式拓扑。
其电路图和工作原理如下:升压式拓扑升压式拓扑在升压式拓扑中,当开关 S1 关闭时,电感 L1 储存电能;当 S1 开启时,通过二极管 D1 转移到电感 L2 上。
此时,电容 C1 上的电压逐渐升高,最终达到所需的输出电压。
工作模式双向 DC-DC 变换器有三种工作模式:降压模式、升压模式和反向电流保护模式。
降压模式降压模式是指输入电压高于输出电压的情况。
在此模式下,开关器件周期性地开启和关闭,以维持输出电压在设定范围内。
当开关器件关闭时,电感和电容储存能量;而当开关器件打开时,能量从电感和电容中释放,通过二极管传递到输出端。
这个过程会不断循环,以保持输出电压稳定。
升压模式升压模式是指输入电压低于输出电压的情况。
在此模式下,开关器件周期性地开启和关闭,以提供所需的输出电压。
双向DCDC变换器的研究

双向DCDC变换器的研究一、本文概述随着能源科技的不断进步和可再生能源的日益普及,电力电子技术在能源转换和管理中发挥着越来越重要的作用。
双向DC-DC变换器作为一种重要的电力电子设备,具有在宽范围内调节电压、实现能量的双向流动以及高效率的能量转换等特点,因此在电动汽车、储能系统、微电网等领域具有广泛的应用前景。
本文旨在对双向DC-DC变换器进行深入研究,分析其工作原理、拓扑结构、控制策略以及优化方法,以期为该领域的发展提供理论支持和实践指导。
本文将介绍双向DC-DC变换器的基本概念和分类,阐述其在不同应用场景中的重要作用。
接着,将重点分析几种典型的双向DC-DC变换器拓扑结构,包括其工作原理、性能特点以及适用场景。
在此基础上,本文将探讨双向DC-DC变换器的控制策略,包括传统的控制方法和现代的控制算法,分析各自的优缺点,并提出改进和优化方法。
本文还将关注双向DC-DC变换器的效率优化问题,研究如何通过降低损耗、提高转换效率来实现更高效的能量转换。
还将探讨双向DC-DC 变换器在实际应用中面临的挑战和问题,如电磁干扰、热管理、可靠性等,并提出相应的解决方案。
本文将总结双向DC-DC变换器的研究现状和发展趋势,展望未来的研究方向和应用前景。
通过本文的研究,期望能够为双向DC-DC变换器的设计、优化和应用提供有益的参考和启示。
二、双向DCDC变换器的基本原理与结构双向DC-DC变换器,又称为双向直流转换器或可逆DC-DC变换器,是一种特殊的电力电子装置,它能够在两个方向上进行电压和电流的转换。
这种转换器不仅可以像传统的DC-DC变换器那样将一个直流电压转换为另一个直流电压,而且还可以在两个方向上进行这种转换,即既可以实现升压也可以实现降压。
双向DC-DC变换器的基本原理基于电力电子转换技术,主要利用开关管和相应的控制策略,实现电源和负载之间的能量转换。
其核心部分包括开关管、滤波器、变压器以及相应的控制电路。
dcdc变换器工作原理

dcdc变换器工作原理
DC-DC变换器工作原理是通过将一个输入的直流电压转换成需要的直流电压输出。
以下是DC-DC变换器的工作原理:
1. 输入电压:DC-DC变换器的输入电压通过一个电感和输入滤波器连接到一个开关元件,如MOSFET或BJT。
输入电压通常是一个稳定的直流电压。
2. 开关元件:开关元件的作用是控制电流流经变换器的时间和路径。
它可以在开(导通)和关(断开)之间切换。
开关元件可以是一个MOSFET或BJT。
3. 控制器:DC-DC变换器的控制器负责控制开关元件的开关时间和周期。
它可以根据需要来实现稳定输出电压。
4. 输出滤波器:输出滤波器用于减小或消除输出电压上的杂散信号和纹波。
它通常由电感和电容组成。
5. 输出电压:DC-DC变换器的输出电压是稳定的直流电压,可以根据需要进行调整。
输出电压由控制器根据输入电压和负载要求来调整。
工作原理简述:
当开关元件导通时,输入电压通过电感和开关元件流向输出滤波器,从而实现电能的储存。
当开关元件断开时,储存的电能通过电感产生一个反向电压,使输出电压保持稳定。
控制器根据输出电压和负载变化来调整开关元件的开关时间和周期,以
使输出电压保持在稳定值。
总结:DC-DC变换器通过控制开关元件的导通和断开实现将输入直流电压转换成输出直流电压的功能。
DCDC直流变换器

第一章绪论本章介绍了双向DC/DC变换器(Bi-directionalDC/DCConverter,BDC)的基本原理概述、研究背景和应用前景,并指出了目前双向直流变换器在应用中遇到的主要问题。
1.1双向DC/DC变换器概述所谓双向DC/DC变换器就是在保持输入、输出电压极性不变的情况下,根据具体需要改变电流的方向,实现双象限运行的双向直流/直流变换器。
相比于我们所熟悉的单向DC/DC变换器实现了能量的双向传输。
实际上,要实现能量的双向传输,也可以通过将两台单向DC/DC变换器反并联连接,由于单向变换器主功率传输通路上一般都需要二极管,因此单个变换器能量的流通方向仍是单向的,且这样的连接方式会使系统体积和重量庞大,效率低下,且成本高。
所以,最好的方式就是通过一台变换器来实现能量的双向流动,BDC就是通过将单向开关和二极管改为双向开关,再加上合理的控制来实现能量的双向流动。
1.2双向直流变换器的研究背景在20世纪80年代初期,由于人造卫星太阳能电源系统的体积和重量很大,美国学者提出了用双向Buck/Boost直流变换器来代替原有的充、放电器,从而实现汇流条电压的稳定。
之后,发表了大量文章对人造卫星应用蓄电池调节器进行了系统的研究,并应用到了实体中。
1994年,香港大学陈清泉教授将双向直流变换器应用到了电动车上,同年,F.Caricchi等教授研制成功了用20kW水冷式双向直流变换器应用到电动车驱动,由于双向直流变换器的输入输出电压极性相反,不适合于电动车,所以他提出了一种Buck-Boost级联型双向直流变换器,其输入输出的负端共用。
1998年,美国弗吉尼亚大学李泽元教授开始研究双向直流变换器在燃料电池上的配套应用。
可见,航天电源和电动车辆的技术更新对双向直流变换器的发展应用具有很大的推动力,而开关直流变换器技术为双向DC/DC变换器的发展奠定了基础。
1994年,澳大利亚FelixA.Himmelstoss发表论文,总结出了不隔离双向直流变换器的拓扑结构。
dc-dc变换原理

dc-dc变换原理
DC-DC变换器是一种电子设备,用于将直流(DC)电压转换为另一种直流电压。
这种转换器在许多电子设备中都有广泛的应用,例如在电源适配器、电动汽车、太阳能系统和通信设备中都可以看到它们的身影。
DC-DC变换器的工作原理基于电感和电容的原理,通过精确控制开关管的导通和截止来实现输入电压到输出电压的变换。
DC-DC变换器的基本工作原理是利用电感和电容储存和释放能量,从而实现电压的升降。
当输入电压施加到变换器上时,开关管周期性地开关,这导致电感和电容中的能量储存和释放。
通过调整开关管的占空比和频率,可以实现对输出电压的精确控制。
在一个典型的升压型DC-DC变换器中,当开关管导通时,电流会通过电感和负载,从而储存能量。
当开关管截止时,电感中的储能会释放,从而提供给负载。
通过控制开关管的导通和截止时间,可以实现输出电压的精确控制。
相比于线性稳压器,DC-DC变换器具有更高的效率和更小的体积。
这使得它们在需要高效能转换和对电源体积要求严格的场合中
得到广泛应用。
总之,DC-DC变换器是一种非常重要的电子设备,它通过精确控制电感和电容的能量储存和释放,实现了输入电压到输出电压的精确变换。
在现代电子设备中,它们的应用已经变得非常普遍,为我们的生活带来了诸多便利。
电源变换器中电流模式和电压模式相互转化
2 电 流 模 式 工 作 原 理
电 流 模 式 的 控 制 系 统 如 图 2所 示 。 电 流 模 式 在 的结 构 中 , 馈 有 两 个 环 路 : 是 电 压 外 环 , 是 电 反 一 二 流 内 环 。 压 外 环 包 括 电压 误 差 放 大 器 、 馈 电 阻 分 电 反
电流 比较器 的反 相 端输 入 信 号 为 电 流检 测 电阻 的 电压信号 。由此可见 , 对于 电流 比较器 , 电压外 环 的输 出信号 作为 电流 内环 的给定 信号 。
平翻转 , 出低 电平 , 输 高端 的主 M S E O F T关 闭 , 低端 的
同 步 MOS E F T或续 流 二 极 管 导 通 , 电感 所 加 的 电 压 为
电压 误 差 放 大 器 输 出 连 接 到 P WM 比较 器 的
同 相端 ,WM 比较 器 的反 相 端 输入 信 号 为 斜 波 发 P 生 器输 出的连 续锯齿 波 , 由时钟 同步 信号 产生 。
每 一 个 开 关 周 期 开 始 时 ,WM 比较 器 的 反 相 P 端 电压 为 0 P ,WM 比 较 器 输 出 为 高 电 平 , 端 的 主 高
焊接设备
刘 松 : 电源 变 换 器 中 电 流模 式 和反相 端 V , n 反馈环 节 连接 到 V 阳
和 电 压 误 差 放 大 器 的 输 出 端 。 出 电 压 微 小 的 变 输
个 电 源 和 多 个 并 联 相 位 操 作 , 要 外 部 电 路 进 行 均 需
MO F T导通 , SE 电感所加 的电压为正 , 电感激磁 , 电流
线 性 上 升 ; WM 比较 器 的 反 相 端 电压 所 加 的 电压 为 P
dcdc转换器原理
dcdc转换器原理DC-DC转换器是一种将一种直流电压转换成另一种直流电压的电子装置。
它通常由一个开关电路和一个储能电感组成,可以将高电压的直流电转化为低电压的直流电,也可以将低电压的直流电转化为高电压的直流电,具有普遍的应用。
下面,我们将从DC-DC转换器的原理出发来讲述它的工作原理和具体的实现过程。
1. PWM控制DC-DC转换器是通过PWM控制来实现的。
PWM控制是指记录一个给定周期内的占空比,然后依据这个占空比来控制输出电压的平均值。
2. 基本电路DC-DC转换器基本电路图由开关、储能电感、输出滤波电容等器件组成。
而在使用中,开关也就成了MOS管。
3. 工作方式DC-DC转换器根据开关的切换频率,分为脉冲模式和连续模式。
a. 脉冲模式在脉冲模式下,当MOS管开启时,电感中的电流逐渐增加,储能到电感中。
当MOS管关闭时,这个电流将绕过回路,去激励输出负载。
b. 连续模式当MOS管开启时间足够长时,电流是连续的。
如果调整开启时间短,就达到了脉冲模式。
在连续模式下,开关频率越高,输出电压的纹波越小。
4. 输出电压输出电压的大小,与开关时的时间和一定电感与负载的比例有关。
我们可以通过精确定义PWM信号来控制输出电压的稳定性。
5. 应用DC-DC转换器是用来处理不同电压方案的一种有效方法。
在很多应用中,例如车载电子、手机、笔记本,都有DC-DC转换器的应用。
总之,DC-DC转换器通过控制开关来实现电压升降的目的,直接作用对象是输入和输出电压,为其他电器和代替传统的线性稳压技术提供了先进的电源解决方案。
第四章直流直流(DCDC)变换
第四章直流—直流(DC-DC)变换将大小固定的直流电压变换成大小可调的直流电压的变换称为DC-DC变换,或称直流斩波。
直流斩波技术可以用来降压、升压和变阻,已被广泛应用于直流电动机调速、蓄电池充电、开关电源等方面,特别是在电力牵引上,如地铁、城市轻轨、电气机车、无轨电车、电瓶车、电铲车等。
这类电动车辆一般均采用恒定直流电源(如蓄电池、不控整流电源)供电,以往采用变阻器来实现电动车的起动、调速和制动,耗电多、效率低、有级调速、运行平稳性差等。
采用直流斩波器后,可方便地实现了无级调速、平稳运行,更重要的是比变阻器方式节电(20~30)%,节能效果巨大。
此外在AC-DC变换中,还可采用不控整流加直流斩波调压方式替代晶闸管相控整流,以提高变流装置的输入功率因数,减少网侧电流谐波和提高系统动态响应速度。
DC-DC变换器主要有以下几种形式:(1)Buck(降压型)变换器;(2)Boost(升压型)变换器;(3)Boost-Buck(升-降压型)变换器;(4)Cúk变换器;(5)桥式可逆斩波器等。
其中Buck和Boost为基本类型变换器,Boost-Buck和Cúk为组合变换器,而桥式可逆斩波器则是Buck变换器的拓展。
此外还有复合斩波和多相、多重斩波电路,它们更是基本DC-DC 变换器的组合。
4.1 DC-DC变换的基本控制方式DC-DC变换是采用一个或多个开关(功率开关器件)将一种直流电压变换为另一种直流电压。
当输入直流电压大小恒定时,则可控制开关的通断时间来改变输出直流电压的大小,这种开关型DC-DC变换器原理及工作波形如图4-1所示。
如果开关K导通时间为,关断时间为,则在输入电压E恒定条件下,控制开关的通、断时间、的相对长短,便可控制输出平均电压U0的大小,实现了无损耗直流调压。
从工作波形来看,相当于是一个将恒定直流进行“斩切”输出的过程,故称斩波器。
斩波器有两种基本控制方式:时间比控制和瞬时值控制。
DCDC-电源变换器中电流模式和电压模式相互转化
深圳新视纪-高清视频专家主页:论坛:/forum关于我们:作为视频处理的资深专家,我们总是习惯于推出业界第一的产品,为消费者带来更好的图像和使用便利。
虽然在我们推出产品后,市场上不断有跟风之作,但是我们总是可以继续推出更新更好更强大的视频处理产品。
这一切都是源于我们在视频领域深厚的功力和对消费者需求的了解。
同时,我们也非常欢迎您访问我们的论坛,给我们提意见,给我们提您想要的产品。
从C300、完美色差VGA,到完美三枪VGA,再到完美投影HDMI 我们的足迹:1、2002年初,推出C300(本产品已停产)中国大陆推出的第一款为游戏机设计的色差转VGA产品。
纯模拟转换确保最高图像质量。
输入:一组色差,输出:一组VGA2、2002年初,推出C200(本产品已停产)目前所看到的唯一一款纯模拟转换产品,图像质量是数字处理scale无法比拟的产品。
输入:VGA,输出:高清色差3、2007年4月,推出完美色差VGA(本产品已停产)特别为多种游戏机设计的色差转换VGA产品,第一次在游戏机产品中引入了1:1完美不变形显示概念。
输入:色差,480i到1080p。
对用所有游戏机,DVD,卫星接收机等设备。
输出:800x600, 1024x768, 1280x1024, 1600x1200, 1440x900, 1920x1200, 1680x1050显示方式:在输入480i/p和576i/p的时候,以4:3方式显示:在4:3的屏上满屏完美不变形显示;在5:4的屏上加上下黑边完美不变形显示在16:10的屏上加左右黑边完美不变形显示在输入720p,1080i, 1080p的时候,以16:9方式显示:在4:3的屏上加上下黑边完美不变形显示;在5:4的屏上加上下黑边完美不变形显示在16:10的屏上加上下黑边完美不变形显示4、2008年9月,推出完美三枪VGA特别为三枪投影机、高端显像管显示器、带VGA输入大尺寸逐行电视机和无HDMI产品之平板电视而设计的产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳新视纪-高清视频专家主页:论坛:/forum关于我们:作为视频处理的资深专家,我们总是习惯于推出业界第一的产品,为消费者带来更好的图像和使用便利。
虽然在我们推出产品后,市场上不断有跟风之作,但是我们总是可以继续推出更新更好更强大的视频处理产品。
这一切都是源于我们在视频领域深厚的功力和对消费者需求的了解。
同时,我们也非常欢迎您访问我们的论坛,给我们提意见,给我们提您想要的产品。
从C300、完美色差VGA,到完美三枪VGA,再到完美投影HDMI 我们的足迹:1、2002年初,推出C300(本产品已停产)中国大陆推出的第一款为游戏机设计的色差转VGA产品。
纯模拟转换确保最高图像质量。
输入:一组色差,输出:一组VGA2、2002年初,推出C200(本产品已停产)目前所看到的唯一一款纯模拟转换产品,图像质量是数字处理scale无法比拟的产品。
输入:VGA,输出:高清色差3、2007年4月,推出完美色差VGA(本产品已停产)特别为多种游戏机设计的色差转换VGA产品,第一次在游戏机产品中引入了1:1完美不变形显示概念。
输入:色差,480i到1080p。
对用所有游戏机,DVD,卫星接收机等设备。
输出:800x600, 1024x768, 1280x1024, 1600x1200, 1440x900, 1920x1200, 1680x1050显示方式:在输入480i/p和576i/p的时候,以4:3方式显示:在4:3的屏上满屏完美不变形显示;在5:4的屏上加上下黑边完美不变形显示在16:10的屏上加左右黑边完美不变形显示在输入720p,1080i, 1080p的时候,以16:9方式显示:在4:3的屏上加上下黑边完美不变形显示;在5:4的屏上加上下黑边完美不变形显示在16:10的屏上加上下黑边完美不变形显示4、2008年9月,推出完美三枪VGA特别为三枪投影机、高端显像管显示器、带VGA输入大尺寸逐行电视机和无HDMI产品之平板电视而设计的产品。
输入:两路高清色差,两路HDMI,输出:VGA色差转VGA:纯模拟处理确保最高图像质量;HDMI转VGA:纯数字DAC确保最高图像质量5、2008年9月,推出完美HDMI切换器三进一出和五进一出两个版本。
铝盒装,均配有遥控器。
6、2008年x月,完美投影HDMI即将闪亮登场!视听研究所主页:论坛:/forum所有资料均由本网站网友个人上传共交流学习之用。
若您认为有关资料不适合公开,请联系newvideo@ 我们会第一时间删除。
感谢各位网友的无私奉献和支持!2008年10月21日电源变换器中电流模式和电压模式相互转化万代半导体元件上海有限公司应用 201203摘要摘要:本文先简单的介绍了电流模式和电压模式的工作原理和这两种工作模式它们各自的优缺点;然后探讨了理想的电压模式利用输出电容ESR取样加入平均电流模式和通过输入电压前馈加入电流模式的工作过程。
也讨论了电流模式在输出轻载或无负载时,在使用大的电感或在占比大于0.5加入斜坡补偿后,系统会从电流模式进入电压模式工作过程。
关键词关键词:电流模式,电压模式,转化,斜坡补偿目前,电压模式和电流模式是开关电源系统中常用的两种控制类型。
通常在讨论这两种工作模式的时候,所指的是理想的电压模式和电流模式。
电流模式具有动态响应快、稳定性好和反馈环容易设计的优点,其原因在于电流取样信号参与反馈,抵消了由电感产生的双极点中的一个极点,从而形成单阶的系统;但正因为有了电流取样信号,系统容易受到电流噪声的干扰而误动作。
电压模式由于没有电流取样信号参与反馈,系统也就不容易受到电流噪声的干扰。
然而,在实际的应用中,通常看似为电压模式的开关电源系统,即系统没有使用电流取样电阻检测电流信号,但也会采用其它的方式引入一定程度的电流反馈,从而提高系统动态响,如:利用输出电容ESR取样加入平均电流模式,通过输入电压前馈加入电流模式。
另一方面,看似为电流模式的开关电源系统,在输出轻载或无负载时,系统会从电流模式进入电压模式。
在使用大的电感时,或在占比大于0.5加入斜坡补偿后,系统会从电流模式向电压模式过渡。
本文将讨论这些问题,从而帮助工程师在遇到系统不稳定的时候从理论上分析,找到解决问题的办法。
1 电压模式的工作原理电压模式的控制系统如图1所示。
反馈环路只有一个电压环,电压外环包括电压误差放大器,反馈电阻分压器和反馈补偿环节。
电压误差放大器的同相端接到一个参考电压Vref,反馈电阻分压器连接到电压误差放大器反相端VFB ,反馈环节连接到VFB和电压误差放大器的输出端VC 。
输出电压微小的变化反映到VFB管脚,VFB管脚电压与参考电压的差值被电压误差放大器放大,然后输出,输出值为VC。
电压误差放大器输出连接到PWM比较器的同相端,PWM比较器的反相端输入信号为斜波发生器的输出的连续锯齿波,由时钟同步信号产生。
每一个开关周期开始时,PWM比较器的反相端电压为0,PWM比较器输出为高电平,高端的主MOSFET导通,电感所加的电压为正,电感激磁,电流线性上升;PWM比较器的反相端电压所加的电压为时钟同步信号产生的锯齿波,电压从0开始上升。
当PWM比较器的反相端电压增加到等于电压误差放大器输出电压V时,PWM比较器输C出从高电平翻转,输出低电平,高端的主MOSFET关闭,低端的同步MOSFET或续流二极管导通,电感所加的电压为负,电感去磁,电流线性下降。
下一个开关周期开始的时钟同步信号到来时,主MOSFET又导通,如此反复。
从电压模式工作原理可以看到,系统没有内置的限流功能保护电路,同时对输入和输出的瞬变响应缓慢。
为了提高系统的可靠性,需要外加限流保护电路,注意到限流保护电路只起限流的作用,并不参与系统的内部的反馈调节。
图1:电压模式的控制系统图电压模式为单反馈环控制系统,环路增益是输出电容ESR的函数,因此反馈补偿设计比较复杂,需要更多额外的器件仔细设计补偿环路,来优化负载瞬态响应。
另外,需要电解电容或钽电容稳定控制回路以维持良好的高频响应;在相同均方根工作电流的需求下,相同电容值的电解电容或钽电容比陶瓷电容的体积更大,同时输出电压的波动也更大。
同时,由于环路的增益是输入电压的函数,需要输入电压前馈。
用于限流控制的电流检测缓慢不准确。
如果多个电源和多个并联相位操作,需要外部电路进行均流控制。
另一方面,由于电流信号不参与反馈,系统不会受到电流噪声的干扰。
电压模式的反馈设计通常取穿越频率为1/5-1/10的开关频率。
环路补偿采用III类补偿网络:3个极点和2个零点 [1]。
2个零点安排在L-C谐振双极点附近,以抵消双极点产生的相位延迟;低频积分电路用以提高的低频直流增益;2个高频极点以产年高频噪声衰减,保证在0dB穿越频率以上环路增益保持下降。
2 电流模式的工作原理电流模式的控制系统如图2所示。
在电流模式的结构中,反馈有二个环路:一个电压外环,另一个是电流的内环。
电压外环包括电压误差放大器,反馈电阻分压器和反馈补偿环节。
电压误差放大器的同相端接到一个参考电压Vref,反馈电阻分压器连接到电压误差放大器反相端VFB ,反馈环节连接到VFB和电压误差放大器的输出端ITH。
若电压型放大器是跨导型放大器,则反馈环节连接到电压误差放大器的输出端ITH和地。
目前,在高频DCDC 的应用中,跨导型放大器应用更多。
本文就以跨导型放大器进行讨论。
输出电压微小的变化反映到VFB 管脚, VFB管脚电压与参考电压的差值被跨导型放大器放大,然后输出,输出值为VITH,跨导型放大器输出连接到电流比较器的同相端,电流比较器的反相端输入信号为电流检测电阻的电压信号VSENSE。
由此可见,对于电流比较器,电压外环的输出信号作为电流内环的给定信号。
对于峰值电流模式,工作原理如下:在时钟同步信号到来时,高端的主开关管开通,电感激磁,电流线性上升,电流检测电阻的电压信号也线性上升,由于此时电压外环的输出电压信号高于电流检测电阻的电压,电流比较器输出为高电压;当电流检测电阻的电压信号继续上升,直到等于电压外环的输出电压信号时,电流比较器的输出翻转,从高电平翻转为低电压,逻辑控制电路工作,关断高端的主开关管的驱动信号,高端的主开关管关断,此时电感开始去磁,电流线性下降,到一个开关周期开始的时钟同步信号到来,如此反复 [2]。
图2:电流模式的控制系统图电流模式的Buck 变换器需要精密的电流检测电阻并且这会影响到系统的效率和成本,但电流模式有更多的优点:①反馈内在cycle-by-cycle峰值限流;②电感电流真正的软起动特性;③精确的电流检测环;④输出电压与输入电压无关,一阶的系统容易设计反馈环,动态响应快、系统的稳定余量大稳定性好,增益带宽大,即便是输出只用陶瓷电容,也容易设计补偿,补偿管脚只用简单RC网络就能对输出负载瞬态作出稳定响应;⑤精确、快速的电流均流,易实现多相位/多变换器的并联操作得到更大输出电流;⑥允许大的输入电压纹波从而减小输入滤波电容,提高了输入的功率因素;输出允许用陶瓷电容,因此这种模式更省空间、省成本、体积更小、价格更便宜。
但是,峰值电流模式中占空比大于50%时,系统的开环不稳定,产生次谐波振荡;而且系统会受到电流噪声的干扰而误动作。
3 3 理想理想理想的的电压模式电压模式向向电流电流模式转化模式转化模式转化3.1 1 理想电压模式中理想电压模式中理想电压模式中输出电容输出电容ESR 取样取样形成的形成的形成的平均电流模式平均电流模式平均电流模式理想的电压模式在一定的反馈网络参数下,很难在整个电压输入范围和输出负载变化范围内都能稳定的工作。
输出负载变化可以通过加大输出电容同时使用ESR 值大的电容来优化其动特性,尽管这样做导致系统的成本和体积增加,同时增大输出的电压纹波。
通常,从直观上理解,输出电容ESR 和输出电容形成一个零点,对于电流模式,这个零点不是必需的,因为电流模式是单阶的系统,而且这个零点导致高频的增益增加,系统容易受到高频噪声的干扰。
所以电流模式或者使用ESR 极低的陶瓷电容,使ESR 零点提升到更高的频率,就不会对反馈系统产生作用,或者再加入一个极点以抵消零点在高频段的作用,加入极点的方法就是在ITH 管脚并一个对地的电容。
电压模式是LC 形成的二阶系统,这个零点的引入可以一定的程度上抵消LC 双极点的一个极点,使其向单阶系统转化。
ESR 越大,作用越明显。
因此电压模式输出电压通常使用ESR 大的电容。
另一方面,注意到,输出电压为:L CO I ESR V Vout ∆•+=CO V 为输出电容的容抗上的电压,L I ∆为电感的纹波电流,Iout I L •=∆α,α为电流纹波系数,一般取0.2 ~ 0.4。
输出电压的小信号值为:()Iout ESR V Vout CO ••∆+∆=∆α若ESR 小,式中后面的一项基本可以忽略;但是,由于电压模式通常使用ESR 值较大的输出电容,这样ESR 就不可以忽略,由于ESR 的作用,相当于在输入电压的反馈信号中引入了一定程度的电流模式,电流模式反馈量为:()Iout ESR ••∆α输出电容的ESR 将采样的电流信号送到电压误差放大器的输入端,和输出电压信号加在一起,经过电压误差放大器放大,再送到PWM 比较器,其工作的原理相当于平均电流反馈。