第3讲_光线传输矩阵.
传输矩阵计算电场分布

传输矩阵计算电场分布
要计算电场分布,可以使用传输矩阵方法。
传输矩阵是一种用于描述光束在光学系统中传输过程的数学工具,它可以应用于电磁波的传输。
传输矩阵描述了光束经过一个光学元件(如透镜、衍射光栅等)后的变换关系。
对于电场分布来说,传输矩阵可以将初始的电场分布与光学元件之间的相互作用联系起来。
传输矩阵通常用一个2x2矩阵表示,记作M。
对于一个光学元件,其传输矩阵可以通过其折射率、厚度、曲率等参数进行计算。
如果有多个光学元件组成一个系统,可以将各个元件的传输矩阵相乘得到整个系统的传输矩阵。
对于一个初始的电场分布矢量E_in,通过与传输矩阵相乘,可以得到出射电场分布矢量E_out = M * E_in。
这样就可以计算出电场在光学系统中的传输和变换过程。
需要注意的是,传输矩阵方法是基于一些假设和近似条件的,例如,它适用于高频或平面波近似下的电磁波传输。
此外,在应用传输矩阵计算电场分布时,还需要考虑光学元件的非线性效应、衍射等其他影响因素。
综上所述,通过使用传输矩阵方法,可以计算电场在光学系统中的传输和变换过程,以获得电场分布信息。
1。
光学传输矩阵薄膜光学

光学传输矩阵薄膜光学
光学传输矩阵薄膜光学,作为一种前沿技术,正在为我们带来许多惊奇和便利。
它利用薄膜的特殊结构和性能,实现了光的传输和调控,为光学器件的设计和制造带来了革命性的突破。
薄膜光学的原理在于利用薄膜的厚度、折射率和衍射等特性来控制光的传输和干涉效应。
通过精确控制薄膜的结构和性能,可以实现对光的反射、透射和吸收等特性的调控,从而实现对光的精确控制和处理。
光学传输矩阵薄膜光学的应用非常广泛。
例如,在光学器件领域,它可以用于制造高效的反射镜、透射镜和光学滤波器等。
通过合理设计薄膜的结构和厚度,可以实现对特定波长光的选择性反射或透射,从而实现对光的精确控制和处理,提高光学器件的性能和效率。
光学传输矩阵薄膜光学还可以应用于光学通信领域。
光学通信是一种高速、大容量的通信方式,而薄膜光学的特殊性能可以帮助实现光信号的传输和调控。
通过合理设计薄膜的结构和参数,可以实现对光信号的调制、增强和解复用,从而提高光通信系统的性能和可靠性。
除此之外,在光学传感、光学显像和光学计算等领域,光学传输矩阵薄膜光学也有着广泛的应用。
通过利用薄膜的特殊性能,可以实现对光的精确控制和处理,从而实现对光学信号的传感、显像和计
算等功能,为各种领域的应用提供了强大的支持和便利。
光学传输矩阵薄膜光学作为一种前沿技术,正在为我们带来许多惊奇和便利。
它利用薄膜的特殊结构和性能,实现了对光的精确控制和处理,为光学器件的设计和制造带来了革命性的突破。
随着技术的不断进步和应用的不断扩展,相信光学传输矩阵薄膜光学将会在各个领域发挥越来越重要的作用,为人类的生活和科技进步带来更多的惊喜和便利。
第3讲_光线传输矩阵

– 程函(eikonal)方程:
– 光线的传播方向,就是程函 r 变化最快的方向 – 在讨论光线和几何光学的强度时,可以推导出光线的微分方程(光线方 程),其中 s 为光线上某点到另外一点的长度,而 r 是该点的位置矢量 :
2 r x y z
1 d r rS 1 d N ' 1 1 r ' r S 1 f1 f1 N
4.1 透镜波导光线稳定条件
综合可得到从S面到S+1面的光线传播情况
1 0 1 d 1 0 1 d r rS 1 1 S A B rS 1 ' ' ' 1 1 r 0 1 0 1 r C D r S 1 f1 S S f2
4.1 透镜波导光线稳定条件
• 双周期透镜波导的光线稳定条件 • 当θ 为实数时,光线与光轴的距离在rmax和-rmax之间振荡; 即光线传播被约束在透镜孔径形成的波导之中,不会发生 溢出。 • θ 为实数等价于|b|≤1,即:
d d d2 1 1 1 f1 f 2 2 f1 f 2
• 将矩阵形式的传播方程写成方程组的形式
1 rs ' (rs 1 Ars ) B
• 可得到递推关系
1 rs ' B (rs 1 Ars ) 1 rs 1 ' (rs 2 ArS 1) B r ' Cr Dr ' S S 1 S
' o
导波光学中的转移矩阵方法

导波光学中的转移矩阵方法
导波光学中的转移矩阵方法是一种计算光线传输的数学方法。
在光导波器的分析和设计中经常使用该方法。
该方法基于Maxwell方程,利用矩阵运算的技术,通过分割光线传输区域,将光波的传输过程由一系列的矩阵表示,进而计算光线在不同介质中的传输情况。
转移矩阵方法的基本思想是将光路分为多个介质,对每个介质都可以根据不同物理特性和光路形状建立对应的矩阵。
通过矩阵运算,可以将光线在不同介质中的传输情况快速、准确地计算出来,包括反射、折射等现象。
该方法可以用于分析导光器中的单模光传输特性,计算光耦合问题,优化光学器件结构等。
总之,转移矩阵方法是导波光学领域中的一种重要计算方法,在光器件的设计和分析中具有广泛的应用。
激光原理与技术习题一

《激光原理与技术》习题一班级 序号 姓名 等级一、选择题1、波数也常用作能量的单位,波数与能量之间的换算关系为1cm -1 = eV 。
(A )1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D) 1.24×10-42、若掺Er 光纤激光器的中心波长为波长为1.530μm ,则产生该波长的两能级之间的能量间隔约为 cm -1。
(A )6000 (B) 6500 (C) 7000 (D) 100003、波长为λ=632.8nm 的He-Ne 激光器,谱线线宽为Δν=1.7×109Hz 。
谐振腔长度为50cm 。
假设该腔被半径为2a=3mm 的圆柱面所封闭。
则激光线宽内的模式数为 个。
(A )6 (B) 100 (C) 10000 (D) 1.2×1094、属于同一状态的光子或同一模式的光波是 .(A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的二、填空题1、光子学是一门关于 、 、 光子的科学。
2、光子具有自旋,并且其自旋量子数为整数,大量光子的集合,服从 统计分布。
3、设掺Er 磷酸盐玻璃中,Er 离子在激光上能级上的寿命为10ms ,则其谱线宽度为 。
三、计算与证明题1.中心频率为5×108MHz 的某光源,相干长度为1m ,求此光源的单色性参数及线宽。
2.某光源面积为10cm 2,波长为500nm ,求距光源0.5m 处的相干面积。
3.证明每个模式上的平均光子数为1)/ex p(1 kT hv 。
《激光原理与技术》习题二班级 姓名 等级一、选择题1、在某个实验中,光功率计测得光信号的功率为-30dBm ,等于 W 。
(A )1×10-6 (B) 1×10-3 (C) 30 (D) -302、激光器一般工作在 状态.(A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态二、填空题1、如果激光器在=10μm λ输出1W 连续功率,则每秒从激光上能级向下能级跃迁的粒子数是 。
第3讲 典型激光器介绍及光线传输矩阵

能级
图
封离式CO2激 光器结构示意 图
12
3.1 典型激光器介绍
13
3.1 典型激光器介绍
▪ Ar+离子激光器
➢ Ar+激光器一般由放电管、谐振腔、轴向磁场和回气管等几部分组 成。如下图所示为石墨放电管的分段结构 。
分段石墨结构Ar+激光器示意图
14
3.1 典型激光器介绍
15
3.1 典型激光器介绍
3、不同介质介面(平面)
ro ri 0
ro
0
1 2
ri
1
ro ro
0
0
1 2
ri ri
Байду номын сангаас
由近轴近似,折射定律可以写成
1 sin ri 2 sin ro 1 ri 2 ro
辐射不是基于原子分子或离子的束缚电子能级间的跃磁韧致辐射带电粒子在磁场中受到洛伦兹力的作用会作加速运动从而产生辐射当速度接近光速的电子作圆周运动时将会辐射出光子由于这种辐射1947年在同步加速器上被发现的因而被命名为同步辐射synchrotronradiation切伦科夫辐射当电子在介质中运动时如果它们的速度比光在介质中的相速度大电子也会产生光辐射其波长随着电子速度而变化虽然光很弱但却是单色性很好的辐射光
➢ 谱线范围宽 ---目前有数百种气体和蒸气可以产生激光,已经观测到 的激光谱线近万余条,谱线覆盖范围从亚毫米波到真空紫外波段, 甚至 X射线、射线波段。
➢ 光束质量优---工作物质均匀一致保证了气体激光束的优良光束质量, 在光束的相干性、单色性方面优于固体、半导体激光器,如He-Ne 激光的单色性很高,Δλ很容易达到10-9~10-11nm,其发散角只有l~ 2毫弧度。
光线转换矩阵

光线转换矩阵
一.光线的状态
光线的特征可以用其方向和线上一点的位置表示。
可用其相对于主光轴的角度表示其方向,
用线上一点到主光轴的距离表示该点的位置。
光线经过球面后,方向改变,上述角度和高度的数值
会发生改变。
二. 光线的矩阵表示
1.单球面的折射和反射
满足近轴条件,,,, ,
,注意,
,,为单球面的光焦度。
上述两式用矩阵表示,可写成
=。
其中=和=表示光线入射前后的状态,称为光线的
状态矩阵。
=表示折射球面的作用,称为折射矩阵。
对于反射球面,,
2.过渡矩阵
,
,为过渡空间的折射率;为过渡空间的长度。
=,=,称为过渡矩阵。
则, 。
为系统矩阵。
S为2×2矩阵,可表示为。
=
=
系统的光焦度
对于n个共轴球面系统,其系统矩阵一般可表示为。
三.成像矩阵的计算
=,=,
Q到P1处的过渡矩阵为
Pm到Q'处的过渡矩阵为
Q到Q'的光线的矩阵变换为
光线的变换用矩阵表示为
=
=
=
=
矩阵
=称为物像矩阵,
其行列式的值等于1。
近轴条件下,与无关,
(1)
物像矩阵化为
A=(2)
(3) 由(1)式可得
即 (4)
(4)式即为用物像矩阵元素表示的物像关系。
由(3)式可得系统的横向放大率为
(5)
由(2)可得,横向放大率亦可表示为
(6)
故系统的物像矩阵可记为
(7。
几何光学中的光线传输矩阵高斯光束通过光学元件的变换

A处:r0, 0 B处:r’,’
r r0 L0 0
自由空间 光线矩阵
r
A C
B D
r00
TL
r00
1 TL 0
L 1
3. 空气与介质(折射率为n2)的界面
r CA
入射 r0,0 出射 r,
B D
r00
Tn1n2
r00
n1 sin0 n2 sin '
n10
r
L f2
C
1 f1
1 f2
1
L f1
D
L f1
1
L f1
1
L f2
rs1 Ars Bs
or
s
1 B
rs1
Ars
s1
1 B
rs2 Ars1
Crs Ds
1 B
rs2
Ars1
Crs
D B
rs1
Ars
rs2
2(
A 2
D )rs1
AD
BCrs
0
AD BC 1
rs2
2(
A
2
D
)rs
2
f
f
可见,同一谐振腔,不同
的传播次序,往返矩阵T不
相同,但(A+D)/2相同。
s
1
s 1
T1 T2
T13
T23
1 0
0 1
A D
AD
1
L
1
1,1
2 T1
2 T2
f2
AD BC AD BC 1
T1
T2
思考题:
对1和2两种光线顺序, 分别求
rs rmax sins
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f>0,相对于凸透镜 f<0,相对于凹透镜
3.1 简单光学元件光线传输矩阵
3.不同介质介面(平面) 1 sin ri' 2 sin ro' ' ' 1ri 2ro ri’ ro ri
1 ' ' ro ri 2
ro’ ri ro
1 0 ro ri 1 ' ' ro 0 ri 2
1 2
3.1 简单光学元件光线传输矩阵
4.不同介质介面(球面)
ro ri
ri ri ' R ' ri ro ' R
2 ' 1
'
ro’ ri’ ri ro
2 1 1 ' r ri ri 2 R 2
' o
d A 1 f2 d ) f2 1 1 d C [ (1 )] f1 f 2 f2 d d d D [ (1 )(1 )] f1 f1 f2 B d (2
4.1 透镜波导光线稳定条件
rs 1 Ars Brs' ' rs 1 ' Crs Drs
rt ri dri ' r ' r ' i t
ro rt ro ' rt rt ' f
ro ri dri ' ro' ri ( d 1)ri ' 1 f f
d 1 d 1 1 f f
激光原理与技术·原理部分
第3讲 光线传输矩阵
3.0 光线的传播
• 光线?
• 几个前提
– 几何光学意义上的光线—λ→0
– 近轴光线近似
– 光学元件绕光轴旋转对称
–标系及方向的规定
1 2 r i' ro' ro Z
X Z O Y
ri
• 光线在光轴上方,r>0;反之,r<0; • 光线指向光轴上方,r’>0;反之,r’<0;
S M N f1 S+1
d
f1 f2
4.1 透镜波导光线稳定条件
从S面到N面的光线传播情况
rM ' rM 1 d rs ' 1 d r 0 1 rs rN s 1 d ' ' 1 0 1 r r r rN N f2 M f 2 s ' 1 ' rN f 1 rM 2 同理,从N面到S面的光线传播情况
3.1 简单光学元件光线传输矩阵
2.通过焦距为f的薄透镜 ro ri
' fr ' i ro ro f 1 0 ro ri ' 1 ' ro f 1 ri
ri,ri’
ro,ro’ fri’ f
焦平面
• 将矩阵形式的传播方程写成方程组的形式
1 rs ' (rs 1 Ars ) B
• 可得到递推关系
1 rs ' B (rs 1 Ars ) 1 rs 1 ' (rs 2 ArS 1) B r ' Cr Dr ' S S 1 S
ri 0; ri ' 0
ro 0; ro ' 0
3.1 简单光学元件光线传输矩阵
1.通过厚度为d的均匀介质
ro ri dri
r ri
' o '
'
ro' ri' ri d
Z1 Z2
ro
ro 1 d ri ' ' ro 0 1 ri
d 2f 3
1 A B 1 C D f
0 1 d 1 0 1
习题
• 试推导厚透镜光线传输矩阵
激光原理与技术·原理部分
第4讲
光线稳定条件 类透镜介质中的光线方程与波动方程
4.1 透镜波导光线稳定条件
• 透镜波导:由焦距为f1和f2的透镜相互间隔d周 期性排列而成,称为双周期透镜波导。
1 ro ' 2 1 ro R 2
0 ri 1 ' ri 2
R
1
2
3.1 简单光学元件光线传输矩阵
5.球面反射镜
ro ri
2 r ri ri ' R 1 0 r r o i ' 2 ' ro R 1 ri
' o
ro’ ri’ ri ro
R
(1)R>0,凹反射镜 (2)R<0,凸反射镜 (3)R趋于无穷,平面镜
一个曲率半径为R的球面反射 镜对光线的作用相当于一个焦 距f=R/2的薄透镜
3.2 复杂光学系统光线传输矩阵
• 例:求解通过长度为d的均匀介质后, 再透过一个薄透镜的光线传输情况。
1
rt,rt' ro,ro' ri,ri'
1 d r rS 1 d N ' 1 1 r ' r S 1 f1 f1 N
4.1 透镜波导光线稳定条件
综合可得到从S面到S+1面的光线传播情况
1 0 1 d 1 0 1 d r rS 1 1 S A B rS 1 ' ' ' 1 1 r 0 1 0 1 r C D r S 1 f1 S S f2
rs 2 2brs 1 rs 0 1 d d d2 b ( A D) 1 2 f1 f 2 2 f1 f 2