2020年九年级中考数学规律探究 选择题专题复习(含详解)
2020中考数学总复习 第十一章 专题解析 专题一 探索规律

2020中考数学总复习 第十一章 专题解析专题一 探索规律专题扫描规律探究性问题通常需要我们经历观察、猜想、类比、估计、验证等合情推理的过程.命题领域往往涉及到数列(阵、表)的排列规律、计算程序图类规律、几何图形的数量或位置变化规律以及平面直角坐标系中点的坐标变化规律.......规律探究性问题的题型多以选择题或填空题的形式呈现.解决这类问题的思想方法主要有从特殊到一般的归纳猜想、数形结合思想等.例题解析类型1(1):数列的排序规律例1 (2019,恩施) 观察下列一组数的排列规律:,,,,,,,,,,,,,,,335334111332331174173172171319291525131… 那么,这一组数的第2019个数是 . 解析:这列数的排列规律为:;个数:第1211+,个数:第12122+;个数:第12232+,个数:第12143+,个数:第12253+,个数:第12363+,个数:第12174+ ,个数:第12284+ ,个数:第12394+;个数:第124104+ ...121115+个数:第...125155+个数:第观察这列数的排列规律,可将这列数进行分组:第1个数为第1组,只有1个数;第2、3个数为第2组,有2个数;第4、5、6个数为第3组,共有3个数;第7、8、9、10个数为第4组,共4个数...第n 组共有n 个数:.12...122121+++nn n n ,,,设这组数的第2019个数落在第n 组,则有:,n n ++++≤<-++++...3212019)1(...321).1(212019)1(21+≤<-n n n n 即经过估算得: , 例2 (2019,常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,… 根据其中的规律可得70+71+72+…+72019的结果的个位数字是( ) A .0 B .1C .7D .864=n 2016646321=⨯⨯而.123.12336420196464++∴故填个数,为组中第个数位于第整个数列中的第解析:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…, ∴个位数字每4个数一循环,∵(2019+1)÷4=505,又1+7+9+3=20,∴70+71+72+…+72019的结果的个位数字是0.故选A .类型1(2):数阵的布阵规律例3 (2019,黄石)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵,则第20行第19个数是 .解析:观察数阵可知,第一行1个数,第二行2个数,第三行3个数,…,则前20行的数字有:1+2+3+…+19+20=210个数,∴第20行第20个数是:1+3(210﹣1)=628, ∴第20行第19个数是:628﹣3=625,类型1(3):数表的布设规律例4 (2017,恩施)如图1,在66⨯的网格内填入1至6 的数字后,使每行、每列、每个小粗线宫中的数字不重复, 则=⨯c a .解析:.2.2,12答案:,=⨯==c a c a 类型1(4):等式的布列规律例5 (2016,恩施)观察下列等式:)1(21...4321+=+++++n n n ; )2)(1(61)1(21...10631++=++++++n n n n n ;)3)(2)(1(241)2)(1(61...201041+++=+++++++n n n n n n n ; 则有:=++++++++)3)(2)(1(241...351551n n n n .解析:等式右边系数的排列规律为:...432113211211,,,⨯⨯⨯⨯⨯⨯含有字母n 的因式个数逐次多1,答案为:).4)(3)(2)(1(1201++++n n n n n图1类型2:程序图类运算程序规律例6(2019,重庆)按如下图所示的运算程序,能使输出y 值为1的是( )A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =1解析:当m =1,n =1或2时,都有1312≠=+=≤m y n m ,此时;当时,0,1==n m故选D.类型3:图形变化类的规律探索例7(2016,龙岩)如图2,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图2中共有10个直角三角形的内切圆,它们的面积分别记为....10321s s s s ,,,,则=++++10321...s s s s .其规律是:直角三角形斜边上的高将原直角三角形分成两个小直角三角形,两个小直角三角形的内切圆面积之和等于原直角三角形内切圆的面积.图2(3),图2(4),...中,所有直角三角形的内切圆面积之和均为π.故答案为π.类型4:平面直角坐标系中点的坐标变化规律探究 例8(2016,潍坊)在平面直角坐标系中,直线1:-=x y l 与x 轴交于点1A ,如图3所示依次作正方形O C B A 111、正方形1222C C B A 、...、正方形1-n n n n C C B A ,使得点...321、、、A A A 在直线l 上,点...321、、、C C C 在y 轴正半轴上,则点n B 的坐标是 . 解析:点)1,1(1B ,点)2111(2++,B ,点,)221,211(23++++B ,点,,)22212211(3224++++++B ..., 点)2...2212...2211(1222--+++++++++n n n B ,.).122(1--n n n B ,即;此时有1112,≠-=-=>n y n m .11212=-=∴>==n y n m n m ,时,,当Θ,,解得)(,则)中圆的半径为(解析:设图π.1432154321121=∴=⨯⨯=++s r r r.ππ)54(53(5453222221=⎥⎦⎤⎢⎣⎡+=+s s ,于是和)中两圆的半径分别为(同理可得图跟踪训练1.(2019,十堰)一列数按某规律排列如下:,,,,,,,,,, 若第n 个数为,则n =( B ) A .50B .60C .62D .712.(2019,武汉)观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a ,用含a 的式子表示这组数的和是( C ) A .a a 222-B .2222--a aC .a a -22D .a a +223.(2018,宜昌)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图4中的数字排列规律,则c b a ,,的值分别为( B )1561.A ===c b a ,, 20156.B ===c b a ,, 152015.C ===c b a ,,61520.D ===c b a ,,4.(2018,广东)如图5,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上, 点1B 的坐标为(2,0).过点1B 作121//OA A B 交双曲线于点2A ,过点2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;...,以此类推,则点6B 的坐标为.062),(5. 百子回归图是由 1,2,3,…,100 无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”表示澳门回归祖国日期, 最后一行中间两位“23 50”表示澳门面积,…,同时 它也是十阶幻方,其每行10个数之和,每列 10 个 数之和,以及两条对角线 上10 个数之和均为有理 数 n ,则 4n -1的值为 2019 .6.(2018,浙江)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若aba b ⨯=+21010符合前面式子的规律,则b a += 109 . 7.如图6所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24, 第二次输出的结果为12,…,则第2020次输出的结果为 3 .8.如图7,P 1是一块半径为a 的半圆形纸板,在P 1的左下端剪去一个半径为a 21的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形P 3,P 4,…,P n ,…,(1)把P 1 、P 2、 P 3、 P 4的面积表示出来; (2)请你猜想P n 与P n+1的面积相差多少?;)(的面积图形22222211π83411π21)21(π21π21π21a a a a S P =-=-==;同理,222223π3211)161411(π21)41(π21)21(π21π21a a a a a S =--=--=.π12843)641161411(21224a a S =---=π .2π21221++n n n a P P 的面积多的面积比图形)图形(图6图7。
2020中考数学重难点专练二 规律探究问题(含答案解析)

2020中考数学重难点专练02 规律探究型问题【命题趋势】规律探究型问题是中考数学中的常考问题,题目数量一般是一个题,各种题型都有可能出现,一般以选择题或者填空题中的压轴题形式出现,主要命题方式有数式规律、图形变化规律、点的坐标规律等。
基本解题思路:从简单的、局部的、特殊的情形出发,通过分析、比较、提炼,发现其中规律,进而归纳或猜想出一般结论,最后验证结论的正确性。
探索规律题可以说是每年中考的必考题,预计2020年中考数学中仍会作为选择题或填空题的压轴题来考察。
所以掌握其基本的考试题型及解题技巧是非常有必要的。
【满分技巧】一.从简单的情况入手﹕从简单的情况入手﹕求出前三到四个结果,探究其规律,通过归纳猜想总结正确答案二.新定义型问题一般与代数知识结合较多,多关注初中数学中以下几个部分的代数知识﹕二.关注问题中的不变量和变量﹕在探究规律的问题中,一般都会存在变量和不变量(也就是常量),我们要多关注变量,看看这些变量是如何变化的,仔细观察变量的变化与序号(一般为n)之间的关系,我们找到这个关系就找到了规律所在.三.掌握一些数学思想方法规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.【限时检测】(建议用时:30分钟)一、选择题1. (2019 贵州省毕节地区)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是()A.上方B.右方C.下方D.左方2. (2019 河北省)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对3. (2019 湖北省鄂州市)如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y=x上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A.22n B.22n﹣1C.22n﹣2D.22n﹣34. (2019 湖南省娄底市)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120︒的¶AB多次复制并首尾连接而成.现有一点P从(A A为坐标原点)出发,以每秒23π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A.2-B.1-C.0 D.15. (2019 湖南省张家界市)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)6. (2019 山东省菏泽市)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)7. (2019 云南省)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+18. (2019 四川省广元市)如图,过点A0(0,1)作y轴的垂线交直线l:y=x于点A1,过点A1作直线l 的垂线,交y轴于点A2,过点A2作y轴的垂线交直线l于点A3,…,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A546,…,其面积分别记为S1,S2,S3,…,则S100为()A.()100B.(3)100C.3×4199D.3×23959. (2019 河南省)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD 组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)10. (2019 内蒙古赤峰市)如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为()A.22019B.C.D.二、填空题11. (2019 山东省泰安市)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l 上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是.12. (2019 山东省潍坊市)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为.(n为正整数)13. (2019 浙江省衢州市)如图,由两个长为2,宽为1的长方形组成“7”字图形。
2020年中考数学 中考试题精选 探索规律(含解答)-

探索规律型问题【解题指导】探索数、式、符号的变化规律;探究几何问题的结论——探索图形规律. 1、(2004浙江省嘉善县)用边长为1cm 的小正方形搭如下的塔状图形,则第n 次所搭图形的周长是 ___________cm (用含n 的代数式表示).2、(2004年泰州市)观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n 个图中小黑点的个数为y .图⑴ 填表:⑵ 当n =8时,y =__________.⑶ 根据上表中的数据,把n 作为横坐标,把y 作为纵坐标,在左图的平面直角坐标系中描出相应的各点(n,y ),其中1≤n ≤5.⑷ 请你猜一猜上述各点会在某一函数的图象上吗?如果在某一函数的图象上,现在你能够写出该函数的解析式吗?【探索与交流】1、(金华市)观察一列数:3,8,13,18,23,28……依此规律,在此数列中比2000大的最小整数是_______________. 2、(舟山市)古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 _____ . 3、一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按····· · · · · ·· · ······· · ·· · · · · · · · · · ·· ·· · · · · · ·· · · ·第1次 第2次 第3次 第4次 ······照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”,第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的_____________A .31,32,64;B .31,62,63;C .31,32,33;D .31,45,46 4、(2004江苏省徐州市)下面的图形是由边长为l 的正方形按照某种规律排列而组成的.(1)观察图形,填写 下表:图形 ① ② ③ 正方形的个数 8 图形的周长18(2)推测第n 个图形中,正方形的个数为________,周长为_______(都用含n 的代数式表示).(3)这些图形中,任意一个图形的周长与它所含正方形个数之间的函数关系式为______________________________.5、观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4……请你将猜想到的规律用自然数n (n ≥1)表示出来 .6、一个由数字1和0组成的2005位的数码,其排列规律是101101110101101110101101110……,其中“0”的个数为____________. 7、(扬州)计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如2)1101(表示二进制数,将它转换成十进制形式是13212021210123=⨯+⨯+⨯+⨯,那么将二进制数2)1111(转换成十进制形式是数_______ .A 、8B 、15C 、20D 、308、观察下列算式:,221=, 422=,823=,1624=,3225=,6426=12827= ,25628=通过观察,用你所发现的规律写出98的末位数字是 .9、研究下列算式:1=12; 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52;…用代数式表示此规律(n 为正整数)1+3+5+7+……+(2n-1)=______________________.用文字语言表述是:____________________________________.10、观察下面几个算式,你发现了什么规律: 1+2+1=4; 1+2+3+2+1=9;1+2+3+4+3+2+1=16; 1+2+3+4+5+4+3+2+1=25;……利用上面的规律,你能不能迅速算出1+2+3+……+99+100+99+……+3+2+1=_____11、(山西省)联欢会上,小红按照4个红气球、3个黄气球、2个绿气球的顺序把气球串起来装饰会场,第56个气球的颜色是 .12、(大连市)借助计算器可以求得2222222243,4433,444333,44443333++++……,仔细观察上面几道题的计算结果,试猜想2220032003444+333=L L个个_______________;13、将一边长为16厘米的正方形纸片,剪成四个大小一样的小正方形,然后将其中的一个再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环下去,剪6次一共剪出多少个小正方形?所剪得正方形个数S和所剪次数n有什么关系?用数学表达式表示为.14、(山东省)下面是按照一定规律画出的一列“树型”图:……经观察发现:图(2)比图(1)多2个“树枝”,图(3)比(2)多5个“树枝”,图(4)比(3)多10个“树枝”,照此规律,图(7)比(6)多出 _ 个“树枝”.15、(资阳市)如图,已知四边形ABCD是梯形(标注的数字为边长),按图中所示的规律,用2003个这样的梯形镶嵌而成的四边形的周长是___________.1211DCBA图5……16、(2004年十堰市)有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图).依照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的()A.21B.41C.81D.16117、(南昌市)用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:(1)第四个图案中有白色地砖_________块;(2)第n个图案中有白色地砖___________块.18、(宁夏)一组线段AB和CD把正方……第10题图第三个第二个第一个A C AD CADBADC形分成形状相同、面积相等的四部分.现给出四种分法,如图所示.请你从中找出线段AB、CD的位置及关系存在的规律.符合这种规律的线段共有多少组?(不再添加辅助线和其它字母)19、(吉林)如图所示,用用样规格黑白两色的正方形瓷砖铺设矩形地面.请观察下列图形并解答有关问题:(1)在第n个图中,每一横行共有块瓷砖,每一竖列共有块瓷砖(均用含n的代数式表示);(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数关系式(不要求写自变量n的取值范围);……20、(黑龙江)已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h”请直接应用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证明.n=1答案1、4n;2(1)21;(2)57;(3)略;(4)y=n2-n+1;1、2003;2、47;3、B;4、(1)13、28;18、38;(2)5n+3,10n+8;(3)C=2n+2;5、n2+n=n(n+1);6、668;7、B;8、8;9、n2;10、1002;11、红;12、55…5(2003个);13、19个;14、80个;15、6011;16、B;17、(1)18;(2)4n+2;18、AB ⊥CD,AB、CD交于正方形的中心;无数组;19、(1)n+3,n+2;(2)y=n2+5n+6;20、图(2)成立;图(3)不成立;过点P作BC的平行线,转化为图(1);图(3)中结论:h1+h2-h3=h。
2020年中考数学压轴题题型专练:规律探索题(含答案)

2020中考数学压轴题题型专练:规律探索题类型一数式规律1. 将一组数2,2,6,22,10,…,210,按下列方式进行排列:2,2,6,22,10;23,14,4,32,25;…若2的位置记为(1,2),23的位置记为(2,1),则38这个数的位置记为________.(4,4)【解析】∴当10n -2=38时,n =4,∴38这个数的位置记为(4,4). 2. 按一定规律排列的一列数:-12,1,-1, ,-911,1113,-1317,…,请你仔细观察,按照此规律方框内的数字应为________.1 【解析】将原来的一列数变形为-12,33,-55, ,-911,1113,-1317,…,观察这列数可得奇数项为负数,偶数项为正数,分子是依次从小到大排列的连续奇数,分母是依次从小到大排列的质数,故方框内填77,故答案为1.3. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是________.-12211 【解析】∵-2=-12+11,52= 22+12,-103=-32+13,174= 42+14,-265= -52+15,∴第11个数据是:-112+111=-12211.4. 已知a 1= t t -1,a 2= 11-a 1,a 3= 11-a 2,…,a n +1= 11-a n(n 为正整数,且t ≠0,1),则a 2018= ________(用含t 的代数式表示). 1-t 【解析】根据题意得:a 1= t t -1,a 2= 11-t t -1= 1-t ,a 3= 11-1+t = 1t ,a 4= 11-1t= t t -1, (2018)3= 672……2,∴a 2018的值为1-t . 5. 一列数:0,1,2,3,6,7,14,15,30,…,这列数是由小明按照一定规律写下来的,他第一次写下“0,1”,第二次接着写“2,3”,第三次接着写“6,7”,第四次接着写“14,15”,就这样一直接着往下写,那么30后三个连续数应该是________.31,62,63 【解析】通过观察可知,下一组数的第一个数是前一组数的第二个数的2倍,在同一组数中的前后两个数相差1,由此可得30后三个连续数为31,62,63.类型二 图形累加规律1. 如图,用菱形纸片按规律依次拼成如图图案,第1个图案中有5个菱形纸片,第2个图案中有9个菱形纸片,第3个图案中有13个菱形纸片,按此规律,第10个图案中有________个菱形纸片.第1题图41【解析】观察图形发现:第1个图案中有5=4×1+1个菱形纸片,第2个图案有9=4×2+1个菱形纸片,第3个图案中有13=4×3+1个菱形纸片,…,第n个图形中有4n+1个菱形纸片,故第10个图案中有4×10+1=41个菱形纸片.2. 如图,每个图案都由大小相同的正方形组成,按照此规律,第n个图案中这样的正方形的总个数可用含n的代数式表示为________.第2题图n2+n【解析】由题图知,第1、2、3个图案对应的正方形的个数分别为2=1×2、6=2×3、12=3×4,…,∴第n个图案所对应的正方形的个数为n(n+1)=n2+n.3. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列下去,第⑦个图形中小圆圈的个数为________.第3题图85【解析】可以分两部分观察,上半部分小圆圈个数为:1+2+3+…+n +n+1,下半部分小圆圈个数为n2,所以第⑦个图形小圆圈个数为1+2+3+4+5+6+7+8+72=85.4. 如图是用棋子摆成的“T”字图案:从图案中可以看出,第一个“T”字图案需要5枚棋子,第二个“T”字图案需要8枚棋子,第三个“T”字图案需要11枚棋子.则摆成第n个图案需要________枚棋子.第4题图3n+2【解析】观察图案可知,图案分成两部分,横向的横子数量依次为3,5,7,…,纵向的棋子数量依次为2,3,4,…,∴第n个图案棋子数量为2n+1+(n+1)=3n+2.5. 如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有n(n≥3)盆花,每个图案中花盆总数为S,按照图中的规律可以推断S与n(n≥3)的关系是________.第5题图n2-n【解析】n=3时,S=6=3×2,n=4时,S=12=4×3,n=5时,S =20=5×4,…,依此类推,当边数为n时,S=n(n-1)=n2-n.类型三图形成倍递变规律1. 如图,过点A0(2,0)作直线l:y=33x的垂线,垂足为点A1,过点A1作A1A2⊥x轴,垂足为点A2,过点A2作A2A3⊥l,垂足为点A3,…,这样依次下去,得到一组线段:A0A1,A1A2,A2A3,…,则线段A2016A2017的长为()A. (32)2015 B. (32)2016C. (32)2017 D. (32)2018第1题图B【解析】由y=33x,得直线l的倾斜角为30°,∵点A0坐标为(2,0),∴OA0=2,∴OA1=32OA0=3,OA2=32OA1=32,OA3=32OA2=334,OA4=32OA3=98,…,∴OA n=(32)n OA0=2×(32)n.∴OA2016=2×(32)2016,A2016A2017=12×2×(32)2016=(32)2016.2. 如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),则第4个正方形的边长为________,第n个正方形的边长为________.第2题图8,2n-1【解析】∵函数y=x与x轴正半轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n-1.3. 如图,在矩形ABCD中,AD=a,AB=b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2,…,如此操作下去,得到菱形I2016,则I2016的面积是________.第3题图(12)4033ab 【解析】由题意得,菱形I 1的面积为:12AG ·AE =12×12a ×12b =(12)3ab ,菱形I 2的面积为:12FQ ·FN =12×(12×12a )×(12×12b )=(12)5ab ;…;菱形I n 的面积为:(12)2n +1ab .∴当n =2016时,菱形I 2016的面积为(12)4033ab .4. 如图,已知∠AOB =30°,在射线OA 上取点O 1,以O 1为圆心的圆与OB 相切;在射线O 1A 上取点O 2,以O 2为圆心,O 2O 1为半径的圆与OB 相切;在射线O 2A 上取点O 3,以O 3为圆心,O 3O 2为半径的圆与OB 相切;…;在射线O 9A 上取点O 10,以O 10为圆心,O 10O 9为半径的圆与OB 相切.若⊙O 1的半径为1,则⊙O 10的半径长是________.第4题图29 【解析】如解图,作O 1C 、O 2D 、O 3E 分别⊥OB ,∵∠AOB =30°,∴OO 1=2CO 1,OO 2= 2DO 2,OO 3=2EO 3,∵O 1O 2=DO 2,O 2O 3= EO 3,O 1C =1,∴O 2D =2,O 3E =4,∴圆的半径呈2倍递增,∴⊙On 的半径为2n -1CO 1,∵⊙O 1的半径为1,∴⊙O 10的半径长= 29.第4题解图类型四图形周期变化规律1. 如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A. (1,-1)B. (-1,-1)C. (2,0)D. (0,-2)第1题图B【解析】∵菱形OABC的顶点O(0,0),点B的坐标是(2,2),∴BO与x 轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D是线段OB的中点,∴点D的坐标是(1,1) ,∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).2. 下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2018个梅花图案中,共有________个“”图案.第2题图505【解析】∵2018÷4=504……2,∴有505个.3. 如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…,则正方形OB2017B2018C2018的顶点B2018的坐标是________.第3题图(0,21009)【解析】点B的位置依次落在第一象限、y正半轴、第二象限、x负半轴、第三象限、y负半轴、第四象限、x正半轴…,每8次一循环.2018÷8=252……2,所以B2018落在y轴正半轴,故B2018的横坐标是0;OB n是正方形的对角线,OB1=2,OB2=2=(2)2,OB3=22=(2)3,…,所以OB2018=(2)2018=21009,所以B2018的坐标为(0,21009).4. 如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是________,翻滚2017次后AB中点M经过的路径长为________.第4题图(5,3),(134633+896)π 【解析】如解图,翻滚3次后点B 的对应点是B 3,作B 3E ⊥x 轴于E ,易知OE = 5,B 3E = 3,B 3(5,3),观察图象可知翻滚3次为一个循环,一个循环点M 的运动路径为MM 1︵、M 1M 2︵、M 2M 3︵,120 ·π ·3180+120 ·π ·1180+120 ·π ·1180=23+43π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672×23+43π+23π3= (134633+896)π.第4题解图。
中考数学选择填空压轴题汇编 规律探索(含解析)-人教版初中九年级全册数学试题

2020年中考数学选择填空压轴题汇编:规律探索1.(2020某某某某)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【解答】解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故选:A.2.(2020某某某某)观察下列等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;2+22+23+24+25=26﹣2;…已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=m(2m﹣1)(结果用含m的代数式表示).【解答】解:∵220=m,∴220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=m(2m﹣1).故答案为:m(2m﹣1).3.(2020某某鹤岗)如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过点B作EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1,以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2.….则点B2020的坐标2×32020﹣1,32020.【解答】解:∵点B坐标为(1,1),∴OA=AB=BC=CO=CO1=1,∵A1(2,3),∴A1O1=A1B1=B1C1=C1O2=3,∴B1(5,3),∴A2(8,9),∴A2O2=A2B2=B2C2=C2O3=9,∴B2(17,9),同理可得B4(53,27),B5(161,81),…由上可知,Bn(2×3n﹣1,3n),∴当n=2020时,Bn(2×32020﹣1,32020).故答案为:(2×32020﹣1,32020).4.(2020某某某某)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.【解答】解:∵点A1(0,2),×2×2=2,∴第1个等腰直角三角形的面积=12∵A2(6,0),=2√2,∴第2个等腰直角三角形的边长为√2×2√2×2√2=4=22,∴第2个等腰直角三角形的面积=12∵A4(10,4√2),∴第3个等腰直角三角形的边长为10﹣6=4,×4×4=8=23,∴第3个等腰直角三角形的面积=12…则第2020个等腰直角三角形的面积是22020;故答案为:22020(形式可以不同,正确即得分).5.(2020某某某某)如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第10个图中黑点的个数是119 .【解答】解:∵图1中黑点的个数2×1×(1+1)÷2+(1﹣1)=2,图2中黑点的个数2×2×(1+2)÷2+(2﹣1)=7,图3中黑点的个数2×3×(1+3)÷2+(3﹣1)=14,……∴第n个图形中黑点的个数为2n(n+1)÷2+(n﹣1)=n2+2n﹣1,∴第10个图形中黑点的个数为102+2×10﹣1=119.故答案为:119.(x>0)的图象上,点B1,B2,B3,…B n在y 6.(2020•某某某某)如图,点A1,A2,A3…在反比例函数y=1x轴上,且∠B1OA1=∠B2B1A2=∠B3B2A3=…,直线y=x与双曲线y=1交于点A1,B1A1⊥OA1,B2A2⊥B1A2,B3A3x⊥B2A3…,则B n(n为正整数)的坐标是()A.(2√x,0)B.(0,√2x+1)C.(0,√2x(x−1))D.(0,2√x)【解答】解:由题意,△OA1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,∵A1(1,1),∴OB1=2,设A2(m,2+m),则有m(2+m)=1,解得m=√2−1,∴OB2=2√2,设A3(a,2√2+n),则有n=a(2√2+a)=1,解得a=√3−√2,∴OB3=2√3,同法可得,OB4=2√4,∴OB n=2√x,∴B n(0,2√x).故选:D.7.(2020某某某某州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C (1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C 的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).8.(2020某某仙桃)如图,已知直线a:y=x,直线b:y=−12x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为21010.【解答】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=−12x上,∴1=−12x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=212x,∴P2020的横坐标为212×2020=21010,故答案为:21010.9.(2020某某某某)如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A .C 、EB .E 、FC .G 、C 、ED .E 、C 、F【解答】解:经实验或按下方法可求得顶点C ,E 和F 棋子不可能停到. 设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1+2+3+…+k =12k (k +1),应停在第12k (k +1)﹣7p 格, 这时P 是整数,且使0≤12k (k +1)﹣7p ≤6,分别取k =1,2,3,4,5,6,7时,12k (k +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k ≤2020,设k =7+t (t =1,2,3)代入可得,12k (k +1)﹣7p =7m +12t (t +1),由此可知,停棋的情形与k =t 时相同,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到. 故选:D .10.(2020某某某某)如图,在平面直角坐标系中,点P 1的坐标为(√22,√22),将线段OP 1绕点O 按顺时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;又将线段OP 2绕点O 按顺时针方向旋转45°,长度伸长为OP 2的2倍,得到线段OP 3;如此下去,得到线段OP 4,OP 5,…,OP n (n 为正整数),则点P 2020的坐标是 (0,﹣22019) .【解答】解:∵点P 1的坐标为(√22,√22),将线段OP 1绕点O 按逆时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;∴OP 1=1,OP 2=2,∴OP 3=4,如此下去,得到线段OP 4=23,OP 5=24…, ∴OP n =2n ﹣1,由题意可得出线段每旋转8次旋转一周, ∵2020÷8=252…4,∴点P 2020的坐标与点P 4的坐标在同一直线上,正好在y 轴的负半轴上, ∴点P 2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).11.(2020某某某某)如图,△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…,△A n ﹣1B n A n ,都是一边在x 轴上的等边三角形,点B 1,B 2,B 3,…,B n 都在反比例函数y =√3x(x >0)的图象上,点A 1,A 2,A 3,…,A n ,都在x 轴上,则A n 的坐标为 (2√x ,0) .【解答】解:如图,过点B 1作B 1C ⊥x 轴于点C ,过点B 2作B 2D ⊥x 轴于点D ,过点B 3作B 3E ⊥x 轴于点E ,∵△OA1B1为等边三角形,∴∠B1OC=60°,OC=A1C,∴B1C=√3OC,设OC的长度为t,则B1的坐标为(t,√3t),得t•√3t=√3,解得t=1或t=﹣1(舍去),把B1(t,√3t)代入y=√3x∴OA1=2OC=2,∴A1(2,0),设A1D的长度为m,同理得到B2D=√3m,则B2的坐标表示为(2+m,√3m),得(2+m)×√3m=√3,解得m=√2−1或m=−√2−1(舍去),把B2(2+m,√3m)代入y=√3x∴A1D=√2−1,A1A2=2√2−2,OA2=2+2√2−2=2√2,∴A2(2√2,0)设A2E的长度为n,同理,B3E为√3n,B3的坐标表示为(2√2+n,√3n),得(2√2+n)•√3n=√3,把B3(2√2+n,√3n)代入y=√3x∴A2E=√3−√2,A2A3=2√3−2√2,OA3=2√2+2√3−2√2=2√3,∴A3(2√3,0),综上可得:A n(2√x,0),故答案为:(2√x,0).12.(2020某某湘西州)观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3.上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是A1N=A n M,∠NOA n=(x−2)×180°x【解答】解:∵(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,=60°;∠NOC=(3−2)×180°3=90°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=(4−2)×180°4=108°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=(5−2)×180°5…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O..也有类似的结论是A1N=A n M,∠NOA n=(x−2)×180°x故答案为:A1N=A n M,∠NOA n=(x−2)×180°.x13.(2020某某某某)如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202【解答】解:根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.14.(2020某某某某)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是( )A .1100B .120C .1101D .2101【解答】解:由题意知,第100个图形中,正方体一共有1+2+3+……+99+100=5050(个),其中写有“心”字的正方体有100个,∴抽到带“心”字正方体的概率是1005050=2101, 故选:D .15.(2020某某威海)如图①,某广场地面是用A ,B ,C 三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地砖记作(2,1)…若(m ,n )位置恰好为A 型地砖,则正整数m ,n 须满足的条件是m 、n 同为奇数或m 、n 同为偶数 .【解答】解:观察图形,A 型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m ,n )位置恰好为A 型地砖,正整数m ,n 须满足的条件为m 、n 同为奇数或m 、n 同为偶数. 故答案为m 、n 同为奇数或m 、n 同为偶数.16.(2020某某潍坊)如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:xx 1̂的圆心为点A ,半径为AD ;x 1x 1̂的圆心为点B ,半径为BA 1;x 1x 1̂的圆心为点C ,半径为CB 1;x 1x 1̂的圆心为点D ,半径为DC 1;⋯xx 1̂,x 1x 1̂,x 1x 1̂,x 1x 1̂,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则x 2020x 2020̂的长是 4039π.【解答】解:由图可知,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD =AA 1=1,BA 1=BB 1=2,……,AD n ﹣1=AA n =4(n ﹣1)+1,BA n =BB n =4(n ﹣1)+2,故x 2020x 2020̂的半径为BA 2020=BB 2020=4(2020﹣1)+2=8078,x 2020x 2020̂的弧长=90180×8078x =4039x .故答案为:4039π.17.(2020某某达州)已知k 为正整数,无论k 取何值,直线11:y =kx +k +1与直线12:y =(k +1)x +k +2都交于一个固定的点,这个点的坐标是 (﹣1,1) ;记直线11和12与x 轴围成的三角形面积为S k ,则S 1=14,S 1+S 2+S 3+…+S 100的值为50101.【解答】解:∵直线11:y =kx +k +1=k (x +1)+1, ∴直线12:y =(k +1)x +k +2经过点(﹣1,1);∵直线12:y =(k +1)x +k +2=k (x +1)+(x +1)+1=(k +1)(x +1)+1, ∴直线12:y =(k +1)x +k +2经过点(﹣1,1).∴无论k 取何值,直线l 1与l 2的交点均为定点(﹣1,1).∵直线11:y =kx +k +1与x 轴的交点为(−x +1x,0), 直线12:y =(k +1)x +k +2与x 轴的交点为(−x +2x +1,0), ∴S K =12×|−x +1x +x +2x +1|×1=12x (x +1), ∴S 1=12×11×2=14;∴S 1+S 2+S 3+…+S 100=12[11×2+12×3+⋯1100×101] =12[(1−12)+(12−13)+…+(1100−1101)] =12×(1−1101)=12×100101=50101.故答案为(﹣1,1);14;50101.18.(2020某某某某)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a 1,第2幅图中“▱”的个数为a 2,第3幅图中“▱”的个数为a 3,…,以此类推,若2x 1+2x 2+2x 3+⋯+2x x=x2020.(n 为正整数),则n 的值为 4039 .【解答】解:由图形知a 1=1×2,a 2=2×3,a 3=3×4, ∴a n =n (n +1),∵2x 1+2x 2+2x 3+⋯+2x x=x2020,∴21×2+22×3+23×4+⋯+2x (x +1)=x2020, ∴2×(1−12+12−13+13−14+⋯⋯+1x −1x +1)=x 2020, ∴2×(1−1x +1)=x2020, 1−1x +1=x4040, 解得n =4039,经检验:n =4039是分式方程的解, 故答案为:4039.19.(2020某某某某)如图,直线y =−√3x +b 与y 轴交于点A ,与双曲线y =xx 在第三象限交于B 、C 两点,且AB •AC =16.下列等边三角形△OD 1E 1,△E 1D 2E 2,△E 2D 3E 3,…的边OE 1,E 1E 2,E 2E 3,…在x 轴上,顶点D 1,D 2,D 3,…在该双曲线第一象限的分支上,则k = 4√3,前25个等边三角形的周长之和为 60 .【解答】解:设直线y =−√3x +b 与x 轴交于点D ,作BE ⊥y 轴于E ,CF ⊥y 轴于F . ∵y =−√3x +b ,∴当y =0时,x =√33b ,即点D 的坐标为(√33b ,0), 当x =0时,y =b ,即A 点坐标为(0,b ),∴OA =﹣b ,OD =−√33b .∵在Rt △AOD 中,tan ∠ADO =xxxx=√3,∴∠ADO =60°.∵直线y =−√3x +b 与双曲线y =x x在第三象限交于B 、C 两点,∴−√3x +b =xx ,整理得,−√3x 2+bx ﹣k =0,由韦达定理得:x 1x 2=√33k ,即EB •FC =√33k ,∵xxxx =cos60°=12, ∴AB =2EB ,同理可得:AC=2FC,k=16,∴AB•AC=(2EB)(2FC)=4EB•FC=4√33解得:k=4√3.由题意可以假设D1(m,m√3),∴m2•√3=4√3,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,√3n),∵(4+n)•√3n=4√3,解得n=2√2−2,∴E1E2=4√2−4,即第二个三角形的周长为12√2−12,设D3(4√2+a,√3a),由题意(4√2+a)•√3a=4√3,解得a=2√3−2√2,即第三个三角形的周长为12√3−12√2,…,∴第四个三角形的周长为12√4−12√3,∴前25个等边三角形的周长之和12+12√2−12+12√3−12√2+12√4−12√3+⋯+12√25−12√24=12√25=60,故答案为4√3,60.。
2020年中考数学压轴题:规律探究专项练习(含答案)

12020 年中考数学压轴题之规律探究专项练习☆选择题(请在下面的四个选项中将正确的答案选在括号里)1.如图所示, 在平面直角坐标系中, A 0,0 ,B 2,0 ,VAP 1B 是等腰直角三角形且 P 1 90 ,把VAP 1B绕点 B 顺时针旋转 180o ,得到 VBP 2C ,把 VBP 2C 绕点 C 顺时针旋转 180o ,得到 VCP 3D ,依此类推,得到的等腰直角三角形的直角顶点 P 2020 的坐标为()A .(4039, -1)B .(4039,1)C .(2020,-1)D .(2020,1)2.山西面食不仅是中华民族饮食文化的重要组成部分,也是世界的面食之根. 其中,“拉面”远播世界各地. 制作方法如图所示,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,反复几次,这根很粗的面条 就被拉成许多细的面条, 第一次捏合变 2 根细面条, 第二次捏合变 4 根细面条, 第三次捏合变 8 根细面条,1A . 2n 根B . 2n 1根C .2n 1根D . 1 根23.一只跳蚤在第一象限及 x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到 (0,1),然后接着按图中箭头所示方向跳动 [即(0,0)→(0,1)→(1,1)→(1,0)→⋯ ],且每秒跳动一个单位,那么第 2020秒时跳这样捏合到第 n 次后可拉出细面条( )n1A.(5,44)B.(4,44)C.(4,45)D.(5,45)蚤所在位置的坐标是() 234.下列图形是由大小、形状相同的 “•和”线段按照一定规律组成的,其中第 1 幅图形有 3 个“•,”第 2 幅图形中有 8个“•,”第 3幅图形中有 15 个“•,”⋯⋯ ,则第 7幅图形中的 “•个”数为( )5.已知,顺次连接矩形各边的中点,得到一个菱形,如图矩形,如图 2;然后顺次连接新的矩形各边的中点得到一个新的菱形,如图 3;⋯⋯如此反复操作下去,则 第 2018 个图形中直角三角形的个数有()A .2018个B . 2017个C .4028个D . 4036 个6.下列图形都是由同样大小的“ d ”按一定的规律组成的,其中第 1个图形中一共有 5个“ d ”,第 2个 图形中一共有 12个“ d ”,第3个图形中一共有 21个“ d ”,L L ,则第 7个图形中“ d ”的个数是( )A . 60B . 66C . 77D . 967.已知:如图,等边三角形 OAB 的边长为 2 3,边OA 在 x 轴正半轴上,现将等边三角形 OAB 绕点 O 逆 时针旋转,每次旋转 60 ,则第 2020 次旋转结束后,等边三角形中心的坐标为( )A .99B . 63C .80D . 481;再顺次连接菱形各边的中点,得到一个新的A .(5,44)B . (4,44)C .(4,45)D .(5,45)4B . 0, 1C . 3, 1D . 0, 28.观察下列有规律的算式: 13=1, 13+23=9,13+23+33=36,13+23+33+43=100,13+23+33+43+53=225,⋯,探 究并运用其规律计算: 113+123+133+143+153+163+173+183+193+203 的结果可表示为( ) A .265 155 B .275 145C .285 145D . 255 1659.如图,在平面直角坐标系中,点 A 1,A 2,A 3, 都在 x 轴上,点 B 1,B 2,B 3, 在直线 y x 上,△ OA 1B 1,△ B 1A 1A 2,△B 2B 1A 2,△B 2A 2A 3,△B 3B 2A 3, ,都是等腰直角三角形, 如果 OA 1 1,则点 B 2019坐标是 ( )2010 2019A . 22010,2 2019☆填空题10.如图,下列正多边形都满足 BA 1=CB 1,在正三角形中,我们可推得: ∠AOB 1=60 °;在正方形中,可推A . 3,1B .得:∠AOB1=90°;在正五边形中,可推得:∠AOB1=108°,依此类推在正八边形中,AOB1= ___ °,在正n(n≥3)边形中,∠AOB1= ___5611.点 P (x ,y )经过某种变换后到点 P (-y+1 ,x+2),我们把点 P (-y+1 ,x+2)叫做点 P (x ,y )的终结点,已知点P 1的终结点为 P 2 ,点P 2的终结点为 P 3 ,点P 3的终结点为 P 4,这样依次得到 P 1、P 2、P 3、P 4⋯P n 若点P 1的坐标为 (2, 0),则点 P 2020 的坐标为 __ 12.如图,点 A (0,1) ,点B ( 3,0) ,作OA 1 AB ,垂足为 A 1,以OA 1为边做 Rt △A 1OB 1,使 A 1OB 1 90 ,B 1 30 ;作 OA 2 A 1B 1,垂足为 A 2,再以 OA 2为边作 Rt △A 2OB 2,使 A 2OB 2 90 , B 2 30 ,的垂线,交直线 y =2x 于点 B 3;⋯,按此规律作下去,则点 B 10的坐标为15.如图,在平面直角坐标系 xOy 中,一次函数 y=x+1 与 x 、y 轴分别交于点 A 、 B ,在直线 AB 上截取 BB1=AB,过点 B 1分别作 y 轴的垂线,垂足为点 C 1,得到⊿ BB 1C 1;在直线 AB 上截取 B 1B 2= BB 1,过点 B 2分别作 y 轴的垂线,垂足为点 C 2,得到⊿BB 2C 2;在直线 AB 上截取 B 2B 3= B 1B 2,过点 B 3作 y 轴的垂线, 垂足为点 C 3,得到⊿ BB 3C 3;⋯⋯ ;第 3个⊿ BB 3C 3的面积是 ________ ;第 n 个⊿BB n C n 的面积是以同样的作法可得到13.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出 a+b 的值为A 2( 2,0)作 x 轴的垂线,交直线 y =2x 于点B 2;点 A 3与点 O 关于直线 A 2B 2对称;过点 A 3(4,0)作 x轴_____________ (用含n 的式子表示,n 是正整数).16.有一种数字游戏,可以产生“黑洞数”,操作步骤如下:第一步,任意写出一个自然数(以下称为原数);第二步,再写一个新的三位数.它的百位数字是原数中偶数数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数;以下每一步,都对上一步得到的数,按照第二步的规则继续操作,直至这个数不再变化为止.不管你开始写的是一个什么数,几步之后变成的自然数总是相同的.最后这个相同的数就叫它为“黑洞数”.请你以2019 为例尝试一下,“黑洞数”是.☆解答题17.观察下列等式:第一个等式:1111 22第二个等式:111134122第三个等式:111156303第四个等式:111178564按照以上规律,解决下列问题1)写出第五个等式 ___________ ;2)写出你猜想的第n个等式____________ (用含n的等式表示),并证明.718.如图1,给定一个正方形,要通过画线将其分割成若干个互不重叠的正方形.第1次画线分割成 4 个互不重叠的正方形,得到图2;第2次画线分割成7个互不重叠的正方形,得到图3⋯⋯以后每次只在上次得到图形的左上角的正方形中画线.尝试:第 3 次画线后,分割成个互不重叠的正方形;第 4 次画线后,分割成个互不重叠的正方形.发现:第n 次画线后,分割成个互不重叠的正方形;并求第2020 次画线后得到互不重叠的正方形的个数.探究:若干次画线后,能否得到1001 个互不重叠的正方形?若能,求出是第几次画线后得到的;若不能,请说明理由.19.[ 观察发现]2当x 1, 1 x 1 x 1 x331 x 1 x x 1 x2 3 41 x 1 x x x 1 x(探究归纳)(1)1 x 1 x x2... x n(应用拓展)(2)计算下列式子的值:①121222 232425②2222324...2n;9998 972③x1(x99xx x x 1)(3)求:2201922018220172221式子的值的个位数是多少. 820.你能化简(a99 98 971) a a a2⋯a a 1结论.(1)先填空:(a1)(a 1);(a 1) a2a由此猜想(a1)99 98 97 a a a ⋯2a a 12)利用这个结论,请你解决下面的问题:求2199吗?我们不妨先从简单情况入手,发现规律,归纳321 ;(a 1) a3a2a 1219821972196222 1的值.921.现规定:求若千个相同的有理数 (均不等于 0 )的商的运算叫做除方,比如102 2 2,3333等,类比有理数的乘方,我们把 2 22记作 2③ ,读作“ 2 的圈 3次方”, 3 333 记作 ④3 ④,读作“ 3 的圈 4 次方”,一般地,把 n(n 2) 个 a (a 0)相除记作a,读作“ a 的圈n 次方”.初步探究:( 1)直接写出结果 : 2③⑤.1.2(2)下列关于除方的说法中,错误的是A .任何非零数的圈 2 次方都等于 1B .对于任何正整数 n (n 2),1的圈 n 次方等于 1C . 3④4③D .负数的圈奇数次方的结果是负数,负数的圈偶数次方的结果是正数深入思考:我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的 除方运算如何转化为乘方运算呢?(3)试一试,把下列除方运算直接写成幂的形式⑧3 ⑤ . 1 .5(4)想一想,请把有理数 a (a 0) 的圈 n(n3) 次方写成幂的形式.尝试: 10,13;发现: (3n + 1),6061;探究:不能.2,③ x 100 1;(3)原式的个位数为 5 . 2 3 4 100 2001) a 1, a 1, a 1, a 1 ;(2)2 -13 n 21 1 6 11) , 8 ;(2)C ;(3) ,56;(4) (a 0,n 3)2 3 a参考答案 1.A2 .A3.B4.B5.D6.C7. D8.A9.B 135 (-2,-1)(n 2)180n202032021139.29,210)1231 11 111 1) ;(2) 9 10 90 5 2n 1 2n 1 2n (2n 1) 1,证明略.n10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.21. 1)1 x n 1 ;( 2)① 63,② 2n 1。
2020届中考数学试题分类汇编:规律探索(含精析)

(2020•衡阳)观察下列按顺序排列的等式:,,,,…,试猜想第n个等式(n为正整数):a n=﹣.考点:规律型:数字的变化类.分析:根据题意可知a1=1﹣,a2=﹣,a3=﹣,…故a n=﹣.解答:解:通过分析数据可知第n个等式为:a n=﹣.故答案为:﹣.点评:本题考查了数字变化规律,培养学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.(2020,娄底)如图,是用火柴棒拼成的图形,则第n个图形需__________根火柴棒.(2020•益阳)下表中的数字是按一定规律填写的,表中a的值应是21 .1 2 3 5 8 13 a …2 3 5 8 13 21 34 …考点:规律型:数字的变化类.分析:根据第一行第3个数是前两个数值之和,进而得出答案.解答:解:根据题意可得出:a=13+5=21.故答案为:21.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.(2020,永州)电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,此WORD中为方便大家识别与印刷,我还是把图乙中的0都标出来吧,以示与未掀开者的区别),如图甲中的“3”表示它的周围八个方块中仅有3个埋有雷.图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有 .(请填入方块上的字母)3()图甲A B C D GE F2341322422221111111133()图乙00(2020•荆州)观察下面的单项式:a ,﹣2a 2,4a 3,﹣8a 4,…根据你发现的规律,第8个式子是 ﹣128a 8.考点: 规律型:数字的变化类. 专题:规律型. 分析: 根据单项式可知n 为双数时a 的前面要加上负号,而a 的系数为2(n ﹣1),a 的指数为n .解答:解:第八项为﹣27a 8=﹣128a 8. 点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.(2020•达州)如图,在△ABC 中,∠A=m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2020BC 和∠A 2020CD 的平分线交于点A 2020,则∠A 2020= 度。
2020中考数学规律探索问题试题汇编

中考数学规律探索问题试题汇编一、选择题1、(2020最新模拟山东济宁)如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )。
B2、(2020最新模拟江苏泰州)按右边33⨯方格中的规律,在下面4个符号中选择一个填入方格左上方的空格内( )A3、(2020最新模拟湖南湘潭)为庆祝“六g 一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A A .26n + B .86n + C .44n + D .8n4、(2020最新模拟湖南株州)某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是( )C(第01题图)ABCDA. 31B. 33C. 35D. 37 二、填空题1、(2020最新模拟辽宁沈阳)有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .501、(2020最新模拟山东日照)把正整数1,2,3,4,5,……,按如下规律排列:1 2,3, 4,5,6,7,8,9,10,11,12,13,14,15,… … … …按此规律,可知第n 行有 个正整数.2n-12、(2020最新模拟重庆)将正整数按如图所示的规律排列下去。
若用有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示实数9,则(7,2)表示的实数是 。
233、(2020最新模拟福建晋江)试观察下列各式的规律,然后填空:1)1)(1(2-=+-x x x 1)1)(1(32-=++-x x x x 1)1)(1(423-=+++-x x x x x ……则=++++-)1)(1(910x x x x ΛΛ_______________。
111-x 。
11235...4、(2020最新模拟内蒙古赤峰)观察下列各式:22151(11)1005225=⨯+⨯+= 22252(21)1005625=⨯+⨯+= 22353(31)10051225=⨯+⨯+=……依此规律,第n个等式(n为正整数)为 .22(105)(1)1005n n n +=+⨯+5、(2020最新模拟浙江温州)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两上数的和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学选择题规律探究专题复习
1.已知,顺次连接矩形各边的中点,得到一个菱形,如图1;再顺次连接菱形各边的中点,得到一个新的矩形,如图2;然后顺次连接新的矩形各边的中点得到一个新的菱形,如图3;……如此反复操作下去,则第2018个图形中直角三角形的个数有( )
A .2018个
B .2017个
C .4028个
D .4036个
【答案】D 2.如图,在x 轴的正半轴上依次截取1122320172018OA A A A A A A ====L ,过点12320172018A A A A A L 分别作x 轴的垂线与反比例函数()2
0y x x =≠的图象相交于点12320172018P P P P P L 、、、
、、,得直角三角形11122233201720182018OP A A P A A P A A P A L L 、、、
、,并设其面积分别为12320172018S S S S S L 、、、、、,则2018S 的值为( )
A .12018
B .12017
C .11009
D .22017
【答案】A
3.如图,已知射线//OP AE ,A α∠=,依次作出AOP ∠的角平分线OB ,BOP ∠的角平分线1OB ,
1B OP ∠的角平分线21,,n OB B OP -∠L 的角平分线n OB ,其中点12,,,,n B B B B L 都在射线AE 上,则n AB O ∠的度数为( )
A .1802︒-n α
B .11802-︒-n α
C .11802n α+︒-
D .1802
α︒- 【答案】C
4.如图,已知线段1AB =,现将AB 按以下步骤进行第1次操作:①将线段平分成三段;②去掉中间的那一段并用两条与之等长的线段代替,操作后得图1,第2次操作:接着在图1的每一条线段上重复第1次操作得到图2,按上述方法一直继续操作下去,则第4次操作得到的折线的总长度为( )
A .25681
B .12821
C .6427
D .4
【答案】A
5.如图,直线y =k 和双曲线y =
k x
相交于点P ,过点P 作PA 0垂直于x 轴,垂足为A 0,x 轴上的点A 0,A 1,A 2,…A n 的横坐标是连续整数,过点A 1,A 2,…A n :分别作x 轴的垂线,与双曲线y =k x (k >0)及直线y =k 分别交于点B 1,B 2,…B n 和点C 1,C 2,…C n ,则n n n n
A B C B 的值为( )
A .11n +
B .11n -
C .1n
D .11n
- 【答案】C
6.如图,顶角为36o 的等腰三角形,其底边与腰之比等k ,这样的三角形称为黄金三角形,已知腰AB=1,ABC ∆为第一个黄金三角形,BCD ∆为第二个黄金三角形,CDE ∆为第三个黄金三角形以此类推,第2020个黄金三角形的周长()
A .2018k
B .2019k
C .2018
2k k + D .2019(2)k k +
【答案】D
7.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++L L ,()()122019232018N x x x x x x =++++++L L ,则M ,N 的大小关系是( )
A .M N <
B .M N >
C .M N =
D .M N ≥ 【答案】B
8.已知有理数1a ≠,我们把11a
-称为a 的差倒数,如:2的差倒数是1=-112-,-1的差倒数是11=1(1)2
--.如果12a =-,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么12100a a a +++L 的值是( )
A .-7.5
B .7.5
C .5.5
D .-5.5
【答案】A
9.仔细观察下列数字排列规律,则a =( )
A .206
B .216
C .226
D .236
【答案】C 10.在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为2个单位长度/秒,点在弧线上的速度为23
π个单位长度/秒,则2019秒时,点P 的坐标是( )
A .()2019,0
B .(
C .(2019,
D .()2018,0
【答案】C 11.用一些相同的正方形,摆成如下的一些大正方形,如图第(1)个图中小正方形只有一个,且阴影面积为1,第(2)个图中阴影小正方形面积和3;第(3)个图中阴影小正方形面积和为5,第(9)个图中阴影小正方形面积和为( )
A .11
B .13
C .15
D .17
【答案】D 12.观察等式:1+2+22=23-1;1+2+22+23=24-1;1+2+22+23+24=25-1;若 1+2+22+…+29=210-1=m ,则用含 m 的式子表示 211+212+ …+218+219的结果是( )
A .m 2+ m
B .m 2+m -2
C .m 2-1
D .m 2+ 2m
【答案】C。