第四章控制系统的频率特性
控制工程基础第4章控制系统的频率特性

插值计算可大致确定闭环截止频率为 b
=1.3rad/s。
非单位反馈系统的闭环频率特性
对于非单位反馈系统,其闭环频率特性可
写为
X X
o i
j j
1
G j G j H
j
H
1
j
1
G j H j G j H j
在求取闭环频率特性时,在尼柯尔斯图上画
出 G j H j 的轨迹,由轨迹与M轨线和N轨
频域法是一种工程上广为采用的分析 和综合系统间接方法。另外,除了电路 与频率特性有着密切关系外,在机械工 程中机械振动与频率特性也有着密切的 关系。机械受到一定频率作用力时产生 强迫振动,由于内反馈还会引起自激振 动。机械振动学中的共振频率、频谱密 度、动刚度、抗振稳定性等概念都可归 结为机械系统在频率域中表现的特性。 频域法能简便而清晰地建立这些概念。
如果M=1,由式(4.26)可求得X=-1/2,即为
通过点(-1/2,0)且平行虚轴的直线。
如果M≠1,式(4.26)可化成
X
M M2
2
2
1
Y
2
M2 M 2 1 2
(4.27)
该式就是一个圆的方程,其圆心为
M2
,半径为 M 。如下图。
[
M
2
, 1
j0]
M 2 1
在复平面上,等M轨迹是一族圆,对于给定 的M值,可计算出它的圆心坐标和半径。下 图表示的一族等M圆。由图上可以看出,当 M>1时,随着M的增大M圆的半径减小,最后 收敛于点(-1,j0)。当M<1时,随着M的 减小M圆的半径亦减小,最后收敛于点 ( 0 , j0)。M=1 时 , 其 轨 迹 是 过 点 ( 1/2,j0)且平行于虚轴的直线。
自动控制原理与系统控制系统的频率特性

如图4-6所示。
12
四、惯性环节 传递函数 : G(s) C(s) 1
R(s) Ts 1
频率特性 : G( j) C( j) 1
R( j) jT 1
对数频率特性 : L() 20lg
1
20lg
(T)2 1
(T)2 1
Bode图 : arctanT
▪对数幅频特性L(ω)是一条曲线,逐点描绘很烦琐,通常采用近似的 绘制方法,用两条渐进线近似表示.
(极坐标表示法)
U () jV ()
(直角坐标表示法)
(A指(数表)e示j法 ())
图4-2
A() G(j) U 2 () V 2 ()
() G( j) arctan 1 V () U ()
6
例4-1 写出惯性环节的幅频特性、相频特性和频率特性。
解:惯性环节的传递函数为
G(s) 1 Ts 1
2
• 系统(或环节)输出量与输入量幅值之比为幅值频率特性, 简称幅频特性,它随角频率ω变化,常用M(ω)表示。
A()
A c
A r
• 输出量与输入量的相位差为相位频率特性,简称相频特性,它 也随角频率ω变化,常用φ(ω)表示,
c r
幅频特性和相频特性统称为频率特性,用G( jω)表示
3
频率特性就是线性系统(或环节)在正弦输入信号 作用下稳态时输出相量与输入相量之比。
G (j) G(j) G(j)
A() G(j)
() G(j)
幅频特性是输出量与输入量幅值之比M(ω),描述系统 对不同频率正弦输入信号在稳态时的放大(或衰减) 特性。
相频特性是输出稳态相对于正弦输入信号的相位差 φ(ω),描述系统稳态输出时对不同频率正弦输入信号 在相位上产生的相角迟后(或超前)的特性。
第四章频率特性

第四章控制系统的频域分析法 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 165 频率特性法本章是通过对系统的频率特性研究分析自动控制系统,是一种经典方法。
问题:什么是频率特性,如何描述?如何利用频率特性分析控制系统?5.1 频率特性5.1.1频率特性的基本概念我们知道,系统(包括开环系统和闭环系统)对正弦输入信号的稳态反应是用以描述系统性能的一种广泛应用的工程方法。
频率特性描述了系统在正弦输入信号作用下,其输出信号与输入信号之间的关系。
设系统的传递函数为又设其中:的振幅为常值:正弦函数的角频率有一般地A(s),B(s)为s的多项式;为的极点,包括实数和共扼复数对稳定的系统而言均具有负实部。
(设系统无重极点)其中,待定,是的共扼复数,为待定系数。
由拉氏反变换可得:则输出信号的稳态分量:(对于稳定的系统具有负实部)注:如果系统中含有k个重极点,则在中将会出现象(j=0,1,2,……,k-1)这样一些项,然而对于稳定的系统来说,由于具有负实部,所以各项都将随着趋于无穷大而趋于零。
因此具有重极点的稳定系统的稳态分量具有和上式相同的形式。
可按下式计算:(由留数公式)及其中为一复数,可表示为其中,模幅角同样可以证明,是的偶函数是的奇函数证明:设式中则有是的偶函数是的奇函数稳定的线性定常系统在正弦输入下的稳态响应为:可见:线性定常系统在正弦信作用下的稳态响应仍是与输入信号同频率的正弦信号。
其振幅是输入信号振幅R的倍,在相位上,正弦输出相对于输入的相移,同样是的函数,对确定的来说,振幅C及相移将是确定的。
综上:在正弦输入信号的作用下,线性定常系统的输出信号的稳态分量是和正弦输入信号同频率的正弦函数,其振幅C与输入正弦的振幅R 的比值C/R=是角频率的函数。
它描述系统对不同频率的输入信号在稳态情况下的衰减(或放大)特性,定义这种振幅比依赖于频率的函数为系统的幅频特性。
相对于输入信号r(t)的相移也是的函数,是系统输出信号的稳态分量对正弦输入信号r(t)的相移为该系统的相频特性,它描述系统的稳态输出对不同频率的正弦输入信号在相位上产生相角滞后或相角超前的特性。
第四章 控制系统的频率特性PPT课件

1·写出 G ( j w ) 和G( jw)表达式; 2·分别求出 w 0 和 w时的 G ( j w ) ;
3·求乃氏图与实轴的交点,交点可利用 ImG(jw)0或 G(jw)n180o
的关系式求出;
4·求乃氏图与虚轴的交点,交点可利用 ReG(jw)0或 G(jw)n90o
K;
(T 1s1 )(T 2s1 )
K ,T 1,T 20
试概略绘制系统开环幅相曲线。
解:由于惯性环节的角度变化为 ~-900,故该系统开环幅
相曲线中
起点为:
终点为:
系统开环频率特性
A (0)K,
(0)00
A ( ) 0 , ( )2 ( 90) 0 10 80
G (j)K [1 (1 T 1 T T 12 2 2 2) 1 (j (T T 1 22 T 22 ))]
即多环节传递函数的幅频特性是各环节模的乘积,相频特性是各环节 相位角之和。
7
自动控制原理
§4-2频率响应的极 频率响应G(jw)是输入频率w的复变函数,是一种变换,当w从0逐渐增长至
时,G(jw)作为一个矢量,其端点在复平面相对应的轨迹就是频率响
应的极坐标图,亦叫坐做乃标氏图图((Nyq乃uist氏曲线图) )
传递函数G(s)
S=jw
频率特性G(jw)
注:系统频率特性分析法是一种用“稳态”的方法(即输出稳态时 的正弦信号,不考虑过度过程)来分析系统的动态特性(稳,准, 快)
5
自动控制原理
二·频率特性的一些概念
G (jw ) U (w )jV (w )
幅频特性 A (w ) G (jw )[U (w )]2 [V (w )]2
(jw K)(j(wjw1T11)1()j(wjw2T21).1..)...
机械工程控制基础(第4章 系统的频率特性分析)

(4.1.10)
根据频率特性的定义可知,系统的幅频特性和相频特性分别为:
G ( j ) Xi ( ) G ( j ) A ( ) X o ( )
(4.1.11)
故 G ( j ) G ( j ) e
j G ( j )
就是系统的频率特性,它是将 G ( s )
d dt
微分方程
dt
s 传递函数 s
系统
j
频率特性
j
图4.1.2 系统的微分方程、传递 函数和频率特性相互转换关系图
中原工学院
机电学院
4.1.4 频率特性的特点和作用
第1
系统的频率特性就是单位脉冲响应函数的Fourier变换,即频谱。 所以,对频率特性的分析就是对单位脉冲响应函数的频谱分析。
第2
K
所以
A
X o Xi
1 T
2
2
arctan T
或
K 1 T
2 2
e
j arctan T
中原工学院
机电学院
2. 将传递函数中的s换为 j (s=j )来求取
由上可知,系统的频率特性就是其传递函数G(s)中复变量s j 的特殊情况。由此得到一个极为重要的结论与方法,即将系统的传递
G
j 端点的轨迹即为频率特性的极坐标图, 或称为Nyquist 图, 如
中原工学院
机电学院
图4.2.1所示。它不仅表示幅频特性和相频特性, 而且也表示实频特性和
虚频特性。图中的箭头方向为从小到大的方向。
正如4.1节所述, 系统的幅频特性和相频特
性分别为
A ( ) X o ( ) Xi G
自动控制第四章

Nyquist步骤:1 2 3 频率特性
幅频 G ( jw ) =
1 1+w 2T 2
w 0,幅值,相角
w ,幅值,相角
与实轴或虚轴的交点
幅相特性(Nyquist)
Re
相频 G( jw)=-arctg(wT)
2 wn ⑹ 振荡环节 G( s) 2 2 s 2wn s w n w 2 1 ( ) wn U (w ) w 2 2 w 2 2 [1 ( ) ] 4 ( ) wn wn w 2 wn V (w ) w 2 2 w 2 [1 ( ) ] 4 2 ( ) wn wn
一、典型环节的奈氏图
⑴ 比例环节 G( s) K ⑵ 微分环节 G( s ) s
1 ⑶ 积分环节 G ( s ) s
G( jw ) K G ( jw ) jw
幅值相角
G K G 0 G w G 90 G 1 w G 90
G 1
奈氏图
1 G( jw ) jw
0.237 76
G
G ( j )
2(2 j ) 0 j 0 0 90 2 2 2
证明:惯性环节 G ( jw )
G ( jw )
1 1 jwT的幅相特性为半圆
1 1 jw T X jY 2 2 1 jw T 1 w T
G( j 0.6) 0.92 j 0.27 0.959 16.4 G( j1) 0.8 j 0.4 0.804 26.6 G( j 2) 0.5 j 0.5 0.707 45 G( j 4) 0.2 j 0.4 0.447 63.4 G( j8) = 0.06 - j 0.24
控制工程基础第4章 控制系统的频率特性

( ) G ( j ) arctanT
As 0, 1) ( gain G ( j ) 1 L( ) 20lg G ( j ) 0
( ) 0
As 1 gain G ( j ) T L( ) 20lg G ( j ) 20 lg(T )
第四章 控制系统的频率特性
4.1 机电系统频率特性的概念及其实验基本方 法 4.2 极坐标图 4.3 对数坐标图 4.4 由频率特性曲线求系统的频率特性 4.5 控制系统的闭环频响
4.1 机电系统频率特性的概念及其实验基本方法
频率响应: 系统对正弦函数输入的问题响应。当输入正弦信号时, 系统的稳态输出也是正弦信号,且其频率与输入信号的 频率相同,其幅值及相角随着输入信号频率的变化而变 化。 当输入为非正弦的周期信号时,可将输入信号利用傅立 叶级数展开成正弦函数叠加的形式,系统的响应也是其 相应正弦函数响应的叠加 输入为非周期信号时也可以将它看作是周期为无穷大的 周期信号
V ( )
相频特性
A( )
( )
U ( )
4.2 极坐标图
Im( )
G ( j n )
Re( )
G ( j 2 )
G ( j1 )
4.2.1 典型环节的乃氏图
k
0
积分环节 比例环节
0
G (s) k G ( j ) k A( ) G ( j ) k
系统开环传递函数为: 100(0.05s+1) G(s)= s(0.1s+1)(0.2s+1) 试绘制其开环对数频率特性图
40 20 1 20lgk 5 10 20
1 -90 -180 -270
5
10
机械工程控制基础 第四章 频率特性

x r (t) x rm sin( t)
x c (t) x cm sin( t ())
稳态输出量与输入量的频率相同,仅振幅和相位不同。
P3
杭州电子科技大学机械设计与车辆工程研究所
机械工程控制基础
第四章 系统的频率特性
U o ( s) 1 G( s) U i ( s) Ts 1
机械工程控制基础
第四章 系统的频率特性
4.1.3 频率特性的物理意义 频率特性与传递函数的关系: G(jω)=G(s)|s=jω 频率特性表征了系统或元件对不同频率正弦 输入的响应特性。
(ω)大于零时称为 相角超前,小于零 时称为相角滞后。
P14
杭州电子科技大学机械设计与车辆工程研究所
机械工程控制基础
L() 20 lg
() 90
L() |1 20lg |1 0
P29
杭州电子科技大学机械设计与车辆工程研究所
机械工程控制基础
第四章 系统的频率特性
纯微分环节幅相频率特性
G ( j) j
| G ( j) |
P16
杭州电子科技大学机械设计与车辆工程研究所
机械工程控制基础
第四章 系统的频率特性
应用频率特性分析系统性能的基本思路:实际施加于控制 系统的周期或非周期信号都可表示成由许多谐波分量组成的 傅立叶级数或用傅立叶积分表示的连续频谱函数,因此根据 控制系统对于正弦谐波函数这类典型信号的响应可以推算出 它在任意周期信号或非周期信号作用下的运动情况。 设f(x)在(-,+)内绝对可积,则f(x)
二阶微分环节
P18
振荡环节
延滞环节
杭州电子科技大学机械设计与车辆工程研究所
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
→∞
0
1
=0
n =1
仅与频率 有关,而且与
阻尼比ξ也有关。 ξ 越小, u 幅频越大。
n =0.5
n =0.3
当ξ 小到一定程度时,幅 频将会出现峰值:
M r A(r )
r为谐振频率
Mr为谐振峰值
r n 1 2 2 0.707
M r A max
2
1
1 2
2 2
7. 二阶微分环节
jv
1 2 l 2 2 2l l 2
i 1
l 1
Q
P
20 lg 20 lg 1 (Tm )2 20 lg
1 2Tn2 2 2nTn 2
m1
n1
系统的幅频特性的Bode图由各典型环节的幅频特性Bode图 相叠加。系统的对数相频特性为
对数相频特性
M
arctan i
i 1
1 arctanT1 arctanT2 2 arctan T1 arctan T2
4.4 控制系统的闭环频率响应
一.系统的频域指标
图示为闭环系统的频域特性 A()
Amax
A(0) 0.707A(0)
O m r
b
b为系统的截止频率,定义为系统的对数幅频特性
下降-3dB(或幅值下降为 A(0) / 2 )时对应的频率。
3) 频率特性有明确的物理意义,很多元件的这一特性都可以用实验 的方法确定,这对难于分析其物理规律来列出微分方程的元部件和 系统,有很重要的工程实际意义。
4) 频率特性分析法不仅适用于线性系统,而且可以推广到某些非线 性系统。
5) 当系统在某些频率范围存在着严重噪声时,应用频率法,可以设 计出能够很好抑制这些噪声的系统。
3. 必要时对近似曲线作适当修正。
4. 分析系统的特性时,利用MATLAB语言的强大功能, 很快地编出MATLAB程序,对系统进行准确的分析。
四. 最小相位系统
在s右半平面既无极点,也无零点的传递函数,称为最小 相位传递函数;否则,称为非最小相位传递函数。
具有最小相位传递函数的系统,称为最小相位系统。
RC网络的幅相曲线绘在s平面上
jv
0 →∞ -45°
0.707
=0 u
=1/T
4.2 频率响应的Nyquist 图
一. 典型环节的Nyquist图
1. 放大环节
频率特性 G j K
jv
幅频特性 A G j K
0
相频特性 G j 0o
K u
2. 积分环节
频率特性
G j
1
1
j( )
e2
对数相频特性
0°
0.1
1
()
2
10
4.一阶惯性环节
频率特性 G j 1
1 jT 对数幅频特性 L() 20lg G( j) 20lg 2T 2 1
对数相频特性 arctanT
低频段,当很小,T<<1时,L()=0dB
高频段,当很大,T>>1时,L()=-20lg(T)
惯性环节的Bode图可用上述低频段与高频段两条渐近线的 折线近似表示,
4.1 频率特性
一.频率特性的基本概念
xi(t)
R
xi(t) t
xo(t) C
RC网络的传递函数为
G(s)
X 0 s Xi s
1 Ts 1
输入信号 xi t Asin t
输出信号
x0
t
1
AT 2T
2
t
eT
A sint arctanT
1 2T 2
系统稳态输出
lim
t
x0
t
A sin t arctan T
对数相频特性
10 10
三.一般系统Bode 图作图方法
对于一般系统
M
N
K
i j 1
2 l
(
j ) 2
2l
j
1
G( j)
i 1
l 1
Q
P
j Tm j 1 Tn2 ( j)2 2Tn j 1
m1
n1
系统的对数幅频特性为
M
L() 20 lg K 20 lg
N
i 2 1 20 lg
0.707
1 =0 u
相频特性 arctanT
=1/T
一阶惯性环节的幅相频率特性曲 线是一个半圆。
5. 一阶微分环节
频率特性 G j Tj 1
幅频特性 A 1 T 2 相频特性 arctan T
∞
jv
↑
2
45° =0
0
1
u
实频特性 U () 1
6. 二阶振荡环节
频率特性
G j
N arctan 2l l
l 1
1
2
2 l
2
Q
m1
arctanTm
P [ arctan 2 nTn
n1
1 2Tn2
]
相频特性的Bode图也是由各典型环节的相频特性Bode图 相叠加。
绘制Bode图的一般步骤
1. 将系统频率特性化为典型环节频率特性的乘积;
2. 根据组成的系统的各典型环节,确定转折频率及相 应斜率,并画近似的幅频折线和相频曲线;
1倍频程 1倍频程
10倍频程
10倍频程
10倍频程
(a)
1
2
3
4
5
6
7
(b)
二.典型环节的 Bode图
1. 放大环节
频率特性 G( j) K L()
对数幅频特性
20lgK
0
L() 20lg A() 20lg K
0.1
1
()
对数相频特性
() 0o
0°
0.1
1
10 10
2.积分环节
频率特性 G( j) 1 j
G
j
X 0 j X i j
频率特性的矢量图
jv
频率特性是一个复数,有三种表示:
V ()
A() ()
G(j) 代数式 G j U jV
极坐标式
0
U() u G( j) G( j) G( j) A()()
指数式
G( j) G( j) e jG( j) A()e j()
A G j U 2 V 2
4.3 频率响应的Bode图(对数坐标图)
幅相频率特性的优点: 在一张图上把频率ω由0到无穷大区间内各个频率
的幅值和相位都表示出来。
缺点: 在幅相频率特性图上,很难看出系统是由哪些环节组成 的,并且绘图较麻烦。
对数频率特性能避免上述缺点,因而在工程上得到广泛 的应用。
一.对数频率特性的坐标
对数幅频特性是对数值20lgA(ω)和频率ω的关系曲线。 对数相频特性是相角φ(ω)和频率ω的关系曲线。
1
j 2T 2 j2T 1
幅频特性 A G j
1
1 2T 2 2 2T 2
A
相频特性
GGjjG1ajrct2aaTnrc21t12a2na1rc222TTtaa2nrc2TT1Tta222n1T122TT2T12TT2
1 T
1 T
jv
振荡环节的 Nyquist曲线不
最小相位系统有一个重要特点:幅频特性和相频特性之 间具有确定的单值对应关系。
例4-8 某两个单位反馈的控制系统的开环传递函数 分别为
G1
(s)
T1 T2
s s
1 1
G2
(s)
T1s 1 T2 s 1
0 T1 T2
试分析系统的Bode图。
解 根据传递函数可得系统的频率特性为
G1
j
T1 T2
第4章 控制系统的频率特性
4.1 频率特性 4.2 频率响应的Nyquist 图 4.3 频率响应的Bode图 4.4 控制系统的闭环频率响应
时域分析法研究系统的各种动态与稳态性 能比较直观、准确
缺点是: 1. 当某些系统工作机理不明了时,数学模型难以确定, 因而无法分析系统性能。
2. 当系统的响应不能满足技术要求时,也不容易确 定应该如何调整系统来获得预期效果。
A( 1
e j(arctanT )
1 2T 2
)e j ()
RC电路的这一特性,对于任何稳定的线性网络都成立
虽然在前面的分析中,设定输入信号是正弦信号,然而频 率特性是系统的固有特性,与输入信号无关, 即当输入为非正弦信号时,系统仍然具有自身的频率特性。
频率特性定义为输出量的Fourier变换与输入量 的Fourier变换之比,即
1 2T 2
定义:
A() A / 1 2T 2
A
1
1 2T 2
稳态输出幅值 输入幅值
RC网络幅 频特性
() arctanT 稳态输出相位 输入相位 RC网络相频特性
1
1 2T 2
arctan T
将s以j 代入RC网络传递函数,即得RC网络频率特性
G( j) 1 1 RCj 1 1 jT
j j
1 1
,
G2
j
T1 j 1 T2 j 1
L()
1
1
()
T2
T1
O
20dB/dec
0° -45°
-90°
1
1
T2
T1
()
0° -90°
-180°
1
1
T2
T1
(a) G1(s)、G2(s)的幅频曲线 (b) G1(s)的相频曲线
(c) G2(s)的相频曲线
两个系统的幅频特性Bode图相同,但相频特性的Bode图不 同。其相频特性为