2015小学五年级数的奇偶性练习题及答案
五年级下册数学试题-奇数和偶数(含答案)沪教版

4.7奇数和偶数所有的整数可以分为两类:奇数和偶數,其中奇数是指那些不能被2整除的整数,例如土1,土3,土5等,而偶数是指那些能被2整除的整数,如0,土2,土4等整数的奇偶性有如下的一些简单性质:(1)偶数土偶数=偶数,偶数土奇数=奇数,奇数土奇数=偶数,奇数土偶数=奇数,(2)偶数x偶数=偶数,奇数x偶数=偶数,奇数x奇数=奇数,(3) 两个整数之和与这两个整数之差的奇偶性相同,(4)两个整数的和或差是偶数,这两个数的奇偶性相同,(5)两个整数的和或差是奇数,这两个数的奇偶性相反.(6)偶数个奇数相加得偶数,奇数个奇数相加得奇数,任意个偶数相加得偶数,(7)奇数连乘积是奇数;连乘中,有一个因数是偶数,积定是偶数,利用整数的奇偶性质,可以成功解决许多数学问题.例题精选:例题1、在黑板上写上1,2,3,...10每次擦去任意两个数,换上这两个数的和或差,重复这样的操作手续若干次,直到黑板上仅留下一个数为止,试问:这个数能否是零?证明你的结论?巩固1、在1,2,3,……2002中的每个数前面添上一个正号或负号,它们的代数和是奇数还是偶数?例题2、能否在下式的格子中适当的填上“+”或“-",使等式成立?若能,请给出一种填法,若不能,请说出理由1口2口3口4口5口6口7口8=9巩固2、下列每个算式中,至少有一个奇数;一个偶数;那么这12个整数中,至少有几个偶数?口+口=口,口—口=口,口x口=口,口÷口=口例题3、如果a,b,c 是三个任意整数,那么a+b2,b+c2,a+c2A、都不是整数B、至少有兩个整数C、至少有一个整数D、都是整数巩固3、用代表整数的字母a、b、c、d写成等式组:a×b×c×d-a= 1991,a×b×c×d-b= 1993,a×b×c×d-c= 1995,a×b×c×d-d=1997.试说明:符合条件的整数a、b、c、d是否存在例题4、参加会议的人,有不少互相握过手,问握手的次数是奇数的那部分人的人数是奇数还是偶数?为什么?巩固4、能否有整数m,n,使得m2 -n2=1998?例题5、一串数排成一行,它们的规律是:前面两个数都是1,从第三个数开始,毎一个数都是前两个数的和.如下所示:1,1,2,3,5,8,13,21,34,55……同:这串数的前100个数(包括第100数)中,有多少个偶数?巩固5、桌上放着七只杯子,杯口全朝上,每次翻转四个杯子,向:能否经过若干次这样的翻动,使全部的杯子口都朝下?习题A1、先求正整数中前10个奇数的和,再求正整数中前n个奇数的和.2、七个连续的奇数的和为399,求这七个数.3、1+2+3+……+2008,,结果是偶数还是奇数?为什么?4、有100个自然数,它们的和是偶数,在这100 个自然数中,奇数的个数比偶数的个数多,问:这些数中至多有多少个偶数?5、有12整卡片,其中3张上面写着1,有3张上面写着3,有3张上面写着5,有3张上面写着7,你能否从中选出五张,使它们上面的数字和为20?为什么?6、有一串数,最前面的四个数依次是1、9、8、7,从第五个数起,每一个数都是它前面相邻四个数之和的个位数字,问:在这一串数字中,会依次出现1、9、8、8这四个数吗?7、用0、1、2、3、... 9十个数字组成5个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能大,问这五个两位数的和是多少?8、任意改变某一个三位数的各位数字的顺序得到一个新数,试证新数与原数之和不能等于999.9、三个连续的偶数之积是一个六位数15* * * 8,求这三个偶数.10、求证;四个连续奇数的和一定是8的倍数4.7奇数和偶数(答案)所有的整数可以分为两类:奇数和偶数,其中奇数是指那些不能被2整除的整数,例如土1,土3,土5等,而偶数是指那些能被2整除的整数,如0,土2,土4等整数的奇偶性有如下的一些简单性质:(1)偶数土偶数=偶数,偶数土奇数=奇数,奇数土奇数=偶数,奇数土偶数=奇数,(2)偶数x偶数=偶数,奇数x偶数=偶数,奇数x奇数=奇数,(3)两个整数之和与这两个整数之差的奇偶性相同,(4)两个整数的和或差是偶数,这两个数的奇偶性相同,(5)两个整数的和或差是奇数,这两个数的奇偶性相反.(6)偶数个奇数相加得偶数,奇数个奇数相加得奇数,任意个偶数相加得偶数,(7)奇数连乘积是奇数;连乘中,有一个因数是偶数,积定是偶数,利用整数的奇偶性质,可以成功解决许多数学问题.例题1、在黑板上写上1,2,3,…,10,每次擦去任意两个数,换上这两个数的和或差,重复这样的操作手续若干次,直到黑板上仅留下一个数为止,试问:这个数能否是零?证明你的结论?解答:不可能.1.如果擦去的是两个是偶数,则这两个数的和或差仍是偶数,得到新的数组仍是奇数;2.如果擦去的是两个是奇数,则这个数的和或差则是偶数,得到新的数组仍是奇数;3.如果擦去的是一个偶数一个奇数,则这个数的和或差则是奇数,得到新的数组仍是奇数.所以最后得到数一定还是奇数.巩固1、在1,2,3,…,2002中的每个数前面添上一个正号或负号,他们的代数和是奇数还是偶数?解答:因为两个整数的和与差的奇偶性相同,所以在1,2,3,…,2002中每个数前面添上正号或负号,其代数和应与1+2+3+…+2002的奇偶性相同,而1+2+3+⋯+2002=1 2(1+2+3+⋯+2002)=12(1+2002)×2002=2003×1001为奇数,所以所求代数和也为奇数.例题2、能否在下式的格子中适当的填上“+”或“-”,使等式成立?若能,请给出一种填法,若不能,请说明理由.1□2□3□4□5□6□7□8=9不能巩固2、下列每个算式中,至少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?□+□=□,□-□=□,□×□=□,□÷□=□解答:要是最少的偶数,所以加法中必然会有一个偶数;乘法中若要保证至少有一个奇数,则必须有两个偶数;减法中必然会有一个偶数;除法中至少有两个偶数,所以这些式子中至少有6个偶数.例题3、如果a,b,c,是三个任意整数,那么a+b2,b+c2,a+c2A、都不是整数B、至少有两个是整数C、至少有一个整数D、都是整数解答:1.假设a,b,c都是偶数或都是奇数,则a+b,b+c,a+c都是偶数那么a+b2,b+c2,a+c2都是整数;2.假设a,b,c中有两个是偶数,一个是奇数,那么a+b2,b+c2,a+c2有一个是整数;3.假设a,b,c中有一个是偶数,两个是奇数,那么a+b2,b+c2,a+c2有一个是整数;综上所述:a+b2,b+c2,a+c2至少有一个是整数.所以选C巩固3、巩固3、用代表整数的字母a、b、c、d写成等式组:a×b×c×d-a= 1991,a×b×c ×d-b= 1993,a×b×c×d-c= 1995,a×b×c×d-d=1997.试说明:符合条件的整数a、b、c、d是否存在解答:用代表整数的字母a,b,c,d写成等式组:a×b×c×d-a=1991a×b×c×d-b=1993a×b×c×d-c=1995a×b×c×d-d=1997试说明符合条件的整数a,b,c,d是否存在.解答:由原题等式组可知:a(bcd-1)=1991b(acd-1)=1993c(abd-1)=1995d(abc-1)=1997因为1991,1993,1995,1997均为奇数,且只有奇数×奇数=奇数所以a分别为奇数.所以a×b×c×d=奇数所以a,b,c,d的乘积分别减去a,b,c,d后一定为偶数.这与原等式组矛盾.所以不存在满足题设等式组的整数a,b,c,d例题4、参加会议的人,有不少互相握过手,问握手的次数是奇数的那部分人的人数是奇数还是偶数?为什么?解答:偶数.每人相互握手一次,当握奇数次手时,说明其它人数有奇数个,加上自己,那么总人数就是偶数个.巩固4、能否有整数m,n,使得m2−n2=1998?解答:m2−n2=1998(m+n)(m-n)=1998则m+n,m-n的奇偶性必相同,即:①m+n,m-n同为奇数,乘积为奇数,与1998矛盾;②m+n,m-n同为偶数,乘积能被4整除,与1998被4除余2矛盾综上所述:必不存在整数m,n,使得m2−n2=1998例题5、一串数排成一行,它们的规律是:前面两个数都是1,从第三个数开始,毎一个数都是前两个数的和.如下所示:1,1,2,3,5,8,13,21,34,55……同:这串数的前100个数(包括第100数)中,有多少个偶数?解答:从数列中可以得到规律每两个奇数之后为一个偶数,其中前100个数中偶数的个数为100÷3=33…1,故这串数前100个数中有33个偶数.巩固5、桌上放着七只杯子,杯口全朝上,每次翻转四个杯子,问:能否经过若干次这样的翻动,使全部的杯子杯口都朝下?答案:不能.我们将向上的杯子记为0,向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个数之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.习题A1、先求正整数中前10个奇数的和,再求正整数中前n个奇数的和.答案:100,n2.2、七个连续的奇数的和为399,求这七个数.答案:51,53,55,57,59,61,63;这七个数的平均数为中间的数,因为平均数为57,所以可得这七个数.3、1+2+3+……+2008,,结果是偶数还是奇数?为什么?答案:偶数4、有100个自然数,它们的和是偶数,在这100 个自然数中,奇数的个数比偶数的个数多,问:这些数中至多有多少个偶数?答案:根据数的奇偶性可知,100个自然数,奇数的个数比偶数的个数多,那么奇数最少有51个,偶数有49个,但由于51个奇数的和为奇数,再加上49个偶数100个自然数的和是奇数,所以100个自然数中必须有偶数个奇数,又由于奇数比偶数多,因此偶数最多只有48个.5、有12整卡片,其中3张上面写着1,有3张上面写着3,有3张上面写着5,有3张上面写着7,你能否从中选出五张,使它们上面的数字和为20?为什么?答案:不能,因为1,3,5,7都是奇数,5个奇数的和还是奇数,不能得到偶数20.6、有一串数,最前面的四个数依次是1、9、8、7,从第五个数起,每一个数都是它前面相邻四个数之和的个位数字,问:在这一串数字中,会依次出现1、9、8、8这四个数吗?答案:不会7、用0、1、2、3、... 9十个数字组成5个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能大,问这五个两位数的和是多少?答案:(4+6+7+8+9)×10+(0+1+2+3+5)=3518、任意改变某一个三位数的各位数字的顺序得到一个新数,试证新数与原数之和不能等于999.答案:令该数为ABC,则:1、全为奇数−−结果3位均为偶数;2、全为偶数−−结果3位均为偶数;3、AB奇,C偶−−A,B必须全与偶数相加才能都为奇数,不成立;4、AB偶,C奇−−A,B必须全与奇数相加才能都为奇数,不成立;故新数与原数之和不能等于999.9、三个连续偶数之积是一个六位数15***8,求这三个偶数.答案:连续偶数的末位数的乘积有规律,末位为8的数只能由末位为2、4、6的连续偶数相乘得到.由于这是个六位数,所以这3个数都是两位数.因为某数的立方的第一个数是1,所以十位数是5,即这三个数是52、54、56.10、求证:四个连续奇数的和一定是8的倍数.答案: 设最小的奇数为2n-1(n是正整数),后面三个依次是2n+1,2n+3,2n+5.四个数的和为:(2n-1)+(2n+1)+(2n+3)+(2n+5),=8n+8,=8(n+1).所以是8的倍数.。
小学五年级奥数精讲:《奇偶性》习题及答案

小学五年级奥数精讲:《奇偶性》习题及答案小学五年级奥数精讲:《奇偶性》题及其答案一、知识总结:整数按照能不能被2整除,可以分为两类:(1)能被2整除的自然数叫偶数,例如,2,4,6,8,10,12,14,16,…(2)不能被2整除的自然数叫奇数,例如1,3,5,7,9,11,13,15,17,…整数由小到大排列,奇、偶数是交替出现的。
相邻两个整数大小相差1,所以肯定是一奇一偶。
因为偶数能被2整除,所以偶数可以表示为2n的形式,其中n为整数;因为奇数不能被2整除,所以奇数可以表示为2n+1的形式,其中n为整数。
每一个整数不是奇数就是偶数,这个属性叫做这个数的奇偶性。
奇偶数有如下一些重要性质:(1)两个奇偶性相同的数的和(或差)一定是偶数;两个奇偶性不同的数的和(或差)一定是奇数。
反过来,两个数的和(或差)是偶数,这两个数奇偶性相同;两个数的和(或差)是奇数,这两个数肯定是一奇一偶。
(2)奇数个奇数的和(或差)是奇数;偶数个奇数的和(或差)是偶数。
任意多个偶数的和(或差)是偶数。
(3)两个奇数的乘积是奇数,一个奇数与一个偶数的乘积一定是偶数。
(4)若干个数相乘,如果其中有一个因数是偶数,那么积必是偶数;如果所有因数都是奇数,那么积就是奇数。
反过来,如果若干个数的积是偶数,那么因数中至少有一个是偶数;如果若干个数的积是奇数,那么所有的因数都是奇数。
(5)在能整除的情况下,偶数除以奇数得偶数;偶数除以偶数可能得偶数,也可能得奇数。
奇数一定不克不及被偶数整除。
(6)偶数的平方能被4整除;奇数的平方除以4的余数是1。
因为(2n)2=4n2=4×n2,所以(2n)2能被4整除;因为(2n+1)2=4n2+4n+1=4×(n2+n)+1,所以(2n+1)2除以4余1。
(7)相邻两个自然数的乘积必是偶数,其和必是奇数。
(8)如果一个整数有奇数个约数(包孕1和这个数自己),那末这个数一定是平方数;如果一个整数有偶数个约数,那末这个数一定不是平方数。
五年级下学期奇数与偶数针对性训练题带答案

9.任意五个连续自然数(0除外)的和一定是(B)
A.2的倍数B.5的倍数C.奇数D.质数
10.一个两位数,个位数字既是偶数乂是质数,十位数字既不是质数乂不是合数,则这 个两位数是(C)
A.32B.16C.12D.14
三、判断。
1、 个位是中最大的数是9.(V)
2、 最小的自然数是1。(X)
1-100中共有50个奇数和50个偶数
50个奇数的和是偶数
50个偶数的和是偶数
总体的和也是偶数
3、将32个苹果分给3个小朋友,要求每个小朋友手里的苹果是偶数,可能做到吗?不能,因为奇数+奇数+奇数二奇数,而32是一个偶数,所以做不到。
4、把35辆车停到4个停车场,要求每个停车场里的汽车数为奇数,能做到吗?不能,奇数+奇数+奇数+奇数二偶数,而25是一个奇数,所以不能做到。
6.两个连续自然数的积一定是()。
A.偶数B.奇数C质数
7.三个奇数的和乘偶数,积是( )。
A.奇数B.偶数C奇数或偶数
8.下面说法中正确的有( )个。
A、两个奇数的和是奇数B、两个偶数的和是偶数C、两个质数的和是质
数D、两个合数的和是合数.
A.1B.2C.3D.4
9.任意五个连续自然数(0除外)的和一定是()
偶数,原因如下:
假设答对了x题,答错了y题,那么不答的题目就是(10-x-y)
一共得分:9x~3y+ (10-x-y) =8x~4y+10
8x一定是一个偶数,4y一定是一个偶数,10也是一个偶数
所以所有的学生的得分都是偶数。
11、 一次数学考试共有20道题。评分标准是:答对一道给3分,没答的题每题给1分,答 错一道扣1分,问所有考试学生的得分总和是奇数还是偶数?
小学数学五年级《奇偶分析法》练习题(含答案)

《奇偶分析法》练习题(含答案)内容概述奇数和偶数的概念:整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数(双数),不能被2整除的数叫做奇数(单数).奇数和偶数的表示方法:因为偶数是2的倍数,所以通常用2k这个式子来表示偶数(这里k是整数);因为任何奇数除以2其余数总是1,所以通常用式子2k+1来表示奇数(这里k是整数). 特别注意,因为0能被2整除,所以0是偶数.最小的奇数是1,最小的偶数是0.奇数与偶数的运算性质:性质1:偶数±偶数=偶数奇数±奇数=偶数偶数±奇数=奇数同性质(指奇偶性)两数加减得偶,不同性质得奇.性质2:偶数×奇数=偶数(推广开来我们还可以得到:偶数个奇数相加得偶数)偶数×偶数Ľ偶数(推广开就是:偶数个偶数相加得偶数)奇数×奇数=奇数(推广开就是:奇数个奇数相加得奇数)对于乘法,见偶就得偶.性质3 :任何一个奇数一定不等于任何一个偶数.你还记得吗【复习1】从3开始,依据后一数是前一数加上3,写出2000个数排成一行:3,6,9,12,15,18,21,……在这行数中第1991个数是奇数还是偶数?分析:由于奇数+奇数=偶数,偶数+奇数=奇数. 3是奇数,所以,每个数加上3后,奇偶性与原来相反,也就是说,在3,6,9,12,……中,每一个数与前一个数的奇偶性不同. 这行数的第一个数是奇数,并且是奇偶相间,由此可知,这行数的奇偶性与其序数的奇偶性相同.所以第1991个数是奇数. 由此可以得到以下一条性质:加上(或减去)一个偶数,奇偶性不变,而加上(或减去)一个奇数,奇偶性改变.【复习2】7只杯子口均向上,每次操作翻动四只杯子,使其杯口朝向改变,能否经过有限次操作,使7只杯子口均向下?分析:我们可以从两个角度来考虑所有杯子被翻动次数的总和:一是每次操作计4次,,z 次操作共计4z次,为一偶数;二是看杯子状态,每只杯子由“口向上”变为“口向下”,需奇数次翻动,7只杯子翻动次数总和必为奇数.这样,奇≠偶,因此结论是不能.【复习3】某班同学参加学校的数学竞赛,试题共50道,评分标准是:答对一道给3分,不答给1分,答错倒扣1分.请你说明:该班同学的得分总和一定是偶数.分析:对于一名参赛同学来说,如果他全部答对,他的成绩将是3×50=150,是偶数;有一道题未答,则他将丢2分,也是偶数;答错一道题,则他将丢4分,还是偶数;所以不论这位同学答的情况如何,他的成绩将是150减一个偶数,还将是偶数.所以,全班同学得分总和一定是偶数.【复习4】在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来,填在这个方格中,例如a=5+3=8,问:填入的81个数中,奇数多还是偶数多?多多少?分析:每两个相邻的方格,所填的数一奇一偶,将第一行的每个方格与它下面的相邻方格配对,可见第一、二行中奇数与偶数正好一样多.同理,前八行中奇数与偶数一样多.第九行的前八个方格也可两两配对,每对相邻的方格中的数一奇一偶,所以这八格中的奇数偶数也一样多.最后,第九行,第九列有一个方格填18(=9+9),所以81个数中,偶数恰好比奇数多1个.例题精讲【例1】师傅与徒弟加工同一种零件,各人把产品放在自己的箩筐里,师傅的产量是徒弟的2倍,师傅的产品放在4只箩筐中,徒弟的产品放在2只箩筐中,每只箩筐都标明了产品的只数:78只,94只,86只,87只,82只,80只.根据上面的条件,你能找出哪两只筐的产品是徒弟制造的吗?分析:注意到6个标数只有一个为奇数,它肯定是徒弟制造的.原因很简单:师傅的产量是徒弟的2倍,一定是偶数,它是4只箩筐中产品数的和,在题目条件下只能为四个偶数的和.徒弟的另一筐侧品就得通过以下计算来确定:利用求解“和倍问题”的方法,求出徒弟加工零件总数为:(78+94+86+87+82+80)÷(2+1)=169,那另一筐放有产品169-87=82(只).所以,标明“82只”和“87只”这两筐中的产品是徒弟制造的.【前铺】某电影院共有2003个座位.有一天,这家电影院上、下午各演一场电影,看电影的是A、B两所中学的各2003名师生.同一学校的学生有的看上午场,有的看下午场,但每人恰看一场,有人断言:“这天看电影时,肯定有的座位上、下午坐的是两所不同学校的师生.”你认为这种断言正确吗?为什么?分析:此题读来费神,但仔细一想,道理却很简单.如果每个座位上、下午坐的都是同一所学校的,那么这所学校的人数就等于上午本校看电影人数的2倍,肯定为偶数,这就与人数为奇数2003矛盾.所以题中断言是正确的.【例2】把下图中的圆圈任意涂上红色或蓝色。
数的奇偶性练习题

数的奇偶性练习题数的奇偶性是数学中一个基础而重要的概念,它指的是一个整数能否被2整除。
奇数不能被2整除,而偶数则可以。
以下是一些关于数的奇偶性的练习题:1. 判断下列各数是奇数还是偶数:- 37- 92- 45- 1022. 如果一个数的个位数字是偶数,这个数是奇数还是偶数?请举例说明。
3. 一个数的十位数字是奇数,个位数字是偶数,这个数是奇数还是偶数?请举例说明。
4. 两个奇数相加的和是奇数还是偶数?请用数学表达式表示,并给出证明。
5. 两个偶数相加的和是奇数还是偶数?请用数学表达式表示,并给出证明。
6. 一个奇数和一个偶数相加的和是奇数还是偶数?请用数学表达式表示,并给出证明。
7. 两个奇数相乘的积是奇数还是偶数?请用数学表达式表示,并给出证明。
8. 两个偶数相乘的积是奇数还是偶数?请用数学表达式表示,并给出证明。
9. 一个奇数和一个偶数相乘的积是奇数还是偶数?请用数学表达式表示,并给出证明。
10. 如果一个数的各位数字之和是偶数,这个数本身是奇数还是偶数?请给出理由。
11. 请找出100以内的所有奇数,并计算它们的和。
12. 请找出100以内的所有偶数,并计算它们的和。
13. 一个数列,其中每个数都是前一个数的两倍加1,如果第一个数是奇数,这个数列的第10项是奇数还是偶数?14. 一个数列,其中每个数都是前一个数的两倍减1,如果第一个数是偶数,这个数列的第10项是奇数还是偶数?15. 证明:如果一个整数n是偶数,那么n的平方也是偶数。
16. 证明:如果两个整数m和n都是偶数,那么它们的和m+n也是偶数。
17. 证明:如果两个整数m和n都是奇数,那么它们的和m+n是偶数。
18. 证明:如果一个整数m是奇数,另一个整数n是偶数,那么它们的和m+n是奇数。
19. 证明:如果一个整数n是偶数,那么n的任何正整数次幂也是偶数。
20. 证明:如果一个整数n是奇数,那么n的任何正整数次幂也是奇数。
这些练习题旨在帮助学生理解奇数和偶数的性质,并通过实际问题来加深对这些概念的理解。
小学数学五年级《奇数与偶数》练习题(含答案)

小学数学五年级《奇数与偶数》练习题(含答案)《奇数与偶数》练习题(含答案)①偶数±偶书=偶数;偶数±奇数=奇数;奇数±偶数=奇数;奇数±奇数=偶数.②偶书×偶数=偶数;偶数×奇数=偶数;奇数×偶数=偶数;奇数×奇数=奇数.③偶数个偶数相加减还是偶数;偶数个奇数相加减也是偶数;奇数个偶数相加减还是偶数;奇数个奇数相加减还是奇数;【例1】(★)能否从、四个3,三个5,两个7中选出5个数,使这5个数的和等于28.分析:因为3,5,7都是奇数,而且5个奇数的和还是奇数,不可能等于偶数22,所以不能.[巩固]:能否从1、3、5、7、9、11、13、15这8个数中选出3个数来,使它们的和为24?分析:不能,奇数个奇数相加的和为奇数不可能为偶数.【例2】是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=27043?分析:不存在.如果(a-b)、(b-c)中有一个偶数则原式不成立,如果(a-b)、(b-c)为奇数,那么a-c=(a-b)+(b-c)为偶数还是不成立.[拓展]是否存在自然数a、b、c,使得(5a-3b)(5b-3c)(25a-9c)=36342?分析:不存在,(25a-9c)=5(5a-3b)+3(5b-3c),所以如果(5a-3b)、(5b-3c)为奇数,那么(25a-9c)为偶数,所以(5a-3b)、(5b-3c)、(25a-9c)三个数中不可能都是奇数,所以不存在符合条件的a、b、c.[拓展]是否存在自然数a、b、c、d,使得(a-b)(b-c)(c-d)(a-d)=36342?分析:不存在.因为(a-d)=(a-b)+(b-c)+(c-d),所以如果(a-b)、(b-c)、(c-d)、(a-d)这四个数中有三个数是奇数,那么第四个数一定也是奇数,所以(a-b)、(b-c)、(c-d)、(a-d)中偶数不可能单独出现,所以这四个数的积要么是4的倍数,要么是奇数,而36342既不是4的倍数,也不是奇数,所以不可能存在自然数a、b、c、d使等式成立.【例3】(★★★)用代表整数的字母a、b、c、d写成等式组:a×b×c×d-a=2001a×b×c×d-b=2003a×b×c×d-c=2005a×b×c×d-d=2007试说明:符合条件的整数a、b、c、d是否存在.分析:a、b、c、d中如果有一个偶数,那么以偶数作为减数的等式等号左边值应该为偶数,与右边的奇数出现矛盾,如果a、b、c、d 都是奇数,那么四条式子的等号左边都是偶数,四条等式都不成立.【例4】(★★★)(圣彼得堡数学奥林匹克)沿着河岸长着8丛植物,相邻两丛植物上所结的浆果数目相差1个.问:8丛植物上能否一共结有225个浆果?说明理由.分析:任何相邻两丛植物上所结的浆果数目相差1个,所以任何相邻两丛植物上所结浆果数目和都是奇数.这样一来,8丛植物上所结的浆果总数是4个奇数之和,必为偶数,所以不可能结有225个浆果.[拓展] 能否将1~16这16个自然数填入4×4的方格表中(每个小方格只填一个数),使得各行之和及各列之和恰好是8个连续的自然数?如果能填,请给出一种填法;如果不能填,请说明理由.分析:不能.将所有的行和与列和相加,所得之和为4×4的方格表中所有数之和的2倍.即为(1+2+3+…+15×16)×2=16×17.而8个连续的自然数之和设为k+(k+1)+(k+2)+(k+3)+(k+4)+(k+5)+(k+6)+(k+7)=8k+28若4×4方格表中各行之和及各列之和恰好是8个连续的自然数,应有8k+28=16×17,即2k+7=4×17 ①显然①式左端为奇数,右端为偶数,得出矛盾.所以不能实现题设要求的填数法.【例5】(★★★)有7只正立的茶杯,要求全部翻过来.规定每次翻动其中6只.试问此事能否办成?若茶杯是10只,每次只翻动7只,又能否把正立的茶杯全部翻过来?分析:(1)每一次操作都只能改变偶数个茶杯的放置状态,被翻过来的茶杯永远是偶数,所以不能将所有正立的茶杯翻过来.(2)能,将10个杯子编号后,分四次将所有杯子全部翻过来.第一次翻编号为1、2、3、7、8、9、10的杯子,第二次翻编号为4、5、6、7、8、9、10的杯子,第三次翻编号为1、2、3、4、5、7、8的杯子,第三次翻编号为1、2、3、4、5、9、10的杯子.[拓展] 有7面时钟,都指向12点,现在做一些操作,每次将其中六面钟往前或往后拨6小时,那么是否有可能将这7面钟都归于6点?分析:这道题与原题无任何区别,过渡到下一拓展.[拓展]有9面时钟,其中有3面指向12点,有三面指向3点,另外三面指向6点,现在做一些操作,每次将其中两面钟往前或往后拨3小时,那么是否有可能将这9面钟都归于6点?分析:不可能,不妨将一面种往前或往后拨3小时称为一个操作,那么将这9面钟归于6点,需要经过奇数个操作,但是,每次都要进行两个操作,因此不可能经过若干次偶数个操作完成技术个操作.【例6】(★★★奥数网原创)36盏灯排成6×6的方阵,这36盏灯中只有9盏灯是亮着的,现在作一些。
小学五年级数的奇偶性练习题
小学五年级数的奇偶性练习题一、选择题1. 下列哪个数是偶数?A. 5B. 8C. 11D. 132. 用两个偶数相加,结果一定是偶数。
A. 对B. 错3. 一个数除以2的余数如果是1,那么这个数是奇数。
A. 对B. 错4. 下列哪个数是奇数?A. 12B. 17C. 20D. 24二、填空题1. 用两个奇数相加,结果一定是__________。
2. 用奇数减去偶数,结果一定是__________。
3. 用偶数乘以偶数,结果一定是__________。
4. 如果一个数的个位数是4,那么这个数是__________。
三、判断题判断下列说法是否正确,正确的用“√”表示,错误的用“×”表示。
1. 一个数除以2的余数如果是0,那么这个数一定是偶数。
2. 一个数除以2的余数如果是1,那么这个数一定是奇数。
3. 两个奇数相乘的积一定是奇数。
4. 两个偶数相乘的积一定是偶数。
四、解答题1. 请写出5个连续的奇数。
2. 请写出5个连续的偶数。
3. 请你判断下列每个数是奇数还是偶数,并解释你的判断依据。
a) 37b) 48c) 53d) 62五、应用题小明在一个数列中,他把数列中的每个数都乘以2。
原来的第一个数是5,现在的第一个数是多少?原来的第二个数是12,现在的第二个数是多少?你能找出这个规律吗?六、综合题小华有一行数,第一个数是3,后面的每个数都是前一个数加上2。
请你判断以下每个数是奇数还是偶数,并写出你的判断过程。
3、5、7、9、11、13、15、17注意:对于解答题,请用完整的解题思路和答案。
奇偶性五年级练习题
奇偶性五年级练习题
奇偶性是数学中的一个基本概念,通常指的是一个数是奇数还是偶数。
奇数是不能被2整除的整数,而偶数则是能被2整除的整数。
以下是
一些适合五年级学生的奇偶性练习题:
1. 奇偶性判断题:
- 判断下列数中哪些是奇数,哪些是偶数。
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
2. 奇偶性计算题:
- 计算下列各数的和,判断其结果是奇数还是偶数。
- 3 + 5
- 7 + 8
- 2 + 4 + 6
3. 奇偶性应用题:
- 一个班级有40名学生,如果每两人一组,可以分成多少组?剩
下的学生数是奇数还是偶数?
4. 奇偶性推理题:
- 一个数加上2后是偶数,这个数是奇数还是偶数?
5. 奇偶性规律题:
- 观察下列数列的奇偶性规律:1, 3, 5, 7, 9, 11... 这个数列
的下一个数是什么?
6. 奇偶性混合运算题:
- 如果一个数是奇数,那么这个数乘以3后,结果是什么数?
7. 奇偶性排序题:
- 将下列数按照奇数和偶数分开排序。
- 15, 16, 17, 18, 19, 20
8. 奇偶性填空题:
- 在下列数列中填入适当的数,使得数列中奇数和偶数的数量相等。
- 2, 4, 6, __, __, 14, 16
9. 奇偶性图形题:
- 如果一个正方形的边长是奇数,那么这个正方形的周长是什么数?
10. 奇偶性逻辑题:
- 如果一个数的平方是偶数,那么这个数本身是奇数还是偶数?
这些练习题旨在帮助学生理解和掌握奇偶性的概念,同时通过不同的
题型锻炼他们的逻辑思维和计算能力。
小学数学奇偶性练习题及答案
小学数学奇偶性练习题及答案一、填空题(每个空格中填入一个数)1. 根据奇偶性填空:a) 1234 × 5678 = _______ (偶数)b) 9876 × 5432 = _______ (偶数)c) 1357 × 2468 = _______ (偶数)2. 判断下列各数是奇数还是偶数:a) 5891 (奇数)b) 7842 (偶数)c) 3689 (奇数)d) 2754 (偶数)3. 在一个运算表达式中,如果每个运算因子都是偶数,那么结果一定是_________ (偶数/奇数)。
4. 把 5382 和 1357 这两个数相乘,结果是_________ (偶数/奇数)。
5. 一个数如果能被 3 整除,那么它一定是_________ (偶数/奇数)。
二、选择题1. 下列哪些数是偶数?a) 3754b) 9243c) 6518d) 5687A) a, cB) a, b, cC) b, c, dD) a, b, c, d2. 下列哪些数是奇数?a) 9854b) 2673c) 1468d) 5792A) b, dB) a, bC) b, c, dD) a, b, c, d三、计算题1. 已知一个数是奇数,那么它的下一个数是_________。
2. 求 789 × 24 的奇偶性,并给出解释。
3. 将任意两个奇数相乘,结果一定是_________ (奇数/偶数)。
四、解析题小明在写一个5位数,百位数与个位数之差是偶数,十位数与个位数之和是奇数,千位数与个位数之积是偶数。
请分别问千位和个位数可能是什么数。
解答思路:设5位数为 abcde,根据题意列出方程:a - e = 偶数(1)c + e = 奇数(2)a × e = 偶数(3)从(1)可以得出 a 和 e 的奇偶性,结合(3)可以推导出 a 和 e 的取值范围;同理从(2)可以得出 c 和 e 的奇偶性,结合(3)可以推导出 c 和 e 的取值范围。
2015小学五年级数的奇偶性练习题及答案
2015小学五年级数的奇偶性练习题及答案基础作业不夯实基础,难建成高楼。
1. 小玲和小平打羽毛球,小玲发球,假如2分钟内两人接球没有间断。
(1)完成下面的表格。
接球顺序接球人第1次小平第2次第3次……第40次第41次(2)第10次接球的是小玲还是小平?()(3)第29次接球的是小平,对吗?()2. 填一填。
(1)如果用n表示自然数,那么2n一定是()数,2n+1一定是()数。
(2)任意两个奇数的和是()数,差是()数,积是()数。
(3)任意两个偶数的和是()数,差是()数,积是()数。
(4)任意一个奇数和一个偶数的和是()数,积是()数。
3. 晚上要开电灯,淘气一连按了7下开关。
请你说说这时灯是开的?还是关的?如果按16下呢?4. 翻硬币游戏。
综合提升重点难点,一网打尽。
5. 猜一猜,算一算。
下面几道题的结果是奇数还是偶数?2567+345 ( )8758-999 ( )2+4+8+10+12+……+98+100 ( )1+2+3+4+……+99+100 ( )6. 张云按一定的规律画图形(如下图)。
☆☆□☆☆△☆☆□☆☆△……(1)第3个图形是();第5个图形是();第15个图形是();第25个是()。
(2)图形所在位置是3的奇数倍数的是()形,图形所在位置是3的偶数倍数的是()形。
7. 选卡片游戏。
有15张卡片,其中有3张写着1,有3张写着2,有5张写着3,有4张写着4。
(1)从中选出两张,这两张的和是偶数,这两张卡片上可能写着什么?(2)从中选出两张,这两张的和是奇数,这两张卡片上可能写着什么?(3) 从中选出两张,这两张的差是奇数,这两张卡片上可能写着什么?拓展探究举一反三,应用创新,方能一显身手。
8.按要求填数。
(1)和为奇数265+37□,□里可填()。
28□+268,□里可填()。
(2)和为偶数265+37□,□里可填()。
28□+268,□里可填()。
9.三个杯子,杯口全部朝上放在桌上。