测度与概率(第2版)第一章部分作业

合集下载

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。

在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。

2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。

–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。

–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。

1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。

–基本事件:对于只包含一个样本点的事件,称为基本事件。

–复合事件:由一个或多个基本事件组成的事件称为复合事件。

2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。

随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。

–连续型随机变量:其取值在某个区间内的任意一个值。

1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。

如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。

–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。

2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。

–交:事件A和事件B同时发生,记作A∩B。

–差:事件A发生而事件B不发生,记作A-B。

第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。

–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。

2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。

高等概率论

高等概率论

高等概率论第一章:测度与积分第一节:集族与测度(Ω,Φ,μ)---------测度空间①Ω---------------非空集合-------------研究对象全体②Φ----------------σ代数(域)-------由Ω的一些子集组成σ代数对集合的一切有限次或可数次运算封闭Φ{,}φ=Ω-------------平凡的σ代数③μ:Φ+→R ([0,1])集函数(是Ω的元素的一种测度或度量)例:Ω=[0,1].(a,b]?Ω,((,])a b b a μ- ,I 是Ω的子集,I 为区间,()I μ=I 的长度,Φ=B ([0,1])=()σε--------包含ε的最小σ代数,[0,1]ε=中的一切开集测度的唯一扩张定理,{:()}n x x ωξω?∈≤∈R Φ 称ξ是可测函数({})a b μξξ<≤---的分布①..()lim ()n x a e μξωμ→∞几乎处处收敛依测度收敛依分布收敛(弱收敛)②ξ是一维可测函数,积分ξωμωΩ()d ()-------数学期望积分的收敛性---------Lebesgue 控制收敛定理lim ()?lim ()n n x x d d ξωμξωμ→∞→∞ΩΩ=??Fatou 引理,Levy 引理记号、述语:大写英文字母表示Ω的子集(事件)花写英文字母表示Ω的子集组成的集合类(集类,集族)AαBβXχ?δEεΦφΓγHηIι??KκΛλMμNνOο∏πΘθPρ∑σTτYυ??ΩωΞξψψZζ 某集类对某种运算封闭:如A 对可数并封闭指:对?A1,A2,…A n ∈A ,则1i ∞=A i ∈A第二节:集族与测度1. 集合序列的极限设1,2,...,,...,A A An ?Ω111limsup {:}{,,...,}x K k k K k n kAn n An X A A Anωω→∞∞+=∞∞==∈Ω?∈== 可数个不同的,使至少一个发生111lim inf {:}{,,...,}x k k k k n kAn n An A A Anωω→∞∞+=∞∞==∈Ω∈== 除有限个以外,都发生关系:lim inf lim sup n n An An →∞→∞如果lim inf lim sup n n An An →∞→∞=,称{}An 的极限存在,记为lim x An →∞特例:单调上升集合列:121,lim n n A A An An ∞→∞=?=单调下降集合列:121,lim n n A A An An ∞→∞=?=例:A,B 是Ω的两个子集,221,,1,2,n n A A A B n -=== ,则lim sup ,lim inf n n An A B An A B →∞→∞==11((1),1(1))nn An n n=-+-,则lim sup [0,1],lim inf (0,1)n n An An →∞→∞==11(,1)(0,1)2211(,1)(0,1)22n n n n An Bn =-↑=-+↓2几种常用集类的定义:①A 称为一个π类:如果A 对有限交封闭②?称为一个λ类:如果:(a).ω∈ ?;(b). ?对真差封闭:若,A B ∈?,且A B ?,则B A -∈? (c )?对单调上升(下降)集合列的极限封闭③环A :如果A 对有限并、差运算封闭(交:()A B A A B =-- )④代数Φ:如果Φ是环,且Ω∈Φ0(代数对一切有限次运算封闭)⑤σ环A :如果A 对可数并、差运算封闭(?可数交封闭,极限运算封闭)⑥σ代数(域)Φ:如果Φ是σ环,且Ω∈Φ(σ代数对一切可数次集合运算封闭)⑦单调族M :如果M 对单调上升(下降)列的极限封闭,即:如果An ∈M ,且An ↑,则1n An ∞=∈ M如果An ∈M ,且An ↓,则1n An ∞=∈ M代数、且又是单调族σ?代数π类、且又是λ类σ?代数A 是任意集类,分别称λ()A ,σ()A ,M (A )是由A 生成的最小λ类,最小σ代数,最小单调类。

概率论与数理统计(第二版)徐全智课后习题第一章

概率论与数理统计(第二版)徐全智课后习题第一章

概率论与数理统计(第二版)徐全智课后习题答案第一章 -设&瓦C 均牺机试鉴的三个隠[机审仲‘區特卜列事件用£比匚舉示出*<B仅仅丿笈生* <2)所有三G 夢件郁览生”(3)川坪甘均发生;.Q 不发主; ⑷至少有-个豪杵发生匚<5)至少有两"件St%⑹愴材-片艸建鉴 (7>恰有葫个事件发生*(3>没青~亍事件发主t (9)不寧于厲个事杵发生. ABC ; (2) AHC^ ⑶ ABC x (4)J|J5UC : {5}AB\J BCV ) AC ■.同时掷二颗戦子,记录三额锻子的点數之和’ 将一枚越币抛三欢・观索出现正反面的齐幷印能结杲” 对一目标进行射击,且到击中坟执%止,记氓射击杓按数: 将一单位怅的线段分为三段*舰蔡齐段的KZJ?-从分別标有号1+ 2.…、10的106球中任意収两球.记隶坪的号码.讯 Cl )门・嘔乳….1B};⑵{HHH, HH7, HTH, HTf. THH. TTH t THT, 777 } F(3) {5.6J/ - )j {4} {{耐”科;jr A Oj A Qz a 0,算* y 屮工.1 };•将12个螺fiiU/l 地放入20介盒子*试球毎牛盒子中的球不參丁T 个的枢率,杯 设只/)衰式所求的槪程 鮒 戶(/}=聲里理M ⑷乩20 3*-檸1°本书任意地放在书架上・其中有一程国柱成套的怡 求下列眾件的抵率’(1)成套的站放在一起I (?)成廷冊|$!5構欲颅序徉好放在一起*Mt "}设尸(丿)験示新黨的橫拿.观 P{A )~~ = ^-t 10! 30(2)设議示所求的概匙 则’鬥⑵■卫工 丄" 1W 7205” 一辆舍接汽车出发前載有5名乘客,即一位麟容独立的亞七个站中的任一牛站离幵 匾 |琪下列事件的概毂H )第七站恰好有两位乘客髀去匸<2>没脅两曲及脚童®上采客住问一站离去儿5名験害在七个站中的任就一牛姑壽开的结杲总散« »7\(门第七站恰好青两位象客心 其方法・黴设鬥冷为所求槪率.則,尸⑷-二{6}ABC{jABC{JA fiC h Ci\ ABC[jABC\jABC . cs > ABC ,(9> ABC 2-写出下列髓机试验的样本空何⑴⑵⑶⑷C5)6有一个随机数发生器,毎一次等可能的产生0入2,….9十个数字.由这些数字胡机编成的刀位数码(各数字允许靈复),从全部"位数码中任意选取一个,其最大数字不超过* <*^9)的概率.解:设p⑷表式所求的概率,则由全部"位数码的总数为10",得:P(/l) = ^^-.7 - 一元件盒中有50个元件.期中25件一等品■ 15件二導品.10件次制.从中任取10 件•求,(1)恰有两件一铮品,两件二等品的概率;(2)恰有两件一等品的槪率;(3)没有次品的概率.8 •片10个人分别佩戴考标号从1号到10号的纪念章■任意选出3人・记卜其纪念章的号码,试求:(1)最小的号码为5的概率:(2)最犬的号码为5的概率・解:从10人中任意选3人纪念章号码的总数为刀==G;・(1)最小号码为5,则余卞2个在6-10中选,即m =设P")为所求概率•则:(2)同理设P(B)为所求概率• M: P(&) = k = 0.05・9.段事件A,BRAUB的槪率分别为阳和尸,试求:P(AB\P(AB),P(AB\P(AB).解:P(AB) = P(A)^P(B)-P(A[)B) = p^q-r,P(AB)^P(B-A)^P(BUA)-P(A) = r-p (单调性>:P(AB)=:P(A-B) = P(A(jB)-P(B) = r-q调性人214. 一个盒子中有24个灯泡.其中有4个次品•若甲从魚中航机取走10个,乙取走余下的 14个・求4个次品灯泡被一人全部取走的權率.设* = {次品灯泡全部被甲取走}■ B = {次品灯泡全部被乙取走}•则互不相容,15・设梅5个球閒意地放入3个盒子中.求毎个盒子内至少有一个球的概牢•*• 5个球喷意地放入彳个盒子中骑件总»« = V. 1个魚子中一个或两个盒子中有球数为 m = 3 + C ;pJ+C ;p}.设所求概率为P(/)・则:P(/) = l- 6己知£和為同时发生.則久必发生,证明:P(4)nP(£) + P“J ・l ・证明:由己知,A.A 2 a A.再由单调性.P(A.A 2) P(A).则PU) 2 P(4 A 2)x P ⑷+p(x 2) - P(£ U 禹)••• ° s P(4 U 心)s 1, •••• P(A) > PGM) = P(£) + P(A 2)- P(A } u 禺)2 P (4) + P(AJ-117.掷一枚均匀硬币直到出现三次止面才停止•问正好在第六次停止的悄况卜,第五次也是 正面的概率是多少? 解:设/ = {第五次出现正面” 3 = {第六次停止}•则:P (A\B) = ¥^ = P(B)18.证明:P(A\B)> P(A)>0.则 P(B | A) > P(B).20.将两颗均勻骰子冋时掷一次•己知两个股子的点数Z 利是奇数・求两个骰子的点数z 和 水于8的様率.解:此事件的样本空间由36个样本点组成,设久二{两个股子的点数Z 和小T 8}・B = {科 个锻子的点数Z 和是奇数}・则FM : 36 36P[A\B) •弘型段二P(B) 1 322I ・设10件产胡中有4件是次品^从中任取两件,试求在所取得的产品中发现有一件挞次 也后・另一件也是次品的概率.*!设* = {所取得两件中至少有一件量次品}, 9 = {所取得两件产品郴是次品},:BdA t .\ AB^B. iro?(^) = l-P(l) = l-.-^- = i, p (^) =.所求録率 C|; 3G : 1521 45 £ 15 所求帳率为:P(A\JB)^P(A)^P(B) 3 + C ;p ;+C ;p ;二 5g? 81 证明: P ⑷):P ⑷)P(A) > P(A | B) =P(B).即证.19.设净件儿B 互不相容,且 P(B)>0,畑 P(A | B) 吃) l-P(B)0.1140.2 56« 0.25x0.1 + 0.5 x 0.2 + 0.25 x 0.4 - 0.225 ・两批同类产品各自有12件和2件,在毎-批产品中有-件次品,无竟中将第f 的一 H P 品混入第二批,现从第二批中取出一件,求第二批中収出次晶的概率.解:设月={第二批中取出次品}, ” = {第_批的次晶混入第二批}, *,7构成铎本空间的 一个划分,由全帳宰公式:W) = P(A)P(B M) + P(7)P(B I 刁 V X 容 +12 X 丄二 0.0985 ・12 11 12 11]・在一个盒子中装有15个乒乓球.其中有9个新球.在第一次比赛时任意取岀三个球, 比赛后仍放回原盒中•第二次比赛时•同样任恵的取岀三个球,求第二次取岀三个新球的概 辜・ 解:设B M {第二次取出3个新球}.可以看出・直接确定B 的概率P(B)是困难的,原因是, 第一次比赛之后,12个乒乓球中的新、旧球的分布悄况不満定,而一旦新旧球的分布情况 明珂了,那么相应的概率也容易求得.为此,设4・(第一次取到的3个球中有i 个新球}, i=O ,2, 3.容易判析&,£,4,心构成一个划分.由于P (4)=,i = 0,1,2,3,又P (B ⑷焰,2 0,1,2,3.20702527.仓库中存有从甲厂购进的产品30箱.从乙厂购进的同类产品25箱.甲厂的毎箱装12 个・废品率为0.04.乙厂的每箱装10个,废品率0.05.求,(I 班取一精,从此箱中任取一个为废晶的績率;(2怖所有产品开箱后混放,任取一个为废品的槪率.M : (1)设B = {取出的衆废品}, * = {从甲厂取山}, /!"构成一个划分,則P(B) = P(A)P(B | ><) + P (A)P(B | A) 30x12x0.04 + 25x10x0.05 30x12 + 25x1028.已知一批产胎中96%是合格rtt.用茱种检验方法辨认出合格品为合格品的M«M0 98» 而谋认废品迪合格品的帳率处0.05.求检春合格的一件产品确系合格的概率.解:设/■{检査合格产品}• 〃叫确系合格}• 由己知.P(B) ■ Q.96,P(A | B) = 0.98, P(A | B) 0.05 >由全櫃率公式,得:p (B) = Y P(4 )P(B | 4) = S !•€ (GJ1680 + 7560 + 7560 + 1680 A “心 * 0.0893 • 30x1230x12 + 25x10 x0.04 + • 25x10 30x12 + 25x10x0.05 = 0.0441 = 0.04417由贝叶斯公式:P (B | X )= ' B)二 ------ 妙少凹 __________P(A) P(B)P(A | B)+ P(B)P(A | B) 0.96x0,98 096x0^98 + 004x0.0529・己知5%的男人和0.25%的女人是色宙者,現随机挑选一人.此人恰为色旨者•问此人 是勇人的概率为多少(假设男人女人各占总人数的一半).解^设A^{色盲者}• B = {男人}. 构成样本空同的一个划分.且P(/< |5) = 0.05,"駐。

概率论与数理统计(茆诗松)第二版第一章习题参考答案

概率论与数理统计(茆诗松)第二版第一章习题参考答案

第一章 随机事件与概率习题1.11. 写出下列随机试验的样本空间:(1)抛三枚硬币; (2)抛三颗骰子;(3)连续抛一枚硬币,直至出现正面为止;(4)口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,放回后再取出一个; (5)口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,不放回后再取出一个. 解:(1)Ω = {(0, 0, 0),(0, 0, 1),(0, 1, 0),(1, 0, 0),(0, 1, 1),(1, 0, 1),(1, 1, 1),(1, 1, 1)},其中出现正面记为1,出现反面记为0; (2)Ω = {(x 1 , x 2 , x 3):x 1 , x 2 , x 3 = 1, 2, 3, 4, 5, 6};(3)Ω = {(1),(0, 1),(0, 0, 1),(0, 0, 0, 1),…,(0, 0, …, 0, 1),…},其中出现正面记为1,出现反面记为0;(4)Ω = {BB ,BW ,BR ,WW ,WB ,WR ,RR ,RB ,RW},其中黑球记为B ,白球记为W ,红球记为R ; (5)Ω = {BW ,BR ,WB ,WR ,RB ,RW},其中黑球记为B ,白球记为W ,红球记为R .2. 先抛一枚硬币,若出现正面(记为Z ),则再掷一颗骰子,试验停止;若出现反面(记为F ),则再抛一枚硬币,试验停止.那么该试验的样本空间Ω是什么? 解:Ω = {Z1,Z2,Z3,Z4,Z5,Z6,FZ ,FF}. 3. 设A , B , C 为三事件,试表示下列事件:(1)A , B , C 都发生或都不发生; (2)A , B , C 中不多于一个发生; (3)A , B , C 中不多于两个发生; (4)A , B , C 中至少有两个发生. 解:(1)C B A ABC U ;(2)C B A C B A C B A C B A U U U ;(3)ABC 或C B A C B A C B A C B A BC A C B A C AB U U U U U U ; (4)ABC BC A C B A C AB U U U . 4. 指出下列事件等式成立的条件:(1)A ∪B = A ; (2)AB = A . 解:(1)当A ⊃ B 时,A ∪B = A ;(2)当A ⊂ B 时,AB = A .5. 设X 为随机变量,其样本空间为Ω = {0 ≤ X ≤ 2},记事件A = {0.5 < X ≤ 1},B = {0.25 ≤ X < 1.5},写出下列各事件:(1)B A ; (2)B A U ;(3)AB ; (4)B A U .解:(1)}5.11{}5.025.0{<<≤≤=X X B A U ;(2)Ω=≤≤=}20{X B A U ;(3)A X X AB =≤<≤≤=}21{}5.00{U ; (4)B X X B A =≤≤<≤=}25.1{}25.00{U U .6. 检查三件产品,只区分每件产品是合格品(记为0)与不合格品(记为1),设X 为三件产品中的不合格品数,指出下列事件所含的样本点:A =“X = 1”,B =“X > 2”,C =“X = 0”,D =“X = 4”.解:A = {(1, 0, 0),(0, 1, 0),(0, 0, 1)},B = {(1, 1, 1)},C = {(0, 0, 0)},D = ∅. 7. 试问下列命题是否成立?(1)A − (B − C ) = (A − B )∪C ;(2)若AB = ∅且C ⊂ A ,则BC = ∅; (3)(A ∪B ) − B = A ; (4)(A − B )∪B = A .解:(1)不成立,C B A AC B A AC B A C B A C B A C B A C B A U U U U )()()()(−≠−====−=−−;(2)成立,因C ⊂ A ,有BC ⊂ AB = ∅,故BC = ∅;(3)不成立,因A B A B A B B B A B B A B B A ≠−====−U U U )()(; (4)不成立,因A B A B B B A B B A B B A ≠===−U U U U U ))(()(. 8. 若事件ABC = ∅,是否一定有AB = ∅?解:不能得出此结论,如当C = ∅时,无论AB 为任何事件,都有ABC = ∅. 9. 请叙述下列事件的对立事件:(1)A =“掷两枚硬币,皆为正面”; (2)B =“射击三次,皆命中目标”;(3)C =“加工四个零件,至少有一个合格品”. 解:(1)=A “掷两枚硬币,至少有一个反面”;(2)=B “射击三次,至少有一次没有命中目标”; (3)=C “加工四个零件,皆为不合格品”. 10.证明下列事件的运算公式:(1)B A AB A U =; (2)B A A B A U U =.证:(1)A A B B A B A AB =Ω==)(U U ;(2)B A B A B A A A B A A U U U U U =Ω==)())((. 11.设F 为一事件域,若A n ∈F ,n = 1, 2, …,试证:(1)∅ ∈F ;(2)有限并∈=U ni i A 1F ,n ≥ 1;(3)有限交∈=I ni i A 1F ,n ≥ 1;(4)可列交∈+∞=I 1i i A F ;(5)差运算A 1 − A 2 ∈ F .证:(1)由事件域定义条件1,知 Ω ∈F ,再由定义条件2,可得∅∈Ω=F ;(2)在定义条件3中,取A n + 1 = A n + 2 = … = ∅,可得∈=∞==U U 11i i ni i A A F ;(3)由定义条件2,知∈n A A A ,,,21L F ,根据(2)小题结论,可得∈=U ni i A 1F ,再由定义条件2,知∈=U ni i A 1F ,即∈=I ni i A 1F ;(4)由定义条件2,知∈L L ,,,,21n A A A F ,根据定义条件3,可得∈∞=U 1i i A F ,再由定义条件2,知∈∞=U 1i i A F ,即∈∞=I 1i i A F ;(5)由定义条件2,知∈2A F ,根据(3)小题结论,可得∈21A A F ,即A 1 − A 2 ∈ F .习题1.21. 对于组合数⎟⎟⎠⎞⎜⎜⎝⎛r n ,证明:(1)⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛r n n r n ; (2)⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛r n r n r n 111; (3)nn n n n 210=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛L ; (4)12221−⋅=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n L ;(5)⎟⎟⎠⎞⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n b a b n a n b a n b a 0110L ,n = min{a , b }; (6)⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n 210222L . 证:(1)⎟⎟⎠⎞⎜⎜⎝⎛=−=−−−=⎟⎟⎠⎞⎜⎜⎝⎛−r n r r n n r n n r n n r n n !)!(!)]!([)!(!; (2)⎟⎟⎠⎞⎜⎜⎝⎛=−=−+−−=−−−+−−−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−−r n r n r n r n r r n r n r n r n r n r n r n r n )!(!!)]([)!(!)!1()!1(!)!1()!()!1()!1(111; (3)由二项式展开定理nn n n y n n y x n x n y x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+−L 110)(,令x = y = 1,得 nn n n n 210=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛L ; (4)当1 ≤ r ≤ n 时,⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−=−⋅−=−⋅=⎟⎟⎠⎞⎜⎜⎝⎛11)!()!1()!1()!()!1(!)!(!!r n n r n r n n r n r n r n r n rr n r , 故12111101221−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−++⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n n n n n n L L ; (5)因a ax a a x a a x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+L 10)1(,b b x b b x b b x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+L 10)1(, 两式相乘,其中x n 的系数为⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛0110b n a n b a n b a L ,另一方面ba b a b a x a b a x b a b a x x x ++⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+=+=++L 10)1()1()1(,其中x n 的系数为⎟⎟⎠⎞⎜⎜⎝⎛+n b a ,即⎟⎟⎠⎞⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n b a b n a n b a n b a 0110L ; (6)在(5)小题结论中,取a = b = n ,有⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n n n 20110L , 再由(1)小题结论,知⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛r n n r n ,即⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n 210222L . 2. 抛三枚硬币,求至少出现一个正面的概率.解:样本点总数n = 23 = 8,事件“至少出现一个正面”的对立事件为“三个都是反面”,其所含样本点个数为1, 即事件“至少出现一个正面”所含样本点个数为k = 8 − 1 = 7,故所求概率为87)(=A P . 3. 任取两个正整数,求它们的和为偶数的概率. 解:将所有正整数看作两个类“偶数”、“奇数”,样本点总数n = 22 = 4,事件“两个都是偶数”所含样本点个数为1,事件“两个都是奇数”所含样本点个数也为1, 即事件A =“它们的和为偶数”所含样本点个数k = 2,故所求概率为2142)(==A P .4. 掷两枚骰子,求下列事件的概率:(1)点数之和为6; (2)点数之和不超过6; (3)至少有一个6点. 解:样本点总数n = 62 = 36.(1)事件A 1 =“点数之和为6”的样本点有 (1, 5), (2, 4), (3, 3), (4, 2), (5, 1),即个数k 1 = 5,故所求概率为365)(1=A P ;(2)事件A 2 =“点数之和不超过6”的样本点有(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1), 即个数k 2 = 15,故所求概率为1253615)(2==A P ;(3)事件A 3 =“至少有一个6点”的样本点有(1, 6), (6, 1), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4), (5, 6), (6, 5), (6, 6), 即个数k 3 = 11,故所求概率为3611)(3=A P .5. 考虑一元二次方程x 2 + Bx + C = 0,其中B , C 分别是将一颗骰子接连掷两次先后出现的点数,求该方程有实根的概率p 和有重根的概率q . 解:样本点总数n = 62 = 36,事件A 1 =“该方程有实根”,即B 2 − 4C ≥ 0,样本点有(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (4, 4), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6),即个数k 1 = 19,故36191==n k p . 事件A 2 =“该方程有重根”,即B 2 − 4C = 0,样本点有(2, 1),(4, 4),即个数k 2 = 2,故1813622===n k q .6. 从一副52张的扑克牌中任取4张,求下列事件的概率:(1)全是黑桃; (2)同花;(3)没有两张同一花色; (4)同色.解:样本点总数270725123449505152452=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1 =“全是黑桃”所含样本点个数7151234101112134131=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为0026.0270725715)(1==A P ;(2)事件A 2 =“同花”所含样本点个数2860123410111213441342=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛×=k , 故所求概率为0106.02707252860)(2==A P ;(3)事件A 3 =“没有两张同一花色”所含样本点个数k 3 = 13 × 13 × 13 × 13 = 28561,故所求概率为1055.027072528561)(3==A P ;(4)事件A 4 =“同色”所含样本点个数29900123423242526242624=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛×=k , 故所求概率为1104.027072529900)(4==A P .7. 设9件产品中有2件不合格品.从中不返回地任取2个,求取出的2个中全是合格品、仅有一个合格品和没有合格品的概率各为多少?解:样本点总数36128929=××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件A 1 =“全是合格品”所含样本点个数211267271=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1273621)(1==A P ; 事件A 2 =“仅有一个合格品”所含样本点个数142712171=×=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1873614)(2==A P ;事件A 3 =“没有合格品”所含样本点个数1223=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为361)(3=A P . 8. 口袋中有7个白球、3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:样本点总数4512910210=××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件A =“两个球颜色相同”所含样本点个数24122312672327=××+××=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1584524)(==A P . 9. 甲口袋有5个白球、3个黑球,乙口袋有4个白球、6个黑球.从两个口袋中各任取一球,求取到的两个球颜色相同的概率. 解:样本点总数n = 8 × 10 = 80,事件A =“两个球颜色相同”所含样本点个数k = 5 × 4 + 3 × 6 = 38,故所求概率为40198038)(==A P . 10.从n 个数1, 2, …, n 中任取2个,问其中一个小于k (1 < k < n ),另一个大于k 的概率是多少?解:样本点总数)1(212−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N ,事件A = “其中一个小于k ,另一个大于k ”所含样本点个数K = (k − 1)(n − k ), 故所求概率为)1())(1(2)(−−−=n n k n k A P .11.口袋中有10个球,分别标有号码1到10,现从中不返回地任取4个,记下取出球的号码,试求:(1)最小号码为5的概率; (2)最大号码为5的概率.解:样本点总数210123478910410=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1 =“最小号码为5”所含样本点个数10123345351=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为21121010)(1==A P ; (2)事件A 2 =“最大号码为5”所含样本点个数4123234342=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为10522104)(2==A P . 12.掷三颗骰子,求以下事件的概率:(1)所得的最大点数小于等于5; (2)所得的最大点数等于5. 解:样本点总数n = 63 = 216,(1)事件A 1 =“所得的最大点数小于等于5”所含样本点个数k 1 = 53 = 125,故所求概率为216125)(1=A P ; (2)事件A 2 =“所得的最大点数等于5”所含样本点个数k 2 = 53 − 43 = 61,故所求概率为21661)(2=A P .13.把10本书任意地放在书架上,求其中指定的四本书放在一起的概率. 解:样本点总数n = 10!,事件A =“其中指定的四本书放在一起”所含样本点个数k = 4! × 7!,故所求概率为30189101234!10!7!4)(=×××××=×=A P . 14.n 个人随机地围一圆桌而坐,求甲乙两人相邻而坐的概率. 解:样本点总数N = (n − 1)!,事件A =“甲乙两人相邻而坐”所含样本点个数k = 2! × (n − 2)!,故所求概率为12)!1()!2(!2)(−=−−×=n n n A P . 15.同时掷5枚骰子,试证明:(1)P {每枚都不一样} = 0.0926; (2)P {一对} = 0.4630; (3)P {两对} = 0.2315;(4)P {三枚一样} = 0.1543(此题有误); (5)P {四枚一样} = 0.0193; (6)P {五枚一样} = 0.0008. 解:样本点总数n = 65 = 7776,(1)事件“每枚都不一样”所含样本点个数72023456561=××××==A k ,故P {每枚都不一样}0926.07776720==; (2)事件“一对”所含样本点个数3600345124563525162=××××××=⋅⋅=A C A k , 故P {一对}4630.077763600==; (3)事件“两对”所含样本点个数18004122312451256142325263=×××××××××=⋅⋅⋅=A C C C k , 故P {两对}2315.077761800==; (4)事件“三枚一样”所含样本点个数15005123345652235164=××××××=⋅⋅=C A k ,故P {三枚一样}1929.077761500==; 事件“三枚一样且另两枚不一样”所含样本点个数12004512334562535164=×××××××=⋅⋅=A C A k ,故P {三枚一样且另两枚不一样}1543.077761200==; (5)事件“四枚一样”所含样本点个数15051234234561545165=××××××××=⋅⋅=A C A k ,故P {四枚一样}0193.07776150==; (6)事件“五枚一样”所含样本点个数6161555166=×=⋅⋅=A C A k ,故P {五枚一样}0008.077766==. 16.一个人把六根草紧握在手中,仅露出它们的头和尾.然后随机地把六个头两两相接,六个尾也两两相接.求放开手后六根草恰巧连成一个环的概率.解:在同一种六个头两两相接情况下,只需考虑六个尾两两相接的样本点总数n = 5 × 3 = 15,事件A =“放开手后六根草恰巧连成一个环”所含样本点个数k = 4 × 2 = 8,故所求概率为158)(=A P .17.把n 个“0”与n 个“1”随机地排列,求没有两个“1”连在一起的概率.解:样本点总数!!)!2(2n n n n n N ⋅=⎟⎟⎠⎞⎜⎜⎝⎛=,事件A =“没有两个‘1’连在一起”所含样本点个数11+=⎟⎟⎠⎞⎜⎜⎝⎛+=n n n k ,故所求概率为)!2()!1(!)(n n n A P +⋅=.18.设10件产品中有2件不合格品,从中任取4件,设其中不合格品数为X ,求X 的概率分布.解:样本点总数210123478910410=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件X = 0所含样本点个数7011234567802480=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为3121070}0{===X P ; 事件X = 1所含样本点个数112212367812381=×××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为158210112}1{===X P ; 事件X = 2所含样本点个数281127822282=×××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为15221028}2{===X P . 19.n 个男孩,m 个女孩(m ≤ n + 1)随机地排成一排,试求任意两个女孩都不相邻的概率.解:样本点总数!!)!(m n m n n m n N ⋅+=⎟⎟⎠⎞⎜⎜⎝⎛+=,事件A =“任意两个女孩都不相邻”所含样本点个数)!1(!)!1(1m n m n m n k −+⋅+=⎟⎟⎠⎞⎜⎜⎝⎛+=, 故所求概率为)2()1)(()2()1()!1()!()!1(!)(+−++−+−=−+⋅++⋅=n m n m n m n n n m n m n n n A P L L .20.将3个球随机放入4个杯子中去,求杯子中球的最大个数X 的概率分布. 解:样本点总数n = 43 = 64,事件X = 1所含样本点个数24234341=××==A k ,故所求概率为836424}1{===X P ; 事件X = 2所含样本点个数363341323142=××==A C A k ,故所求概率为1696436}2{===X P ; 事件X = 3所含样本点个数4143==A k ,故所求概率为161644}3{===X P . 21.将12只球随意地放入3个盒子中,试求第一个盒子中有3只球的概率. 解:样本点总数n = 312 = 531441,事件A =“第一个盒子中有3只球”所含样本点个数11264051212310111223129=×××××=×⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为2120.0531441112640)(==A P .22.将n 个完全相同的球(这时也称球是不可辨的)随机地放入N 个盒子中,试求:(1)某个指定的盒子中恰好有k 个球的概率; (2)恰好有m 个空盒的概率;(3)某指定的m 个盒子中恰好有j 个球的概率.解:样本点总数为N 取n 次的重复组合,即)!1(!)!1(1−⋅−+=⎟⎟⎠⎞⎜⎜⎝⎛−+=N n n N n n N M , (1)事件A 1 =“某个指定的盒子中恰好有k 个球”所含样本点个数为N − 1取n − k 次的重复组合,即)!2()!()!2(21)(11−⋅−−−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+−=N k n k n N k n k n N k n k n N K , 故所求概率为)1()2)(1()1()1()1()!2()!()!1()!1(!)!2()(1−−+−+−+−⋅+−−=−⋅−⋅−+−⋅⋅−−+=k n N n N n N N k n n n N k n n N N n k n N A P L L ;(2)事件A 2 =“恰好有m 个空盒”所含样本点个数可分两步考虑:首先N 选m 次的组合,选出m 个空盒,而其余N − m 个盒中每一个都分别至少有一个球, 其次剩下的n − (N − m )个球任意放入这N − m 个盒中,即N − m 取n − (N − m )次的重复组合,则)!1()!()!(!)!1(!)(12−−⋅−+⋅−⋅−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−−⎟⎟⎠⎞⎜⎜⎝⎛=m N N m n m N m n N m N n n m N K ,故所求概率为)!1()!1()!()!(!)!1(!)!1(!)(2−+⋅−−⋅−+⋅−⋅−⋅⋅−⋅=n N m N N m n m N m N n n N A P ;(3)事件A 3 =“某指定的m 个盒子中恰好有j 个球”所含样本点个数为m 取j 次的重复组合乘以N − m 取n − j 次的重复组合,则)!1()!()!1(!)!1()!1(1)()(13−−⋅−⋅−⋅−−−+⋅−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+−⎟⎟⎠⎞⎜⎜⎝⎛−+=m N j n m j j m n N j m j n j n m N j j m K , 故所求概率为)!1()!1()!()!1(!)!1(!)!1()!1()(3−+⋅−−⋅−⋅−⋅−⋅⋅−−−+⋅−+=n N m N j n m j N n j m n N j m A P .23.在区间(0, 1)中随机地取两个数,求事件“两数之和小于7/5”的概率.解:设这两个数分别为x 和y ,有Ω = {(x , y ) | 0 < x < 1, 0 < y < 1},得m (Ω) = 1,事件A =“两数之和小于7/5”,有A = {(x , y ) | 0 < x +y < 7/5}, 得504153211)(2=⎟⎠⎞⎜⎝⎛×−=A m , 故所求概率为5041)()()(=Ω=m A m A P . 24.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的.如果甲船的停泊时间是一小时,乙船的停泊时间是两小时,求它们中任何一艘都不需要等候码头空出的概率是多少?解:设甲乙两艘轮船到达码头的时间分别为x 和y 小时,有Ω = {(x , y ) | 0 ≤ x ≤ 24, 0 ≤ y ≤ 24},得m (Ω) = 242 = 576, 事件A =“它们中任何一艘都不需要等候码头空出”, 若甲先到,有x + 1 ≤ y ≤ 24;若乙先到,有y + 2 ≤ x ≤ 24;即A = {(x , y ) | 0 ≤ x ≤ 24, 0 ≤ y ≤ 24, x + 1 ≤ y ≤ 24或y + 2 ≤ x ≤ 24},得2101322212321)(22=×+×=A m , 故所求概率为11521013)()()(=Ω=m A m A P . 25.在平面上画有间隔为d 的等距平行线,向平面任意投掷一个边长为a , b , c (均小于d )的三角形,求三角形与平行线相交的概率.解:不妨设a ≥ b ≥ c ,三角形的三个顶点分别为A , B , C ,其对边分别为a , b , c ,相应三个角也记为A , B , C ,设O 为BC 的中点,点O 与最近的一条平行线的距离为x , 从点O 向三角形外作与平行线平行的射线OD , 若B , C 中点C 更靠近某条平行线,则记α = ∠COD ,否则记α = −∠BOD , 有π}π,20|),{(<<−≤≤=Ωααdx x ,得m (Ω) = π d ,事件E =“三角形与平行线相交”,当α ≥ 0时,如果C ≤ α < π,事件E 就是OC 与平行线相交; 如果0 ≤ α < C ,事件E 就是OC 或AC 与平行线相交; 当α < 0时,如果−π < α ≤ −B ,事件E 就是OB 与平行线相交;如果−B < α < 0,事件E 就是OB 或AB 与平行线相交.记}sin 2,|),{(1αααax C x E ≤≥=, )}sin(sin 2,0|),{(2αααα−+≤<≤=C b ax C x E ,}sin 2,|),{(3αααax B x E −≤−≤=,)}sin(sin 2,0|),{(4αααα++−≤<<−=B c ax B x E ,有E = E 1∪E 2∪E 3∪E 4,得∫∫−−−⎥⎦⎤⎢⎣⎡++−+⎟⎠⎞⎜⎝⎛−=0π)sin(sin 2sin 2)(BB d B c a d a E m ααααα∫∫+⎥⎦⎤⎢⎣⎡−++π0sin 2)sin(sin 2C C d a d C b a ααααα∫∫∫∫+−++++⎟⎠⎞⎜⎝⎛−=−−π0000πsin 2)sin()sin(sin 2ααααααααd a d C b d B c d a C B π0000πcos 2)cos()cos(cos 2ααααa C b B c aCB −−++−=−− 22cos cos 22a a C b b c B c a a +⎟⎠⎞⎜⎝⎛−−−++−⎟⎠⎞⎜⎝⎛−−=c b a a a c b a abc b a b ac b c a c c b a ++=−++=−+⋅−−+⋅−++=2222222222222,故所求概率为dcb a m E m E P π)()()(++=Ω=. 方法二:设事件A , B , C 分别表示“边长为a , b , c 三条边与平行线相交”,事件E 表示“三角形与平行线相交”, 由于三角形与平行线相交时,将至少有两条边与平行线相交,即E = AB ∪AC ∪BC ,则由三个事件的加法公式得P (E ) = P (AB ) + P (AC ) + P (BC ) − 2 P (ABC ), 因ABC 表示“三条边都与平行线相交”,有P (ABC ) = 0, 则P (E ) = P (AB ) + P (AC ) + P (BC ),另一方面,由于三角形与平行线相交时,将至少有两条边与平行线相交, 有A = AB ∪AC ,B = AB ∪BC ,C = AC ∪BC ,则P (A ) = P (AB ) + P (AC ) − P (ABC ) = P (AB ) + P (AC ), P (B ) = P (AC ) + P (BC ),P (C ) = P (AC ) + P (BC ),可得P (A ) + P (B ) + P (C ) = [P (AB ) + P (AC )] + [P (AC ) + P (BC )] + [P (AC ) + P (BC )]= 2[P (AB ) + P (AC ) + P (BC )],根据蒲丰投针问题知d a A P π2)(=,d b B P π2)(=,dc C P π2)(=, 故dcb a C P B P A P BC P AC P AB P E P π)]()()([21)()()()(++=++=++=.26.在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,即交点在直径上一个区间内的可能性与这区间的长度成比例,求任意画弦的长度大于R 的概率.1A解:设弦与垂直于弦的直径的交点与圆心的距离为x ,有Ω = {x | 0 ≤ x < R },得m (Ω) = R ,事件A =“弦的长度大于R ”,有2222⎟⎠⎞⎜⎝⎛>−R x R ,2243R x <,即}230|{R x x A <≤=,得R A m 23)(=,故所求概率为23)()()(=Ω=m A m A P . 27.设一个质点落在xOy 平面上由x 轴、y 轴及直线x + y = 1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的概率与区域的面积成正比,试求此质点还满足y < 2x 的概率是多少?解:Ω = {(x , y ) | 0 < x < 1, 0 < y < 1, 0 < x + y < 1},得21)(=Ωm , 事件A =“满足y < 2x ”,有A = {(x , y ) | 0 < y < 1, y /2 ≤ x ≤ 1 − y },得3132121)(=××=A m , 故所求概率为32)()()(=Ω=m A m A P . 28.设a > 0,有任意两数x , y ,且0 < x < a ,0 < y < a ,试求xy < a 2/4的概率. 解:Ω = {(x , y ) | 0 ≤ x ≤ a , 0 ≤ y ≤ a },得m (Ω) = a 2,事件A =“xy < a 2/4”,有A = {(x , y ) | 0 ≤ x ≤ a , 0 ≤ y ≤ a , xy < a 2/4},即4ln 44ln 44)(22422422a a x a ax a dx x a a a A m aa aa +=⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=∫, 故所求概率为5966.04ln 4141)()()(=+=Ω=m A m A P . 29.用主观方法确定:大学生中戴眼镜的概率是多少? (自己通过调查,作出主观判断)30.用主观方法确定:学生中考试作弊的概率是多少? (自己通过调查,作出主观判断)x习题1.31. 设事件A 和B 互不相容,且P (A ) = 0.3,P (B ) = 0.5,求以下事件的概率:(1)A 与B 中至少有一个发生; (2)A 和B 都发生; (3)A 发生但B 不发生. 解:(1)P (A ∪B ) = P (A ) + P (B ) = 0.3 + 0.5 = 0.8;(2)P (AB ) = 0;(3)P (A − B ) = P (A ) = 0.3.2. 设P (AB ) = 0,则下列说法哪些是正确的?(1)A 和B 不相容; (2)A 和B 相容;(3)AB 是不可能事件;(4)AB 不一定是不可能事件; (5)P (A ) = 0或P (B ) = 0; (6)P (A − B ) = P (A ). 解:(1)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容;(2)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容;(3)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容,即AB 不一定是不可能事件; (4)正确,当P (AB ) = 0时,A 和B 可能相容也可能不相容,即AB 不一定是不可能事件; (5)错误,当P (A ) > 0,P (B ) > 0时,只要A 和B 不相容,就有P (AB ) = 0; (6)正确,P (A − B ) = P (A ) − P (AB ) = P (A ).3. 一批产品分一、二、三级,其中一级品是二级品的三倍,三级品是二级品的一半,从这批产品中随机地抽取一个,试求取到二级品的概率. 解:设A , B , C 分别表示“取到一、二、三级品”,有P (A ) + P (B ) + P (C ) = 1,P (A ) = 3P (B ),)(21)(B P C P =, 则1)(29)(21)()(3==++B P B P B P B P ,即92)(=B P , 故取到二级品的概率92)(=B P .4. 从0, 1, 2, …, 9等十个数字中任意选出三个不同的数字,试求下列事件的概率:(1)A 1 = {三个数字中不含0和5}; (2)A 2 = {三个数字中不含0或5}; (3)A 3 = {三个数字中含0但不含5}.解:样本点总数1201238910310=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1所含样本点个数56123678381=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故15712056)(1==A P ; (2)事件=2A “三个数字中含0和5”所含样本点个数8182=⎟⎟⎠⎞⎜⎜⎝⎛=A k ,故1514120112)(1)(22==−=A P A P ; (3)事件A 3所含样本点个数281278283=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故30712028)(3==A P .5. 某城市中共发行3种报纸A , B , C .在这城市的居民中有45%订阅A 报、35%订阅B 报、25%订阅C 报,10%同时订阅A 报B 报、8%同时订阅A 报C 报、5%同时订阅B 报C 报、3%同时订阅A , B , C 报.求以下事件的概率: (1)只订阅A 报;(2)只订阅一种报纸的; (3)至少订阅一种报纸的; (4)不订阅任何一种报纸的.解:设A , B , C 分别表示“订阅报纸A , B , C ”,则P (A ) = 0.45,P (B ) = 0.35,P (C ) = 0.30,P (AB ) = 0.10,P (AC ) = 0.08,P (BC ) = 0.05,P (ABC ) = 0.03,(1))()()()()()())(()(ABC P AC P AB P A P AC AB P A P C B A P C B A P +−−=−=−=U U= 0.45 − 0.10 − 0.08 + 0.03 = 0.30;(2))()()()(B A P C B A P C B A P C B A C B A C B A P ++=U U ,因)()()()()()())(()(ABC P BC P AB P B P BC AB P B P C A B P C B A P +−−=−=−=U U= 0.35 − 0.10 − 0.05 + 0.03 = 0.23,)()()()()()())(()(ABC P BC P AC P C P BC AC P C P B A C P C B A P +−−=−=−=U U= 0.30 − 0.08 − 0.05 + 0.03 = 0.20,故73.020.023.030.0)()()()(=++=++=C B A P C B A P C B A P C B A C B A C B A P U U ; (3)P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC )= 0.45 + 0.35 + 0.30 − 0.10 − 0.08 − 0.05 + 0.03 = 0.90;(4)10.090.01)(1(=−=−=C B A P C B A P U U .6. 某工厂一个班组共有男工9人、女工5人,现要选出3个代表,问选的3个代表中至少有1个女工的概率是多少?解:样本点总数364123121314314=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件=A “选的3个代表中没有女工”所含样本点个数8412378939=××××=⎟⎟⎠⎞⎜⎜⎝⎛=A k ,故所求概率为1310364280364841)(1)(==−=−=A P A P . 7. 一赌徒认为掷一颗骰子4次至少出现一次6点与掷两颗骰子24次至少出现一次双6点的机会是相等的,你认为如何? 解:“掷一颗骰子4次”的样本点总数n 1 = 64 = 1296,事件=1A “没有出现6点”所含样本点个数为625541==A k ,则5177.0129667112966251)(1)(11==−=−=A P A P ; “掷两颗骰子24次”的样本点总数n 2 = (62 )24 = 36 24,事件=2A “没有出现双6点”所含样本点个数为2424235)16(2=−=A k ,则4914.036353636351)(1)(242424242422=−=−=−=A P A P ;故掷一颗骰子4次至少出现一次6点的机会比掷两颗骰子24次至少出现一次双6点的机会更大. 8. 从数字1, 2, …, 9中可重复地任取n 次,求n 次所取数字的乘积能被10整除的概率. 解:样本点总数N = 9 n ,因事件A =“n 次所取数字的乘积能被10整除”就是“至少取到一次数字5并且至少取到一次偶数”, 则事件=A “没有取到数字5或没有取到偶数”, 设事件B =“没有取到数字5”,C =“没有取到偶数”,则事件B 所含样本点个数为K B = 8 n ,事件C 所含样本点个数为K C = 5 n , 且事件BC =“没有取到数字5和偶数”所含样本点个数为K BC = 4 n ,故nnn n n n n n n n n BC P C P B P C B P A P A P 945899495981)()()(1)(1)(1)(+−−=+−−=+−−=−=−=U . 9. 口袋中有n − 1个黑球和1个白球,每次从口袋中随机地摸出一球,并换入一只黑球.问第k 次摸球时,摸到黑球的概率是多少? 解:样本点总数N = n k ,事件=A “第k 次摸球时摸到白球”,此时前n − 1次摸球时都必须是摸到黑球, 则A 中所含样本点个数1)1(−−=k A n K ,故所求概率为kk nn A P A P 1)1(1)(1)(−−−=−=. 10.若P(A ) = 1,证明:对任一事件B ,有P (AB ) = P (B ).证:因P (A ) = 1,且A B A ⊂,有0)(1)()(=−=≤A P A P B A P ,则0)()()()(=−=−=AB P B P A B P A P ,故P (AB ) = P (B ).11.掷2n + 1次硬币,求出现的正面数多于反面数的概率. 解:设A =“出现的正面数多于反面数”,因掷奇数次硬币,出现的正面数与反面数不可能相等,事件=A “出现的反面数多于正面数”,由于掷一枚硬币出现正面与出现反面的可能性相同,则“出现的正面数多于反面数”与“出现的反面数多于正面数” 的可能性相同, 可得)()(A P A P =,又1()(=+A P A P ,故P (A ) = 0.5.12.有三个人,每个人都以同样的概率1/5被分配到5个房间中的任一间中,试求:(1)三个人都分配到同一个房间的概率; (2)三个人分配到不同房间的概率. 解:样本点总数n = 53 = 125,(1)事件A 1 =“三个人都分配到同一个房间”所含样本点个数为k 1 = 5,故所求概率为2511255)(1==A P ; (2)事件A 2 =“三个人分配到不同房间”所含样本点个数为60345352=××==A k ,故所求概率为251212560)(2==A P . 13.一间宿舍住有5位同学,求他们之中至少有2个人生日在同一个月份的概率.解:首先假设一个人的生日在每一个月份的可能性相同,样本点总数n = 125,事件=A “每个人生日都在不同月份”所含样本点个数为512A k A =,故所求概率为6181.014489121)(1)(5512==−=−=A A P A P . 14.某班n 个战士各有1支归个人保管使用的枪,这些枪的外形完全一样,在一次夜间紧急集合中,每人随机地取了1支枪,求至少有1人拿到自己的枪的概率.解:设A i =“第i 个战士拿到自己的枪”,n i ,,2,1L =,有==i ni A 1U “至少有1人拿到自己的枪”,因)()1()()()()(2111111n n nk j i kjinj i jini i i ni A A A P A A A P A A P A P A P L L U ⋅−+++−=−≤<<≤≤<≤==∑∑∑,且n n n A P i 1!)!1()(=−=,)1(1!)!2()(−=−=n n n n A A P j i ,)2)(1(1)(−−=n n n A A A P k j i ,……, 故!)1(!31!211!1)1()2)(1(1)1(11)(11321n n C n n n C n n C n n A P n nn n n n i ni −−=−+−+−=⋅−+−−−⋅+−⋅−×=L L U . 15.设A , B 是两事件,且P (A ) = 0.6,P (B ) = 0.8,问: (1)在什么条件下P (AB )取到最大值,最大值是多少? (2)在什么条件下P (AB )取到最小值,最小值是多少? 解:(1)因P (AB ) ≤ min{P (A ), P (B )} = P (A ) = 0.6,故当P (AB ) = P (A ) 时,P (AB )取到最大值0.6;(2)因P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1 = 0.4,故当P (A ∪B ) = 1时,P (AB )取到最小值0.4. 注:若A ⊂ B ,有AB = A ,可得P (AB ) = P (A ),但不能反过来,由P (AB ) = P (A ),得出A ⊂ B ;若A ∪B = Ω,可得P (A ∪B ) = 1,但不能反过来,由P (A ∪B ) = 1,得出A ∪B = Ω. 16.已知事件A , B 满足)()(B A P AB P I =,记P (A ) = p ,试求P (B ).解:因)()()(1)(1)()()(AB P B P A P B A P B A P B A P AB P +−−=−===U U I ,有1 − P (A ) − P (B ) = 0,故P (B ) = 1 − P (A ) = 1 − p .17.已知P (A ) = 0.7,P (A − B ) = 0.4,试求)(AB P .解:因P (A − B ) = P (A ) − P (AB ),有P (AB ) = P (A ) − P (A − B ) = 0.7 − 0.4 = 0.3,故7.0)(1(=−=AB P AB P . 18.设P (A ) = 0.6,P (B ) = 0.4,试证)()(B A P AB P I =.证:)()(4.06.01)()()(1)(1)()(AB P AB P AB P B P A P B A P B A P B A P =+−−=+−−=−==U U I . 19.对任意的事件A , B , C ,证明:(1)P (AB ) + P (AC ) − P (BC ) ≤ P (A );(2)P (AB ) + P (AC ) + P (BC ) ≥ P (A ) + P (B ) + P (C ) − 1. 证:(1)因P (AB ∪AC ) = P (AB ) + P (AC ) − P (ABC ),且 (AB ∪AC ) ⊂ A ,ABC ⊂ BC ,有P (AB ∪AC ) ≤ P (A ),P (ABC ) ≤ P (BC ),故P (AB ) + P (AC ) − P (BC ) = P (AB ∪AC ) + P (ABC ) − P (BC ) ≤ P (AB ∪AC ) ≤ P (A ). (2)因P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC ),故P (AB ) + P (AC ) + P (BC ) = P (A ) + P (B ) + P (C ) + P (ABC ) − P (A ∪B ∪C )≥ P (A ) + P (B ) + P (C ) + P (ABC ) − 1 ≥ P (A ) + P (B ) + P (C ) − 1.20.设A , B , C 为三个事件,且P (A ) = a ,P (B ) = 2a ,P (C ) = 3a ,P (AB ) = P (AC ) = P (BC ) = b ,证明:a ≤ 1/4,b ≤ 1/4.证:因P (B ∪C ) = P (B ) + P (C ) − P (BC ) = 5a − b ,且a = P (A ) ≥ P (AB ) = b ,则P (B ∪C ) = 5a − b ≥ 4a ,即4a ≤ 1,故a ≤ 1/4且b ≤ a ≤ 1/4.21.设事件A , B , C 的概率都是1/2,且)()(C B A P ABC P I I =,证明:2 P (ABC ) = P (AB ) + P (AC ) + P (BC ) − 1/2.证:因)(1)()()(C B A P C B A P C B A P ABC P U U U U I I −==== 1 − P (A ) − P (B ) − P (C ) + P (AB ) + P (AC ) + P (BC ) − P (ABC ),故2 P (ABC ) = P (AB ) + P (AC ) + P (BC ) + 1 − P (A ) − P (B ) − P (C ) = P (AB ) + P (AC ) + P (BC ) − 1/2. 22.证明:(1)P (AB ) ≥ P (A ) + P (B ) − 1;(2)P (A 1 A 2 …A n ) ≥ P (A 1) + P (A 2) + … + P (A n ) − (n − 1). 证:(1)因P (A ∪B ) = P (A ) + P (B ) − P (AB ),故P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1;(2)用数学归纳法证明,当n = 2时,由(1)小题知结论成立,设当n = k 时,结论成立,即P (A 1 A 2 …A k ) ≥ P (A 1) + P (A 2) + … + P (A k ) − (k − 1), 则P (A 1 A 2 …A k A k + 1) ≥ P (A 1 A 2 …A k ) + P (A k + 1) − 1≥ P (A 1) + P (A 2) + … + P (A k ) − (k − 1) + P (A k + 1) − 1 = P (A 1) + P (A 2) + … + P (A k ) + P (A k + 1) − k ,即当n = k + 1时,结论成立,故由数学归纳法知P (A 1 A 2 …A n ) ≥ P (A 1) + P (A 2) + … + P (A n ) − (n − 1). 23.证明:41|)()()(|≤−B P A P AB P . 证:因)()()](1)[()]()()[()()()()(A P A P A P AB P B A P AB P A P AB P B P A P AB P −−=+−=−,且0 ≤ P (AB )[1 − P (A )] ≤ P (A )[1 − P (A )],)](1)[(()()()(0A P A P A P A P B A P A P −=≤≤, 故)}()()],(1)[(max{|)()()](1)[(||)()()(|A P A P A P AB P B A P A P A P AB P B P A P AB P −≤−−=−4121)(41)]([)()](1)[(22≤⎥⎦⎤⎢⎣⎡−−=−=−≤A P A P A P A P A P .习题1.41. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门课都不及格的占3%.(1)已知一学生数学不及格,他语文也不及格的概率是多少? (2)已知一学生语文不及格,他数学也不及格的概率是多少? 解:设A =“数学不及格”,B =“语文不及格”,有P (A ) = 0.15,P (B ) = 0.05,P (AB ) = 0.03,(1)所求概率为2.015.003.0)()()|(===A P AB P A B P ; (2)所求概率为6.005.003.0)()()|(===B P AB P B A P . 2. 设一批产品中一、二、三等品各占60%, 35%, 5%.从中任意取出一件,结果不是三等品,求取到的是一等品的概率.解:设A , B , C 分别表示“取出一、二、三等品”,有P (A ) = 0.6,P (B ) = 0.35,P (C ) = 0.05,故所求概率为191205.016.0)(1)()()()|(=−=−==C P A P C P C A P C A P . 3. 掷两颗骰子,以A 记事件“两颗点数之和为10”,以B 记事件“第一颗点数小于第二颗点数”,试求条件概率P (A | B ) 和P (B | A ). 解:样本点总数n = 6 2 = 36,则事件A 中的样本点有 (4, 6), (5, 5), (6, 4),即个数k A = 3,有363)(=A P , 事件B 中所含样本点个数k B = 5 + 4 + 3 + 2 + 1 + 0 = 15,有3615)(=B P ,事件AB 中的样本点有 (4, 6),即个数k C = 1,有361)(=AB P ,故1513615361)()()|(===B P AB P B A P ,31363361)()()|(===A P AB P A B P .4. 以某种动物由出生活到10岁的概率为0.8,而活到15岁的概率为0.5,问现年为10岁的这种动物能活到15岁的概率是多少?解:设A , B 分别表示“这种动物能活到10岁, 15岁”,有P (A ) = 0.8,P (B ) = 0.5,故所求概率为858.05.0)()()()()|(====A P B P A P AB P A B P .5. 设10件产品中有4件不合格品,从中任取两件,已知其中一件是不合格品,求另一件也是不合格品的概率.解:设A =“其中一件是不合格品”,B =“两件都是不合格品”,有AB = B ,样本点总数45210=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件A 中所含样本点个数30624241614=+=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=A k ,得4530)(=A P , 事件AB = B 中所含样本点个数624=⎟⎟⎠⎞⎜⎜⎝⎛=B k ,得456)()(==B P AB P ,故所求概率为2.04530456)()()|(===A P AB P A B P . 6. 设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件是合格品,求另一件也是合格品的概率.解:设A =“两件中至少有一件是合格品”,B =“两件都是合格品”,有AB = B ,样本点总数2)1(2−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N , 事件A 中所含样本点个数2)1)((2)1)(()(211−+−=−−−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=m n m n m n m n m n m m n m n m k A , 得)1()1)(()(−−+−=n n m n m n A P ,事件AB = B 中所含样本点个数2)1)((2−−−=⎟⎟⎠⎞⎜⎜⎝⎛−=m n m n m n k B , 得)1()1)(()()(−−−−==n n m n m n B P AB P ,故所求概率为11)1()1)(()1()1)(()()()|(−+−−=−−+−−−−−==m n m n n n m n m n n n m n m n A P AB P A B P . 7. 掷一颗骰子两次,以x , y 分别表示先后掷出的点数,记A = {x + y < 10},B = {x > y },求P (B | A ),P (A | B ). 解:样本点总数n = 6 2 = 36,则事件A 中所含样本点个数k A = 6 + 6 + 6 + 5 + 4 + 3 = 30,有3630)(=A P , 事件B 中所含样本点个数k B = 0 + 1 + 2 + 3 + 4 + 5 = 15,有3615)(=B P ,事件AB 中所含样本点个数k AB = 0 + 1 + 2 + 3 + 4 + 3 = 13,有3613)(=AB P ,故301336303613)()()|(===A P AB P A B P ,151336153613)()()|(===B P AB P B A P .8. 已知P (A ) = 1/3,P (B | A ) = 1/4,P (A | B ) = 1/6,求P (A ∪B ).解:因1214131)|()()(=×==A B P A P AB P ,2161121)|()()(===B A P AB P B P , 故431212131)()()()(=−+=−+=AB P B P A P B A P U . 9. 已知3.0)(=A P ,P (B ) = 0.4,5.0(=B A P ,求)|(B A B P U . 解:因2.05.03.01)()(1)()()(=−−=−−=−=B A P A P B A P A P AB P ,且8.05.04.013.01()(1)(1)()()()(=−−+−=−−+−=−+=B A P B P A P B A P B P A P B A P U , 故25.08.02.0)()()())(()|(====B A P AB P B A P B A B P B A B P U U U U . 10.设A , B 为两事件,P (A ) = P (B ) = 1/3,P (A | B ) = 1/6,求|(B A P . 解:因1816131)|()()(=×==B A P B P AB P ,有18111813131)()()()(=−+=−+=AB P B P A P B A P U , 则18718111)(1)()(=−=−==B A P B A P B A P U U ,且32311)(1)(=−=−=B P B P , 故12732187)()()|(===B P B A P B A P . 11.口袋中有1个白球,1个黑球.从中任取1个,若取出白球,则试验停止;若取出黑球,则把取出的黑球放回的同时,再加入1个黑球,如此下去,直到取出的是白球为止,试求下列事件的概率.(1)取到第n 次,试验没有结束;(2)取到第n 次,试验恰好结束.解:设A k =“第k 次取出的是黑球”,k = 1, 2, ……(1)所求概率为P (A 1A 2…A n − 1A n ) = P (A 1A 2…A n − 1)P (A n | A 1A 2…A n − 1)1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L ; (2)所求概率为)|()()(121121121−−−=n n n n n A A A A P A A A P A A A A P L L L)1(1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L . 12.一盒晶体管有8只合格品,2只不合格品.从中不返回地一只一只取出,试求第二次取出的是合格品的概率.解:设A 1, A 2分别表示“第一次取出的是合格品、不合格品”,B 表示“第二次取出的是合格品”, 故所求概率为8.090729810297108)|()()|()()(2211==×+×=+=A B P A P A B P A P B P . 13.甲口袋有a 个白球、b 个黑球,乙口袋有n 个白球、m 个黑球.(1)从甲口袋任取1个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率;(2)从甲口袋任取2个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率.解:(1)设A 0 , A 1分别表示“从甲口袋取出的是白球、黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) )1)(()1(111+++++=++×+++++×+=n m b a bn n a m n n b a b m n n b a a ; (2)设A 0 , A 1 , A 2分别表示“从甲口袋取出的是2个白球、1个白球1个黑球、2个黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) + P (A 2)P (B | A 2)。

概率论与数理统计第一章1-4高职高专

概率论与数理统计第一章1-4高职高专
A、 B不可能同

A
B
时发生
A1 , A2 ,, An 两两互斥
Ai Aj , i j, i, j 1,2,, n A1 , A2 ,, An , 两两互斥
Ai Aj , i j, i, j 1,2,
7. 事件的对立
AB , A B
习 题(P 50-51) 1.
ABC 2% 23% 20% 3% 7% 5% ABC
B
C
ABC 30%
A
2. (1) ABC=A
BC
B A
C
(2)
A
B C
3. 试把 相容的事件的和。
表示成n个两两互不
A
B
AB
ABC
C
6. 解:
(1) (2) (3) (4) (5)
第三节
频率定义
频率与概率
频率——对于随机事件A,若在N次试验中出现
—— A 与B 互相对立 每次试验 A、 B中
B A
A

有且只有一个发生
称B 为A的对立事件(or逆事件), 记为 B A 注意:“A 与B 互相对立”与 “A 与B 互斥”是不同的概念
8. 完备事件组
若 A1 , A2 ,, An两两互斥,且 Ai
n
则称 A1 , A2 ,, An 为完备事件组 或称 A1 , A2 ,, An 为 的一个分割
(1) 将3名优秀生分配到三个班级,共有3!种分 法,其余12名新生平均分配到三个班级,共有 种分法,因此所求概率为
交换 ( B C ) ( AB)C A( BC ) 分配律 ( A B) C ( A C ) ( B C ) A ( BC ) ( A B)( A C )

bipt概率论第一章试题含答案

bipt概率论第一章试题含答案

)0.6=B ,则___()P AB 个是黄球,30球,取后不放回,求第二个人取得黄球的概率为,且事件,A B 互不相容,则)=B 个产品,其中有3个正品,按不放回抽样抽产品两次,每次抽为“第一次取到正品”,事件为“第二次取到的是正品”,则条件概率,现从甲乙两人中任选一人,由此21,则能将此密码译出的概率)0.7=B )1/4=AB ,)0,(=AB P AC D.920 34. )=B D.5. )0.84=P B ()=P B B. D.1. 在的整数中任意抽取一个数,设表示抽取的数能被2整除的数,能被表示抽取的数能被()P ABC )B C .2. 在的整数中任取1个数,求此数即不能被3. 将4个,用后放回,新球用过一次即算旧球. 设A={第一5. ,每次从中取一个零件,取出的零件不再放回去,求第三6. P {7. (1)8. 以C 9. (1(2)若从市场上的商品中随机抽取一件,发现是次品,求它是甲厂生产的概率.10. 设甲袋中有6只红球,4只白球,乙袋中有7只红球,3只白球,现在从甲袋中随机取一球放入乙袋,再从乙袋中随机取一球,试求(1)两次都取到红球的概率;(2)从乙袋中取到红球的概率.11. 设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的产品中随机抽取一件,发现是次品,求该次品属A 工厂生产的概率.12. 有两箱同种类的零件,第一箱装50只,其中10只一等品,第二箱装30只,其中18只一等品.今从两箱中任意挑出一箱,然后从该箱中取零件两次,每次任取一只,不放回.求 (1)第一次取到的零件是一等品的概率;(2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率.13. 一学生接连参加同一课程的两次考试. 第一次及格的概率为p ,若第一次及格则第二次及格的概率也为p ;若第一次不及格则第二次及格的概率为2p . (1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率. (2)若已知他第二次已经及格,求他第一次及格的概率.14. 有两种花籽,发芽率分别为0.8,0.9,从中各取一颗,设花籽是否发芽相互独立,求(1)这两颗花籽都能发芽的概率;(2)至少有一颗发芽的概率;(3)恰有一颗发芽的概率.15. 根据报道美国人血型的分布近似地为:A 型37%,O 型为44%,B 型为13%,AB 型为6%.夫妻拥有的血型是相互独立的.(1)B 型的人只有输入B 和O 两种血型才安全. 若妻为B 型,夫为何种血型未知,求夫是妻的安全输血者的概率.(2)随机地取一对夫妇,求妻为A 型,夫为B 型的概率.(3)随机地取一对夫妇,求其中一人为A 型,另一人为B 型的概率. (4)随机地取一对夫妇,求其中至少有一人为O 型的概率.16. 设第一只盒子中装有3只蓝球,2只绿球,2只白球;第二只盒子中装有2只蓝球,3只绿球,4只白球. 独立地分别在两只盒子中各取一只球. (1)求至少有一只蓝球的概率. (2)求有一蓝球一只白球的概率.(3)已知至少有一只蓝球,求有一只蓝球一只白球的概率.。

概率论与数理统计(茆诗松)第二版第一章课后习题.参考答案(精品)

概率论与数理统计(茆诗松)第二版第一章课后习题.参考答案(精品)

习题1.41. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门课都不及格的占3%.(1)已知一学生数学不及格,他语文也不及格的概率是多少?(2)已知一学生语文不及格,他数学也不及格的概率是多少?解:设A =“数学不及格”,B =“语文不及格”,有P (A ) = 0.15,P (B ) = 0.05,P (AB ) = 0.03,(1)所求概率为2.015.003.0)()()|(===A P AB P A B P ; (2)所求概率为6.005.003.0)()()|(===B P AB P B A P . 2. 设一批产品中一、二、三等品各占60%, 35%, 5%.从中任意取出一件,结果不是三等品,求取到的是一等品的概率.解:设A , B , C 分别表示“取出一、二、三等品”,有P (A ) = 0.6,P (B ) = 0.35,P (C ) = 0.05, 故所求概率为191205.016.0)(1)()()()|(=−=−==C P A P C P C A P C A P . 3. 掷两颗骰子,以A 记事件“两颗点数之和为10”,以B 记事件“第一颗点数小于第二颗点数”,试求条件概率P (A | B ) 和P (B | A ).解:样本点总数n = 6 2 = 36,则事件A 中的样本点有 (4, 6), (5, 5), (6, 4),即个数k A = 3,有363)(=A P , 事件B 中所含样本点个数k B = 5 + 4 + 3 + 2 + 1 + 0 = 15,有3615)(=B P , 事件AB 中的样本点有 (4, 6),即个数k C = 1,有361)(=AB P , 故1513615361)()()|(===B P AB P B A P ,31363361)()()|(===A P AB P A B P . 4. 以某种动物由出生活到10岁的概率为0.8,而活到15岁的概率为0.5,问现年为10岁的这种动物能活到15岁的概率是多少?解:设A , B 分别表示“这种动物能活到10岁, 15岁”,有P (A ) = 0.8,P (B ) = 0.5, 故所求概率为858.05.0)()()()()|(====A P B P A P AB P A B P . 5. 设10件产品中有4件不合格品,从中任取两件,已知其中一件是不合格品,求另一件也是不合格品的概率.解:设A =“其中一件是不合格品”,B =“两件都是不合格品”,有AB = B ,样本点总数45210=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件A 中所含样本点个数30624241614=+=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=A k ,得4530)(=A P , 事件AB = B 中所含样本点个数624=⎟⎟⎠⎞⎜⎜⎝⎛=B k ,得456)()(==B P AB P ,故所求概率为2.04530456)()()|(===A P AB P A B P . 6. 设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件是合格品,求另一件也是合格品的概率.解:设A =“两件中至少有一件是合格品”,B =“两件都是合格品”,有AB = B , 样本点总数2)1(2−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N , 事件A 中所含样本点个数2)1)((2)1)(()(211−+−=−−−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=m n m n m n m n m n m m n m n m k A , 得)1()1)(()(−−+−=n n m n m n A P , 事件AB = B 中所含样本点个数2)1)((2−−−=⎟⎟⎠⎞⎜⎜⎝⎛−=m n m n m n k B , 得)1()1)(()()(−−−−==n n m n m n B P AB P , 故所求概率为11)1()1)(()1()1)(()()()|(−+−−=−−+−−−−−==m n m n n n m n m n n n m n m n A P AB P A B P . 7. 掷一颗骰子两次,以x , y 分别表示先后掷出的点数,记A = {x + y < 10},B = {x > y },求P (B | A ),P (A | B ).解:样本点总数n = 6 2 = 36,则事件A 中所含样本点个数k A = 6 + 6 + 6 + 5 + 4 + 3 = 30,有3630)(=A P , 事件B 中所含样本点个数k B = 0 + 1 + 2 + 3 + 4 + 5 = 15,有3615)(=B P , 事件AB 中所含样本点个数k AB = 0 + 1 + 2 + 3 + 4 + 3 = 13,有3613)(=AB P , 故301336303613)()()|(===A P AB P A B P ,151336153613)()()|(===B P AB P B A P . 8. 已知P (A ) = 1/3,P (B | A ) = 1/4,P (A | B ) = 1/6,求P (A ∪B ). 解:因1214131)|()()(=×==A B P A P AB P ,2161121)|()()(===B A P AB P B P , 故431212131)()()()(=−+=−+=AB P B P A P B A P U . 9. 已知3.0)(=A P ,P (B ) = 0.4,5.0(=B A P ,求)|(B A B P U . 解:因2.05.03.01)()(1)()()(=−−=−−=−=B A P A P B A P A P AB P ,且8.05.04.013.01()(1)(1)()()()(=−−+−=−−+−=−+=B A P B P A P B A P B P A P B A P U , 故25.08.02.0)()()())(()|(====B A P AB P B A P B A B P B A B P U U U U . 10.设A , B 为两事件,P (A ) = P (B ) = 1/3,P (A | B ) = 1/6,求|(B A P . 解:因1816131)|()()(=×==B A P B P AB P ,有18111813131)()()()(=−+=−+=AB P B P A P B A P U , 则18718111)(1)()(=−=−==B A P B A P B A P U U ,且32311)(1)(=−=−=B P B P , 故12732187)()()|(===B P B A P B A P . 11.口袋中有1个白球,1个黑球.从中任取1个,若取出白球,则试验停止;若取出黑球,则把取出的黑球放回的同时,再加入1个黑球,如此下去,直到取出的是白球为止,试求下列事件的概率.(1)取到第n 次,试验没有结束;(2)取到第n 次,试验恰好结束.解:设A k =“第k 次取出的是黑球”,k = 1, 2, ……(1)所求概率为P (A 1A 2…A n − 1A n ) = P (A 1A 2…A n − 1)P (A n | A 1A 2…A n − 1)1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L ; (2)所求概率为)|()()(121121121−−−=n n n n n A A A A P A A A P A A A A P L L L)1(1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L . 12.一盒晶体管有8只合格品,2只不合格品.从中不返回地一只一只取出,试求第二次取出的是合格品的概率.解:设A 1, A 2分别表示“第一次取出的是合格品、不合格品”,B 表示“第二次取出的是合格品”, 故所求概率为8.090729810297108)|()()|()()(2211==×+×=+=A B P A P A B P A P B P . 13.甲口袋有a 个白球、b 个黑球,乙口袋有n 个白球、m 个黑球.(1)从甲口袋任取1个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率;(2)从甲口袋任取2个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率.解:(1)设A 0 , A 1分别表示“从甲口袋取出的是白球、黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) )1)(()1(111+++++=++×+++++×+=n m b a bn n a m n n b a b m n n b a a ; (2)设A 0 , A 1 , A 2分别表示“从甲口袋取出的是2个白球、1个白球1个黑球、2个黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) + P (A 2)P (B | A 2)2)1)(()1(21)1)((222)1)(()1(++×−++−++++×−++++++×−++−=m n n b a b a b b m n n b a b a ab m n n b a b a a a )2)(1)(()1()1(2)2)(1(++−++−++++−=m n b a b a n b b n ab n a a . 14.有n 个口袋,每个口袋中均有a 个白球、b 个黑球.从第一个口袋中任取一球放入第二个口袋,再从第二个口袋中任取一球放入第三个口袋,如此下去,从第n − 1个口袋中任取一球放入第n 个口袋,最后再从第n 个口袋中任取一球,求此时取到的是白球的概率.解:设A k 表示“从第k 个口袋取出的是白球”,当k = 1时,有ba a A P +=)(1, 设对于k − 1,有b a a A P k +=−)(1, 则111)|()()|()()(1111++⋅+++++⋅+=+=−−−−b a a b a b b a a b a a A A P A P A A P A P A P k k k k k k k ba ab a b a b a a b a b a ab a a +=+++++=+++++=)1)(()1()1)(()1(, 故由数学归纳法可知,对任意自然数k ,b a a A P k +=)(,即ba a A P n +=)(. 15.钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是50%、30%和20%,而掉在上述三处地方被找到的概率分别是0.8、0.3和0.1.试求找到钥匙的概率.解:设A 1 , A 2 , A 3分别表示“钥匙掉在宿舍里、掉在教室里、掉在路上”,B 表示“找到钥匙”,故所求概率为P (B ) = P (A 1)P (B | A 1) + P (A 2)P (B | A 2) + P (A 3)P (B | A 3)= 0.5 × 0.8 + 0.3 × 0.3 + 0.2 × 0.1 = 0.51.16.两台车床加工同样的零件,第一台出现不合格品的概率是0.03,第二台出现不合格品的概率是0.06,加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任取一个零件是合格品的概率;(2)如果取出的零件是不合格品,求它是由第二台车床加工的概率.解:设A 1, A 2分别表示“取出的是第一台、第二台车床加工的零件”,B 表示“取出的是合格品”,(1)所求概率为96.094.03197.032)|()()|()()(2211=×+×=+=A B P A P A B P A P B P ; (2)所求概率为5.004.006.031)()|()()()()|(2222=×===B P A B P A P B P B A P B A P . 17.有两箱零件,第一箱装50件,其中20件是一等品;第二箱装30件,其中18件是一等品,现从两箱中随意挑出一箱,然后从该箱中先后任取两个零件,试求(1)第一次取出的零件是一等品的概率;(2)在第一次取出的是一等品的条件下,第二次取出的零件仍然是一等品的概率.解:设A 1 , A 2分别表示“挑出第一箱、第二箱”,B 1 , B 2分别表示“第一次、第二次取出的是一等品”,(1)所求概率为5.0301821502021)|()()|()()(2121111=×+×=+=A B P A P A B P A P B P ; (2)因14210360129173018214919502021)|()()|()()(2212121121=××+××=+=A B B P A P A B B P A P B B P , 故所求概率为5068.0710536015.0142103601)()()|(12112====B P B B P B B P .18.学生在做一道有4个选项的单项选择题时,如果他不知道问题的正确答案时,就作随机猜测.现从卷面上看题是答对了,试在以下情况下求学生确实知道正确答案的概率.(1)学生知道正确答案和胡乱猜测的概率都是1/2;(2)学生知道正确答案的概率是0.2.解:设A 1 , A 2分别表示“学生知道正确答案、胡乱猜测”,B 表示“题答对了”,(1)因P (A 1) = 0.5,P (A 2) = 0.5, 故所求概率为8.0625.05.025.05.015.015.0)|()()|()()|()()|(2211111==×+××=+=A B P A P A B P A P A B P A P B A P , (2)因P (A 1) = 0.2,P (A 2) = 0.8, 故所求概率为5.04.02.025.08.012.012.0)|()()|()()|()()|(2211111==×+××=+=A B P A P A B P A P A B P A P B A P . 19.已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,今从男女比例为22:21的人群中随机地挑选一人,发现恰好是色盲患者,问此人是男性的概率是多少?解:设A 1 , A 2分别表示“此人是男性、女性”,B 表示“此人是色盲患者”, 故所求概率为9544.00025.0432105.0432205.04322)|()()|()()|()()|(2211111=×+××=+=A B P A P A B P A P A B P A P B A P . 20.口袋中有一个球,不知它的颜色是黑的还是白的.现再往口袋中放入一个白球,然后再从口袋中任意取出一个,发现取出的是白球,试问口袋中原来那个球是白球的可能性为多少?解:设A 1 , A 2分别表示“原来那个球是白球、黑球”,B 表示“取出的是白球”, 故所求概率为3275.05.05.05.015.015.0)|()()|()()|()()|(2211111==×+××=+=A B P A P A B P A P A B P A P B A P . 21.将n 根绳子的2n 个头任意两两相接,求恰好结成n 个圈的概率.解:样本点总数为N = (2n − 1) (2n − 3)…3 ⋅ 1 = (2n − 1)!!,事件A =“恰好结成n 个圈”所含样本点个数K = 1, 故所求概率为!)!12(1)(−=n A P . 22.m 个人相互传球,球从甲手中开始传出,每次传球时,传球者等可能地把球传给其余m − 1个人中的任何一个.求第n 次传球时仍由甲传出的概率.解:设A k 表示“第k 次传球时由甲传出”,k = 1, 2, ……,有P (A 1) = 1, 则)(111111)](1[0)|()()|()()(111111−−−−−−−−−=−⋅−+=+=k k k k k k k k k A P m m m A P A A P A P A A P A P A P , 故⎥⎦⎤⎢⎣⎡−−−−−−=−−−=−−)(11111111)(1111)(11n n n A P m m m m A P m m A P )(111111122−⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛−−−=n A P m m m )(11)1(11)1(11)1(111111112232A P m m m m m n n n n n n −−−−−−⎟⎠⎞⎜⎝⎛−−+⎟⎠⎞⎜⎝⎛−−+⎟⎠⎞⎜⎝⎛−−++⎟⎠⎞⎜⎝⎛−−−=L⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−−−=⎟⎠⎞⎜⎝⎛−−−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−−−−=⎟⎠⎞⎜⎝⎛−−++⎟⎠⎞⎜⎝⎛−−−=−−−−2223211111111111111)1(1111n n n n m m m m m m m m L . 23.甲、乙两人轮流掷一颗骰子,甲先掷.每当某人掷出1点时,则交给对方掷,否则此人继续掷,试求第n 次由甲掷的概率.解:设A k 表示“第k 次由甲掷骰子”,k = 1, 2, ……,有P (A 1) = 1, 则)(326161)](1[65)()|()()|()()(1111111−−−−−−−+=⋅−+⋅=+=k k k k k k k k k k A P A P A P A A P A P A A P A P A P , 故)(32613261)(32613261)(3261)(2221−−−⎟⎠⎞⎜⎝⎛+⋅+=⎥⎦⎤⎢⎣⎡++=+=n n n n A P A P A P A P 1111123221213232132161)(326132613261−−−−−⎟⎠⎞⎜⎝⎛⋅+=⎟⎠⎞⎜⎝⎛+−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−=⋅⎟⎠⎞⎜⎝⎛+⋅⎟⎠⎞⎜⎝⎛++⋅+=n n n n n A P L . 24.甲口袋有1个黑球、2个白球,乙口袋有3个白球.每次从两口袋中各任取一球,交换后放入另一口袋.求交换n 次后,黑球仍在甲口袋中的概率.解:设A k 表示“交换k 次后黑球在甲口袋中”,k = 1, 2, ……,有P (A 0) = 1, 则)(313131)](1[32)()|()()|()()(1111111−−−−−−−+=⋅−+⋅=+=k k k k k k k k k k A P A P A P A A P A P A A P A P A P , 故)(313131)(31313131)(3131)(22221−−−⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⎥⎦⎤⎢⎣⎡++=+=n n n n A P A P A P A P n n n n n A P ⎟⎠⎞⎜⎝⎛⋅+=⎟⎠⎞⎜⎝⎛+−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−=⋅⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛+=3121213131131131)(3131313102L . 25.假设只考虑天气的两种情况:有雨或无雨.若已知今天的天气情况,明天天气保持不变的概率为p ,变的概率为1 − p .设第一天无雨,试求第n 天也无雨的概率.解:设A k 表示“第k 天也无雨”,k = 1, 2, ……,有P (A 1) = 1, 则)1()](1[)()|()()|()()(111111p A P p A P A A P A P A A P A P A P k k k k k k k k k −⋅−+⋅=+=−−−−−−= 1 − p + (2p − 1) P (A k − 1),故P (A n − 1) = 1 − p + (2p − 1) P (A n − 1) = 1 − p + (2p − 1)[1 − p + (2p − 1) P (A n − 2)]= 1 − p + (2p − 1)(1 − p ) + (2p − 1)2 P (A n − 2)= 1 − p + (2p − 1)(1 − p ) + … + (2p − 1)n − 2 (1 − p ) + (2p − 1)n − 1P (A 1)111)12(2121)12()12(1])12(1)[1(−−−−+=−+−−−−−=n n n p p p p p . 26.设罐中有b 个黑球、r 个红球,每次随机取出一个球,取出后将原球放回,再加入c (c > 0)个同色的球.试证:第k 次取到黑球的概率为b /(b + r ),k = 1, 2, ….证:设B k (b , r ) 表示“罐中有b 个黑球、r 个红球时,第k 次取到黑球”,k = 1, 2, …,用数学归纳法证明r b b r b B P k +=)),((, 当k = 1时,rb b r b B P +=)),((1,结论成立, 设对于k − 1,结论成立,即rb b r b B P k +=−)),((1, 对于k ,设A 1 , A 2分别表示“第一次取到黑球、红球”,有P (B k (b , r ) | A 1) = P (B k − 1 (b + c , r )),P (B k (b , r ) | A 2) = P (B k − 1 (b , r + c )),则P (B k (b , r )) = P (A 1) P (B k (b , r ) | A 1) + P (A 2) P (B k (b , r ) | A 2)= P (A 1) P (B k − 1 (b + c , r )) + P (A 2) P (B k − 1 (b , r + c ))rb bc r b r b br c b b c r b b r b r c r b c b r b b +=+++++=++⋅+++++⋅+=))(()(, 故对于k ,结论成立,rb b r b B P k +=)),((. 27.口袋中a 个白球,b 个黑球和n 个红球,现从中一个一个不返回地取球.试证白球比黑球出现得早的概率为a /(a + b ),与n 无关.证:设B n 表示“口袋中有n 个红球时白球比黑球出现得早”,n = 0, 1, 2, …, 用数学归纳法证明ba a B P n +=)(,与n 无关, 当n = 0时,显然有ba a B P +=)(0,结论成立, 设对于n − 1,结论成立,即ba a B P n +=−)(1, 对于B n ,设A 1 , A 2 , A 3分别表示“第一次取球时取到白球、黑球、红球”,有P (B n | A 3) = P (B n −1), 则P (B n ) = P (A 1) P (B n | A 1) + P (A 2) P (B n | A 2) + P (A 3) P (B n | A 3) = P (A 1) ⋅ 1 + P (A 2) ⋅ 0 + P (A 3) P (B n −1) ba ab a n b a an b a a b a a n b a n n b a a +=+++++=+⋅+++++=))(()(, 故对于n ,结论成立,b a a B P n +=)(,与n 无关. 28.设P (A ) > 0,试证)()(1)|(A P B P A B P −≥. 证:)()(1)()(1)()()()()()|(A P B P A P B A P A P B A P A P A P AB P A B P −≥−=−==. 29.若事件A 与B 互不相容,且0)(≠B P ,证明:)(1)()|(B P A P B A P −=. 证:因事件A 与B 互不相容,有B A ⊂,故)(1)()()()()()|(B P A P B P A P B P B A P B A P −===. 30.设A , B 为任意两个事件,且A ⊂ B ,P (B ) > 0,则成立P (A ) ≤ P (A | B ). 证:)()()()()()|(A P B P A P B P AB P B A P ≥==.31.若)|()|(B A P B A P >,试证)|()|(A B P A B P >. 证:因)(1)()()()()|()()()|(B P AB P A P B P B A P B A P B P AB P B A P −−==>=,有P (AB )[1 − P (B )] > P (B )[P (A ) − P (AB )], 则P (AB ) > P (A ) P (B ),得P (AB )[1 − P (A )] > P (A )[P (B ) − P (AB )], 故)|()()()(1)()()()()|(A B P A P B A P A P AB P B P A P AB P A B P ==−−>=. 32.设P (A ) = p ,P (B ) = 1 − ε ,证明:εεε−≤≤−−1)|(1p B A P p . 证:因P (AB ) ≤ P (A ) = p ,且P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1 = p + 1 − ε − 1 = p − ε , 故p − ε ≤ P (AB ) ≤ p ,即εεεε−≤−==≤−−11)()()()|(1p AB P B P AB P B A P p . 33.若P (A | B ) = 1,证明:1|(=A B P . 证:因1)()()|(==B P AB P B A P ,有P (AB ) = P (B ), 则P (A ∪B ) = P (A ) + P (B ) − P (AB ) = P (A ),即()()(1)(1)(B A P B A P B A P A P A P ==−=−=U U , 故1)()()|(==A P B A P A B P .。

(完整版)概率论第二版习题

(完整版)概率论第二版习题

习题一 1习题一1. 用集合的形式写出下列随机试验的样本空间与随机事件A :(1)掷两枚均匀骰子,观察朝上面的点数,事件A 表示“点数之和为7”;(2)记录某电话总机一分钟内接到的呼唤次数,事件A 表示“一分钟内呼唤次数不超过3次”;(3)从一批灯泡中随机抽取一只,测试它的寿命,事件A 表示“寿命在2 000到2 500小时之间”.2. 投掷三枚大小相同的均匀硬币,观察它们出现的面.(1)试写出该试验的样本空间;(2)试写出下列事件所包含的样本点:A ={至少出现一个正面},B ={出现一正、二反},C ={出现不多于一个正面};(3)如记i A ={第i 枚硬币出现正面}(i =1,2,3),试用123,,A A A 表示事件A ,B ,C .3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A ={取得球的号码是偶数},B ={取得球的号码是奇数},C ={取得球的号码小于5},问下列运算表示什么事件:(1)A B U ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)B C U ;(7)A C -.4. 在区间]2,0[上任取一数,记112A x x ⎧⎫=<≤⎨⎬⎩⎭,1342B x x ⎧⎫=≤≤⎨⎬⎩⎭,求下列事件的表达式:(1)A B U ;(2)AB ;(3)AB ,(4)A B U .5. 用事件A ,B ,C 的运算关系式表示下列事件:(1)A 出现,B ,C 都不出现;(2)A ,B 都出现,C 不出现;(3)所有三个事件都出现;(4)三个事件中至少有一个出现;(5)三个事件都不出现;(6)不多于一个事件出现;(7)不多于二个事件出现;(8)三个事件中至少有二个出现.6. 一批产品中有合格品和废品,从中有放回地抽取三个产品,设i A 表示事件“第i 次抽到废品”,试用i A 的运算表示下列各个事件:(1)第一次、第二次中至少有一次抽到废品;(2)只有第一次抽到废品;(3)三次都抽到废品;(4)至少有一次抽到合格品;(5)只有两次抽到废品.7. 接连进行三次射击,设i A ={第i 次射击命中}(i =1,2,3),试用321,,A A A 表示下述事件:(1)A ={前两次至少有一次击中目标};(2)B ={三次射击恰好命中两次};工程数学 概率统计简明教程(第二版)2 (3)C ={三次射击至少命中两次};(4)D ={三次射击都未命中}.8. 盒中放有a 个白球b 个黑球,从中有放回地抽取r 次(每次抽一个,记录其颜色,然后放回盒中,再进行下一次抽取).记i A ={第i 次抽到白球}(i =1,2,…,r ),试用{i A }表示下述事件:(1)A ={首个白球出现在第k 次};(2)B ={抽到的r 个球同色},其中1k r ≤≤.*9. 试说明什么情况下,下列事件的关系式成立:(1)ABC =A ;(2)A B C A =U U .习题二 3习题二1. 从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率.2. 一口袋中有5个红球及2个白球.从这袋中任取一球,看过它的颜色后放回袋中,然后,再从这袋中任取一球.设每次取球时口袋中各个球被取到的可能性相同.求:(1)第一次、第二次都取到红球的概率;(2)第一次取到红球、第二次取到白球的概率;(3)两次取得的球为红、白各一的概率;(4)第二次取到红球的概率.3. 一个口袋中装有6只球,分别编上号码1~6,随机地从这个口袋中取2只球,试求:(1)最小号码是3的概率;(2)最大号码是3的概率.4. 一个盒子中装有6只晶体管,其中有2只是不合格品,现在作不放回抽样.接连取2次,每次随机地取1只,试求下列事件的概率:(1)2只都是合格品;(2)1只是合格品,一只是不合格品;(3)至少有1只是合格品.5. 从某一装配线上生产的产品中选择10件产品来检查.假定选到有缺陷的和无缺陷的产品是等可能发生的,求至少观测到一件有缺陷的产品的概率,结合“实际推断原理”解释得到的上述概率结果.6. 某人去银行取钱,可是他忘记密码的最后一位是哪个数字,他尝试从0~9这10个数字中随机地选一个,求他能在3次尝试之中解开密码的概率.7. 掷两颗骰子,求下列事件的概率:(1)点数之和为7;(2)点数之和不超过5;(3)点数之和为偶数.8. 把甲、乙、丙三名学生随机地分配到5间空置的宿舍中去,假设每间宿舍最多可住8人,试求这三名学生住在不同宿舍的概率.9. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,求下列事件的概率:(1)事件A ={其中恰有一位精通英语};(2)事件B ={其中恰有两位精通英语};(3)事件C ={其中有人精通英语}.10. 甲袋中有3只白球,7只红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球,现从两个袋中各取一球,求两球颜色相同的概率.11. 有一轮盘游戏,是在一个划分为10等份弧长的圆轮上旋转一个球,这些弧上依次标着0~9十个数字.球停止在那段弧对应的数字就是一轮游戏的结果.数字按下面的方式涂色:0看作非奇非偶涂为绿色,奇数涂为红色,偶数涂为黑色.事件A ={结果为奇数},事件B ={结果为涂黑色的数}.求以下事件的概率:(1))(A P ;(2))(B P ;(3)()P A B U ;(4))(AB P .12. 设一质点一定落在xOy 平面内由x 轴,y 轴及直线x +y =1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的可能性与这区域的面积成正比,计算这质点落在直线x =31的左边的概率. 13. 甲、乙两艘轮船都要在某个泊位停靠6 h ,假定它们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停靠泊位时必须等待的概率.工程数学 概率统计简明教程(第二版)4 14. 已知B A ⊂,4.0)(=A P ,6.0)(=B P ,求:(1))(),(B P A P ;(2)()P A B U ;(3))(AB P ;(4))(),(B A P A B P ;(5))(B A P .15. 设A ,B 是两个事件,已知P (A )=0.5,P (B )=0.7,()P A B U =0.8,试求:P (A -B )与P (B -A ).*16. 盒中装有标号为1~r 的r 个球,今随机地抽取n 个,记录其标号后放回盒中;然后再进行第二次抽取,但此时抽取m 个,同样记录其标号,这样得到球的标号记录的两个样本,求这两个样本中恰有k 个标号相同的概率.习题三 5习题三1. 已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)(=A B P ,试求)(AB P 及)(B A P .2. 一批零件共100个,次品率为10%,每次从中任取一个零件,取出的零件不再放回去,求第三次才取得正品的概率.3. 某人有一笔资金,他投入基金的概率为0.58,购买股票的概率为0.28,两项投资都做的概率为0.19.(1)已知他已投入基金,再购买股票的概率是多少?(2)已知他已购买股票,再投入基金的概率是多少?4. 罐中有m 个白球,n 个黑球,从中随机抽取一个,若不是白球则放回盒中,再随机抽取下一个;若是白球,则不放回,直接进行第二次抽取,求第二次取得黑球的概率.5. 一个食品处理机制造商分析了很多消费者的投诉,发现他们属于以下列出的6种类型:如果收到一个消费者的投诉,已知投诉发生在保质期内,求投诉的原因是产品外观的概率.6. 给定5.0)(=A P ,3.0)(=B P ,15.0)(=AB P ,验证下面四个等式:)()(A P B A P =;)()(A P B A P =;)()(B P A B P =;)()(B P A B P =.7. 已知甲袋中装有6只红球,4只白球,乙袋中装有8只红球,6只白球.求下列事件的概率:(1)随机地取一只袋,再从该袋中随机地取一只球,该球是红球;(2)合并两只口袋,从中随机地取1只球,该球是红球.8. 设某一工厂有A ,B ,C 三间车间,它们生产同一种螺钉,每个车间的产量,分别占该厂生产螺钉总产量的25%、35%、40%,每个车间成品中次货的螺钉占该车间出产量的百分比分别为5%、4%、2%.如果从全厂总产品中抽取一件产品,(1)求抽取的产品是次品的概率;(2)已知得到的是次品,求它依次是车间A ,B ,C 生产的概率.9. 某次大型体育运动会有1 000名运动员参加,其中有100人服用了违禁药品.在使用者中,假定有90人的药物检查呈阳性,而在未使用者中也有5人检验结果显示阳性.如果一个运动员的药物检查结果是阳性,求这名运动员确实使用违禁药品的概率.10. 发报台分别以概率0.6和0.4发出信号“*”和“—”.由于通信系统受到干扰,当发出信号“*”时,收报台未必收到信号“*”,而是分别以概率0.8和0.2收到信号“*”和“—”.同样,当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收报台收到信号“*”时,发报台确是发出信号“*”的概率.*11. 甲袋中有4个白球6个黑球,乙袋中有4个白球2个黑球.先从甲袋中任取2球投入乙袋,然后再从乙袋中任取2球,求从乙袋中取到的2个都是黑球的概率.12. 设事件B A ,相互独立.证明:B A ,相互独立,B A ,相互独立.工程数学 概率统计简明教程(第二版)6 13. 设事件A 与B 相互独立,且p A P =)(,q B P =)(.求下列事件的概率:(),(),().P A B P A B P A B U U U14. 已知事件A 与B 相互独立,且91)(=B A P ,)()(B A P B A P =.求:)(),(B P A P . 15. 三个人独立破译一密码,他们能独立译出的概率分别为0.25,0.35,0.4,求此密码被译出的概率.16. 设六个相同的元件,如下图所示那样安置在线路中.设每个元件不通达的概率为p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独立的.*17. (配对问题)房间中有n 个编号为1~n 的座位.今有n 个人(每人持有编号为1~n 的票)随机入座,求至少有一人持有的票的编号与座位号一致的概率.(提示:使用概率的性质5的推广,即对任意n 个事件12,,,n A A A L ,有1121111111()()(1)()(1)().)k k n nk k i j k i j n k k n i i n i i i n P A P A P A A P A A P A A =≤<≤=--≤<<<≤⎛⎫=-+ ⎪⎝⎭+-++-∑∑∑L LL L L U *18. (波利亚(Pólya )罐子模型)罐中有a 个白球,b 个黑球,每次从罐中随机抽取一球,观察其颜色后,连同附加的c 个同色球一起放回罐中,再进行下一次抽取.试用数学归纳法证明:第k 次取得白球的概率为a a b+(1k ≥为整数).(提示:记{}k A k =第次取得白球,使用全概率公式1111()=()()+()()k k k P A P A P A A P A P A A 及归纳假设.)19. 甲乙两人各自独立地投掷一枚均匀硬币n 次,试求:两人掷出的正面次数相等的概率.20. 假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.若一周五个工作日里每天是否发生故障相互独立,试求一周五个工作日里发生3次故障的概率.21. 灯泡耐用时间在1 000 h 以上的概率为0.2,求:三个灯泡在使用1 000 h 以后最多只有一个坏了的概率.22. 某宾馆大楼有4部电梯,通过调查,知道在某时刻T ,各电梯正在运行的概率均为0.75,求:(1)在此时刻所有电梯都在运行的概率;(2)在此时刻恰好有一半电梯在运行的概率;(3)在此时刻至少有1台电梯在运行的概率.23. 设在三次独立试验中,事件A 在每次试验中出现的概率相同.若已知A 至少出现一次的概率等于2719,求事件A 在每次试验中出现的概率)(A P . *24. 设双胞胎中为两个男孩或两个女孩的概率分别为a 及b .今已知双胞胎中一个是男孩,求另一个也是男孩的概率.习题三725. 两射手轮流打靶,谁先进行第一次射击是等可能的.假设他们第一次的命中率分别为0.4及0.5,而以后每次射击的命中率相应递增0.05,如在第3次射击首次中靶,求是第一名射手首先进行第一次射击的概率.26. 袋中有2n-1个白球和2n个黑球,今随机(不放回)抽取n个,发现它们是同色的,求同为黑色的概率.*27. 3个外形相同但可辨别的球随机落入编号1~4的四个盒子,(1)求恰有两空盒的概率;(2)已知恰有两空盒,求有球的盒子的最小编号为2的概率.工程数学 概率统计简明教程(第二版)8 习题四1. 下列给出的数列,哪些可作为随机变量的分布律,并说明理由.(1)15i i p =(0,1,2,3,4,5)i =; (2)6)5(2i p i -=(0,1,2,3)i =; (3)251+=i p i (1,2,3,4,5)i =. 2. 试确定常数C ,使i C i X P 2)(== (0,1,2,3,4)i =成为某个随机变量X 的分布律,并求:(1)(2)P X >;(2)1522P X ⎛⎫<< ⎪⎝⎭;(3)(3)F (其中F (·)为X 的分布函数). 3. 一口袋中有6个球,在这6个球上分别标有-3,-3,1,1,1,2这样的数字.从这口袋中任取一球,设各个球被取到的可能性相同,求取得的球上标明的数字X 的分布律与分布函数.4. 一袋中有5个乒乓球,编号分别为1,2,3,4,5.从中随机地取3个,以X 表示取出的3个球中最大号码,写出X 的分布律和分布函数.5. 在相同条件下独立地进行5次射击,每次射击时击中目标的概率为0.6,求击中目标的次数X 的分布律.6. 从一批含有10件正品及3件次品的产品中一件一件地抽取产品.设每次抽取时,所面对的各件产品被抽到的可能性相等.在下列三种情形下,分别求出直到取得正品为止所需次数X 的分布律:(1)每次取出的产品立即放回这批产品中再取下一件产品;(2)每次取出的产品都不放回这批产品中;(3)每次取出一件产品后总以一件正品放回这批产品中.7. 设随机变量X ),6(~p B ,已知)5()1(===X P X P ,求p 与)2(=X P 的值.8. 一张试卷印有十道题目,每个题目都为四个选项的选择题,四个选项中只有一项是正确的.假设某位学生在做每道题时都是随机地选择,求该位学生未能答对一道题的概率以及答对9道以上(包括9道)题的概率.9. 市120接听中心在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分布,而与时间间隔的起点无关(时间以小时计算):求:(1)某天中午12点至下午3点没有收到紧急呼救的概率;(2)某天中午12点至下午5点至少收到1次紧急呼救的概率.10. 某商店出售某种物品,根据以往的经验,每月销售量X 服从参数4=λ的泊松分布.问在月初进货时,要进多少才能以99%的概率充分满足顾客的需要?11. 有一汽车站有大量汽车通过,每辆汽车在一天某段时间出事故的概率为0.000 1.在某天该段时间内有1 000辆汽车通过,求事故次数不少于2的概率.12. 设鸡下蛋数X 服从参数为λ的泊松分布,但由于鸡舍是封闭的,我们只能观察到从鸡舍输出的鸡蛋.记Y 为观察到的鸡蛋数,即Y 的分布与给定>0X 的条件下X 的分布相同,今求Y 的分布律.习题四 9 (提示:()(0),1,2,.P Y k P X k X k ===>=L 对于)13. 袋中有n 把钥匙,其中只有一把能把门打开,每次抽取一把钥匙去试着开门.试在:(1)有放回抽取;(2)不放回抽取两种情况下,求首次打开门时试用钥匙次数的分布律.14. 袋中有a 个白球、b 个黑球,有放回地随机抽取,每次取1个,直到取到白球停止抽取,X 为抽取次数,求()P X n ≥.15. 据统计,某高校在2010年上海世博会上的学生志愿者有6 000名,其中女生3 500名.现从中随机抽取100名学生前往各世博地铁站作引导员,求这些学生中女生数X 的分布律.16. 设随机变量X 的密度函数为2,()0,x f x ⎧=⎨⎩0,x A <<其他,试求:(1)常数A ;(2))5.00(<<X P . 17. 设随机变量X 的密度函数为()ex f x A -=()x -∞<<+∞,求:(1)系数A ;(2))10(<<X P ;(3)X 的分布函数. 18. 证明:函数22e ,0,()0,0,xc x x f x c x -⎧⎪≥=⎨⎪<⎩(c 为正的常数)可作为一个密度函数.19. 经常往来于某两地的火车晚点的时间X (单位:min )是一个连续型随机变量,其密度函数为23(25),55,()5000,x x f x ⎧--<<⎪=⎨⎪⎩其他. X 为负值表示火车早到了.求火车至少晚点2 min 的概率.20. 设随机变量X 的分布函数为0()1(1)e x F x x -⎧=⎨-+⎩,0,,0,x x ≤>求X 的密度函数,并计算)1(≤X P 和)2(>X P .21. 设随机变量X 在(1,6)上服从均匀分布,求方程012=++Xt t 有实根的概率.22. 设随机变量X 在)1,0(上服从均匀分布,证明:对于0,0,1a b a b ≥≥+≤,()P a X b b a ≤≤=-,并解释这个结果.23. 设顾客在某银行的窗口等待服务的时间X (单位:min )是一随机变量,它服从51=λ的指数分布,其密度函数为51e ()50x f x -⎧⎪=⎨⎪⎩,0,,x >其它.某顾客在窗口等待服务,若超过10 min ,他工程数学 概率统计简明教程(第二版)10 就离开.(1)设某顾客某天去银行,求他未等到服务就离开的概率;(2)设某顾客一个月要去银行五次,求他五次中至多有一次未等到服务而离开的概率.24. 以X 表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(单位:min ),X 的分布函数是0.21e ,0,()0,x x F x -⎧->=⎨⎩其他. 求:(1)X 的密度函数;(2)P (至多等待2 min );(3)P (至少等待4 min );(4)P (等待2 min 至4 min 之间);(5)P (等待至多2 min 或至少4 min ).25. 设随机变量X 的分布函数为()arctan ()F x A B x x =+-∞<<+∞,求:(1)常数A ,B ;(2)(1)P X <;(3)随机变量X 的密度函数.26. 设随机变量X 服从)1,0(N ,借助于标准正态分布的分布函数表计算:(1))2.2(<X P ;(2))76.1(>X P ;(3))78.0(-<X P ;(4))55.1(<X P ;(5))5.2(>X P ;(6)确定a ,使得99.0)(=<a X P .27. 设随机变量X 服从)16,1(-N ,借助于标准正态分布的分布函数表计算:(1))44.2(<X P ;(2))5.1(->X P ;(3))8.2(-<X P ;(4))4(<X P ;(5))25(<<-X P ;(6))11(>-X P ;(7)确定a ,使得)()(a X P a X P <=>.28. 设随机变量X 服从正态分布2(,)N μσ,且二次方程240t t X ++=无实根的概率为12,求μ的值. 29. 某厂生产的滚珠直径X 服从正态分布)01.0,05.2(N ,合格品的规格规定直径为2.02±,求滚珠的合格率.30. 某人上班路上所需的时间)100,30(~N X (单位:min ),已知上班时间是8:30.他每天7:50分出门,求:(1)某天迟到的概率;(2)一周(以5天计)最多迟到一次的概率.习题五11习题五1. 二维随机变量),(Y X 只能取下列数组中的值:(0,0),(-1,1),11,3⎛⎫- ⎪⎝⎭,(2,0),且取这些组值的概率依次为125,121,31,61.求这二维随机变量的分布律,并写出关于X 及关于Y 的边缘分布律.2. 一口袋中有四个球,它们依次标有数字1,2,2,3.从这袋中任取一球后,不放回袋中,再从袋中任取一球.设每次取球时,袋中每个球被取到的可能性相同.以Y X ,分别记第一、二次取得的球上标有的数字,求),(Y X 的分布律及)(Y X P =.*3. 从3名数据处理经理、2名高级系统分析师和2名质量控制工程师中随机挑选4人组成一个委员会,研究某项目的可行性.设X 表示从委员会选出来的数据处理人数,Y 表示选出来的高级系统分析师的人数,求:(1)X 与Y 的联合分布律;(2)()P X Y ≥.*4. 盒中有4个红球4个黑球,不放回抽取4次,每次取1个,X ={前2次抽中红球数},Y ={4次共抽中红球数},求(1)二维随机变量),(Y X 的联合分布律:(2)给定1X =,Y 的条件分布律.5. 箱子中装有10件产品,其中2件是次品,每次从箱子中任取一件产品,共取2次.定义随机变量Y X ,如下:⎩⎨⎧=10X ,,若第一次取出正品,若第一次取出次品,⎩⎨⎧=10Y ,,若第二次取出正品,若第二次取出次品,分别就下面两种情况(1)放回抽样,(2)不放回抽样.求:(1)二维随机变量),(Y X 的联合分布律; (2)关于X 及关于Y 的边缘分布律;(3)X 与Y 是否独立,为什么?6. 设二维随机变量),(Y X的联合密度函数为01,01,(,)0,x y f x y <<<<=⎩其他.求:(1)关于X 及关于Y 的边缘密度函数;(2)110,022P X Y ⎛⎫≤≤≤≤ ⎪⎝⎭. 7. 设二维随机变量),(Y X 服从在区域D 上的均匀分布,其中区域D 为x 轴,y 轴及直线y =2x +1围成的三角形区域.求:(1)),(Y X 的联合密度函数;(2)110,044P X Y ⎛⎫-<<<< ⎪⎝⎭;(3)关于X 及关于Y 的边缘密度函数;(4)X 与Y 是否独立,为什么?8. 设二维随机变量),(Y X 服从在区域D 上的均匀分布,其中D 为由直线x +y =1,x +y =-1,工程数学 概率统计简明教程(第二版)12x -y =1,x -y =-1围成的区域.求:(1)关于X 及关于Y 的边缘密度函数;(2)()P X Y ≤;(3)X 与Y 是否独立,为什么?9. 设随机变量X ,Y 是相互独立且分别具有下列分布律:写出表示),(Y X 的联合分布律.10. 设进入邮局的人数服从参数为λ的泊松分布,每一个进入邮局的人是男性的概率为p (0<p <1),X 为进入邮局的男性人数,Y 为女性人数,求:(1)关于X 及关于Y 的边缘分布律;(2)X 与Y 是否独立,为什么?11. 设X 与Y 是相互独立的随机变量,X 服从[0,0.2]上的均匀分布,Y 服从参数为5的指数分布,求:),(Y X 的联合密度函数及)(Y X P ≥.12. 设二维随机变量),(Y X 的联合密度函数为(34)e (,)0x y k f x y -+⎧=⎨⎩,0,0,x y >>其他,求:(1)系数k ;(2))20,10(≤≤≤≤Y X P ;(3)证明X 与Y 相互独立.13. 已知二维随机变量),(Y X 的联合密度函数为⎩⎨⎧-=0)1(),(y x k y x f ,01,0,x y x <<<<其他,,(1)求常数k ;(2)分别求关于X 及关于Y 的边缘密度函数;(3)X 与Y 是否独立?为什么.14. 设随机变量X 与Y 的联合分布律为:且53)01(===X Y P ,求:(1)常数a ,b 的值;(2)当a ,b 取(1)中的值时,X 与Y 是否独立,为什么?*15. 对于第2题中的二维随机变量),(Y X 的分布,求当2=Y 时X 的条件分布律.习题五13*16. 对于第7题中的二维随机变量),(Y X 的分布,求:(1)1110442P X Y ⎛⎫-<<<< ⎪⎝⎭;(2)当102X x x ⎛⎫=-<< ⎪⎝⎭时Y 的条件密度函数()Y X f y x . *17. 设二维连续型随机变量),(Y X ,证明:对任何x ,有()()()d ,Y P X x P X x Y y f y y +∞-∞≤=≤=⎰其中()Y f g 为Y 的边缘密度函数.工程数学 概率统计简明教程(第二版)14习题六1. 设随机变量X 的分布律为求出:(1)2+X ;(2)1+-X ;(3)2X 的分布律.2. 设随机变量X 服从参数1=λ的泊松分布,记随机变量⎩⎨⎧=10Y ,11.X X ≤>若,若试求随机变量Y 的分布律.3. 设随机变量X 的分布密度为⎩⎨⎧=02)(x x f ,01,,x <<其他,求出以下随机变量的密度函数:(1)X 2;(2)1+-X ;(3)2X .4. 对圆片直径进行测量.测量值X 服从)6,5(上的均匀分布,求圆片面积Y 的密度函数.5. 设随机变量X 服从正态分布),(10N ,试求随机变量函数2Y X =的密度函数)(y f Y .6. 设随机变量X 服从参数1=λ的指数分布,求随机变量函数e X Y =的密度函数)(y f Y .7. 设随机变量X 服从)1,0(N ,证明:a X +σ服从),(2σa N ,其中σ,a 为两个常数且0>σ.8. 设随机变量X 在区间]2,1[-上服从均匀分布,随机变量⎪⎩⎪⎨⎧-=101Y 0,0,0.X X X >=<,若,若,若试求随机变量函数Y 的分布律.9. 设二维随机变量),(Y X 的分布律:习题六15求以下随机变量的分布律:(1)Y X +;(2)Y X -;(3)X 2;(4)XY . 10. 设随机变量X ,Y 相互独立,且11,4X B ⎛⎫ ⎪⎝⎭:,11,4Y B ⎛⎫⎪⎝⎭:, (1)记随机变量Y X Z +=,求Z 的分布律;(2)记随机变量X U 2=,求U 的分布律.从而证实:即使X ,Y 服从同样的分布,Y X +与X 2的分布并不一定相同.*11. 设随机变量X 服从参数为λ的泊松分布,给定X k =,Y 的条件分布为参数为k ,p 的二项分布(0<p <1,k 为非负整数).求:(1)Y 的分布律;(2)X -Y 的分布律;(3)证明:Y 与X -Y 相互独立. (提示:()()(),0,1,.k yP Y y P Y y X k P X k y +∞=======∑L )12. 设二维随机变量X ,Y 的联合分布律为:求:(1)max(,)U X Y =的分布律; (2)),min(Y X V =的分布律; (3)(,)U V 的联合分布律.13. 设二维随机变量()Y X ,服从在D上的均匀分布,其中D为直线0,0==y x ,2,2==y x 所围成的区域,求X Y -的分布函数及密度函数.*14. 设随机变量X ,Y 相互独立,且有相同的分布(0,1)N ,U X Y =-,V X Y =-,求:(1)U 的密度函数;(2)V 的密度函数.15. 设二维随机变量,X Y 的分布密度为),(y x f ,用函数f 表达随机变量Y X +的密度函数.16. 设随机变量2~(,)X N a σ,2~(,)Y N b τ,且X ,Y 相互独立,Z X Y =+,求Z X x =的条件分布密度函数.17. 用于计算机接线柱上的保险丝寿命服从参数2.0=λ的指数分布.每个接线柱要求两个这样的保险丝,这两个保险丝有独立的寿命X 与Y .(1)其中一个充当备用件,仅当第一个保险丝失效时投入使用.求总的有效寿命Z =X +Y 的密度函数.(2)若这两个保险丝同时工程数学 概率统计简明教程(第二版)16独立使用,则求有效寿命max(,)U X Y =的密度函数.18. 设随机变量X ,Y 相互独立,且都服从区间(0,1)上的均匀分布,记Z 是以X ,Y 为边长的矩形的面积,求Z 的密度函数.*19. 设随机变量X ,Y 相互独立,且都服从区间(0,1)上的均匀分布,求X Z Y=的密度函数.(提示:使用1()()()()d ()d Z Y F z P Z z P Z z Y y f y y P X yz y =≤=≤==≤⎰⎰,其中用到X 与Y 的独立性.)习题十二23习题七1. 设随机变量X 的分布律为求:(1)()E X ;(2))1(+-X E ;(3))(2X E ;(4)()D X .2. 设随机变量X 服从参数为λ的泊松分布(0>λ),且已知((2)(3))2E X X --=,求λ的值.3. 设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,试求2X 的数学期望2()E X .4. 国际市场每年对我国某种出口商品的需求量X 是一个随机变量.它在[2 000,4 000](单位:吨)上服从均匀分布.若每售出一吨,可得外汇3万美元,若销售不出而积压,则每吨需保养费1万美元.问应组织多少货源,才能使平均收益最大?5. 一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率相应为0.1,0.2,0.3.假设各部件的状态相互独立,以X 表示同时需要调整的部件数,试求X 的数学期望()E X 和方差()D X .6. 设随机变量X 有分布律:1()(1,2,),k k p P X k pq k -====L其中01,1p q p <<=-,称X 服从具有参数p 的几何分布,求()E X 和()D X .(提示:由幂级数逐项求导的性质可知211011k kk k kq q q ∞∞-=='⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭∑∑,21(1)k k k k q∞-=-=∑3012)11k k q q q q ∞=''''⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭∑ 7. 设随机变量X 的密度函数为1()e 2x f x -=,求:(1)()E X ;(2))(2X E 的值.8. 某商店经销商品的利润率X 的密度函数为)(x f 2(1)0,x -⎧=⎨⎩,01,x <<其他,求()E X ,()D X .9. 设随机变量X 服从参数为λ的泊松分布,求1(1)E X -+.工程数学 概率统计简明教程(第二版)2410. 设随机变量X 服从参数为p 的几何分布,0M >为整数,max(,)Y X M =,求()E Y . *11. 设随机变量X 有分布律:(),0,1,2,,k M N M k n k p P X k k n M N n -⎛⎫⎛⎫⎪⎪-⎝⎭⎝⎭====∧⎛⎫ ⎪⎝⎭L ,其中min(,)n M n M ∧=. 12(1):.12(1)n n n n n n m m m m m m ⎛--⎫⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭提示使用*12. 将已写好n 封信的信纸随机地装入已写好的n 个收信人的对应地址的信封,若有一封信的信纸的收信人与信封一致时,称之为有一个配对.今X 为n 封已随机装好的信的配对数,求(),()E X D X .111111,:(1,2,,),,(),()0,cov(,),()=()2cov(,).n i i i i j i n n ni j i j i=1i j j i X i n X X E X E X X X X D X D X X X =-==+⎛⎧=== ⎨ ⎩⎝⎫+⎪⎭∑∑∑∑L 第封信配对,提示记有先求其他及使用公式13. 设随机变量X 的概率密度为1e ,0,()0,0,x x f x x -⎧>=⎨≤⎩求()E X ,)2(X E ,2(e )X E X -+,()D X .14. 设随机向量),(Y X 的联合分布律为:求,(),(),(2),(3),(),(),cov(,),.X Y E X E Y E X Y E XY D X D Y X Y ρ-15. 盒中有3个白球和2个黑球,从中随机抽取2个,X ,Y 分别是抽到的2个球中的白球数和黑球数,求X 与Y 之间的相关系数Y X ,ρ.16. 设随机变量Y X ,相互独立,它们的密度函数分别为22e ()0x X f x -⎧=⎨⎩,0,,0,x x >≤44e ()0y Y f y -⎧=⎨⎩,0,,0,y y >≤求)(Y X D +.*17. 设随机变量1,,n X X L 独立,具有公共的(0,1)上的均匀分布,令1min ,i i nY X ≤≤=求(),()E Y D Y .习题十二25*18. 设随机变量X 有密度函数1e ,0,()()0,xx x f x ααλλα--⎧>⎪=Γ⎨⎪⎩其他λα>>(0,0为常数),则称X 服从具有参数αλ(,)的伽玛分布,记为~X αλΓ(,),其中10()e d y y y αα∞--Γ⎰=.有性质:对任意实数x ,有(1)()x x x Γ+=Γ,特别对正整数n 有(1)!n n Γ+=.今设1~(,)Y αλΓ,2~(,)Z αλΓ,且Y 与Z 相互独立,ZW Y=,求()E W 1:()().Z E W E E Z E Y Y ⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭提示使用独立性,有 *19. 设随机变量X 服从参数为(a ,b )的贝搭分布,即有密度11()(1),01,()()()0,a b a b x x x a b f x --Γ+⎧-<<⎪ΓΓ=⎨⎪⎩其他,求(),()E X D X .[提示:已知贝搭函数1110:(,)(1)d ,.t t t αβαββαββαβαβ--⎛⎫ΓΓ=- ⎪Γ⎝⎭⎰()()提示已知贝搭函数有关系式(,)=(+) 20. 验证:当),(Y X 为二维连续型随机变量时,按公式()(,)d d E X xf x y y x +∞+∞-∞-∞=⎰⎰及按公式()()d E X xf x x +∞-∞=⎰算得的()E X 值相等.这里,),(y x f ,)(x f 依次表示X Y X ),,(的分布密度,即证明:()(,)d d E X xf x y y x +∞+∞-∞-∞=⎰⎰()d xf x x +∞-∞=⎰21. 设二维随机变量),(Y X 服从在A 上的均匀分布,其中A 为x 轴,y 轴及直线x +y +1=0所围成的区域,求:(1)()E X ;(2))23(Y X E +-;(3))(XY E 的值.22. 设随机变量),(Y X 的联合密度函数为212,01,(,)0,y y x f x y ⎧≤≤≤=⎨⎩其他.求()E X ,()E Y , ()E XY ,22()E X Y +,()D X ,()D Y .23. 设随机变量Y X ,相互独立,且()()1E X E Y ==,()2D X =,()3D Y =.求:(1)22(),()E X E Y ;(2))(XY D .24. 袋中有2n个外形完全相同的球,其中n k ⎛⎫⎪⎝⎭个标有数字k (k =0,1,…,n ),从中不放回抽取m 次(每次取1个),以X 表示取到的m 个球上的数字之和,求E (X ).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档