概率作业纸第四章答案
概率论与数理统计复旦大学出版社第四章课后解答

概率论 习题四 答案1.设随机变量X 的分布律为求E (X ),E (X ),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差.故 ()0.58300.34010.07020.0073E X =⨯+⨯+⨯+⨯+⨯+⨯0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.设随机变量且已知E (X )=0.1,E (X 2)=0.9,求123,,p p p . 【解】因1231p p p ++=……①,又12331()(1)010.1E X p p p p p =-++=-=……②,222212313()(1)010.9E X p p p p p =-++=+=……由①②③联立解得1230.4,0.1,0.5.p p p ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少?【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑全概率公式1{}{}1().NNk k k P X k kP X k N Nn E X N N========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望.(1) U =2X +3Y +1; (2) V =YZ -4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X -因独立1184568.=⨯-⨯= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯=8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因11(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =2 1()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为2,01,()0,;X x x f x ≤≤⎧=⎨⎩其它 (5)e ,5,()0,.y Y y f y --⎧>=⎨⎩其它 求()E XY .【解】方法一:先求X 与Y 的均值 12()2d ,3E X x x x==⎰5(5)5()e d5e d e d 51 6.z y y zzE Y y y z zz +∞+∞+∞=-----=+=+=⎰⎰⎰令 由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯= 方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他于是11(5)2(5)552()2e d d 2d e d 6 4.3y y E XY xy x x y x xy y +∞+∞----===⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为()X f x =⎩⎨⎧≤>-;0,0,0,22x x x e ()Y f y =⎩⎨⎧≤>-.0,0,0,44y y y e 求(1) ()E X Y +;(2) 2(23)E X Y -.【解】22-200()()d 2e d [e ]e d x x xX E X xf x x x x x x +∞+∞+∞--+∞-∞===-+⎰⎰⎰201e d .2x x +∞-==⎰401()()d 4e d y .4yY E Y y f y y y +∞+∞--∞===⎰⎰22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰从而(1) 113()()().244E X Y E X E Y +=+=+= (2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx x ke求(1) 系数c ;(2)()E X ;(3) ()D X . 【解】(1) 由222()d e d 12k x c f x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 2220()()d()2e d k x E X xf x x x k x x +∞+∞--∞==⎰⎰222202e d k x k x x +∞-==⎰(3) 22222221()()d()2e .k x E X x f x x x k x dx k +∞+∞--∞===⎰⎰故2222214π()()[()].24D X E X E X k k k ⎛-=-=-= ⎝⎭12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求()E X 和()D X . 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为41e ,0,()40,0.xx f x x -⎧>⎪=⎨⎪≤⎩为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和 -200元/41/411{100}{1}e d e4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e.P Y P X -=-=<=- 故1/41/41/4()100e (200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元). 14.设12,,,n X X X 是相互独立的随机变量,且有2(),(),1,2,,i i E X D X i n μσ===,记 11n i i X X n ==∑,2211()1n i i S X X n ==--∑. (1) 验证)(X E =μ,)(X D =n2σ;(2) 验证22211()1ni i S X nX n ==--∑;(3) 验证22()E S σ=.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑22111111()()n nni i i ii i i D X D X D X X DXn nn ===⎛⎫== ⎪⎝⎭∑∑∑之间相互独立2221.n n nσσ==(2) 因为222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX ===+-=-∑∑故22211()1ni i S X nX n ==--∑.(3) 因为2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+同理因为 2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E S E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知()2D X =,()3D Y =,(,)1Cov X Y =-,计算:(321,43)Cov X Y X Y -++-【解】Cov(321,43)3()10ov(,)8()X Y X Y D X C X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=-(因常数与任一随机变量独立,故(,3)(,3)0Cov X Cov Y ==,其余类似). 16.设二维随机变量(,)X Y 的概率密度为221,1,(,)π0,.x y f x y ⎧+≤⎪=⎨⎪⎩其它 试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰ 同理E (Y )=0. (注意到积分区域的对称性和被积函数是奇函数可以直接得到0) 而 Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y +∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关.下面讨论独立性,当1x ≤时,()X f x =当 1y ≤时,()Y f y =. 显然 ()()(,)X Y f x f y f x y ≠ ,故X 和Y 不是相互独立的. 17.设随机变量(,)X Y 的分布律为验证X 和Y 是不相关的,但X 和Y 不是相互独立的.【解】联合分布表中含有零元素,X 与Y 显然不独立,由联合分布律易求得X ,Y 及XY 的分布律,其分布律如下表:由期望定义易得()E X =()E Y =()E XY =0.从而()E XY =()E X ()E Y ,再由相关系数性质知xy ρ=0, 即X 与Y 的相关系数为0,从而X 和Y 是不相关的. 又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=- 从而X 与Y 不是相互独立的.18.设二维随机变量(X ,Y )在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求(,)Cov X Y ,xy ρ. 【解】如图,S D =12,故(X ,Y )的概率密度为题18图2,(,),(,)0,x y D f x y ∈⎧=⎨⎩其他.()(,)d d D E X xf x y x y =⎰⎰11001d 2d 3x x x y -==⎰⎰22()(,)d d DE X x f x y x y =⎰⎰112001d 2d 6x x x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y == 而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-. 从而112)()XY D Y ρ-===-19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差(,)Cov X Y 和相关系数xy ρ. 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x xx y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4C o v (,)()()()1.2444X Y E X Y E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭222222π4(π4)π8π164.πππ8π32π8π32)()2162XY D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+-20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X -2Y 和Z 2=2X -Y 的相关系数.【解】由已知条件得:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X YD Y =--+=-+=⨯-⨯+⨯=故122)()Z Z D Z ρ===21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西—许瓦兹(Cauchy -Schwarz )不等式. 【证】考虑实变量t 的二次函数2222()[()]()2()()g t E V tW E V tE VW t E W =+=++因为对于一切t ,有2()0V tW +≥,所以 ()0g t ≥,从而二次方程 ()0g t =或者没有实根,或者只有重根,故其判别式Δ≤0, 即 222[2()]4()()0E VW E W E V ∆=-≤故 222[()]()()E VW E V E W ≤22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .【解】由题设可知:设备开机后无故障工作的时间1()5XE ,其概率密度为 151,0()50,0x e x f x x -⎧>⎪=⎨⎪≤⎩根据题意 {}min ,2Y X =,所以Y 的分布函数为 {}{}()min ,2F y P X y =≤当0y <时,{}{}{}()min ,20F y P X y P X y =≤=≤=; 当02y ≤<时,{}{}{}115501()min ,215x y yF y P X y P X y e dx e --=≤=≤==-⎰; 当2y ≥时,{}{}()min ,21F y P X y =≤=;于是Y 的分布函数为:150,0,()1,02,1,2y y F y e y y -<⎧⎪⎪=-≤<⎨⎪≥⎪⎩。
概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案1.在下列句子中随机地取一个单词,以X 表示取到的单词包含的字母的个数,试写出X 的分布律,并求)(X E .Have a good time解:本题的随机试验属于古典概型.所给句子共4个单词,其中有一个单词含一个字母,有3个单词含4个字母,则X 的所有可能取值为1,4,有41)1(==X P ,43)4(==X P ,从而413434411)(=⋅+⋅=X E .2.在上述句子的13个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所含的字母数,写出Y 的分布律,并求)(Y E .解:本题的随机试验属于古典概型.Y 的所有可能取值为1,4,样本空间Ω由13个字母组成,即共有13个样本点,则131)1(==Y P ,1312)4(==Y P ,从而1349131241311)(=⋅+⋅=Y E .3.一批产品有一、二、三等品及废品4种,所占比例分别为60%,20%,10%和10%,各级产品的出厂价分别为6元、8.4元、4元和2元,求产品的平均出厂价.解:设产品的出厂价为X (元),则X 的所有可能取值为6,8.4,4,2,由题设可知X 的分布律为X 68.442P6.02.01.01.0则16.51.021.042.08.46.06)(=⨯+⨯+⨯+⨯=X E (元).4.设随机变量X 具有分布:51)(==k X P ,5,4,3,2,1=k ,求)(X E ,)(2X E 及2)2(+X E .解:3)54321(51)(=++++=X E ,11)54321(51)(222222=++++=X E ,274)(4)()44()2(222=++=++=+X E X E X X E X E .5.设离散型随机变量X 的分布列为k k kk X P 21)!2)1((=-=, ,2,1=k ,问X 是否有数学期望.解:因为∑∑∞=∞==⋅-111212)1(k k k k kkk 发散,所以X 的数学期望不存在.6.设随机变量X 具有密度函数⎪⎩⎪⎨⎧≤≤-=其他.,0,22,cos 2)(2πππx x x f 求)(X E 及)(X D .解:因为x x 2cos 在]2,2[ππ-上为奇函数,所以0d cos 2d )()(222=⋅==⎰⎰-∞+∞-πππx x x x x f x X E ,2112d cos 2d )()(2222222-=⋅==⎰⎰-∞+∞-ππππx x x x x f x X E ,故2112)]([)()(222-=-=πX E X E X D .7.设随机变量X 具有密度函数⎪⎩⎪⎨⎧<<-≤<=其他.,0,21,2,10,)(x x x x x f 求)(X E 及)(X D .解:1d )2(d d )()(2112=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,67d )2(d d )()(2121322=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,61)]([)()(22=-=X E X E X D .8.设随机变量X 在)21,21(-上服从均匀分布,求)sin(X Y π=的数学期望与方差.解:由题可知X 的密度函数为⎪⎩⎪⎨⎧<<-=其他.,0,2121,1)(x x f 则0d 1sin d )(sin )][sin()(2121=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21d 1sin d )(sin )]([sin )(21212222=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21)]([)()(22=-=Y E Y E Y D .9.某正方形场地,按照航空测量的数据,它的边长的数学期望为350m ,又知航空测量的误差随机变量X 的分布列为X (m)30-20-10-0102030P05.008.016.042.016.008.005.0而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即X Y +=350,求场地面积的数学期望.解:设场地面积为S ,则2Y S =,16.01042.0016.0)10(08.0)20(05.030)(⨯+⨯+⨯-+⨯-+⨯-=X E 005.03008.020=⨯+⨯+,16.01042.0016.0)10(08.0)20(05.0)30()(222222⨯+⨯+⨯-+⨯-+⨯-=X E 18605.03008.02022=⨯+⨯+,故)350700(])350[()()(2222++=+==X X E X E Y E S E 122686350)(700)(22=++=X E X E .10.A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如下表所示:A 机床次品数X 0123概率P7.02.006.004.0B 机床次品数X 0123概率P8.006.004.010.0问哪一台机床加工质量较好.解:44.004.0306.022.017.00)(=⨯+⨯+⨯+⨯=X E ,8.004.0306.022.017.00)(22222=⨯+⨯+⨯+⨯=X E ,6064.0)]([)()(22=-=X E X E X D ,44.010.0304.0206.018.00)(=⨯+⨯+⨯+⨯=Y E ,12.110.0304.0206.018.00)(22222=⨯+⨯+⨯+⨯=Y E ,9264.0)]([)()(22=-=Y E Y E Y D ,)()(Y E X E =,但)()(Y D X D <,故A 机床加工质量较好.11.设随机变量X 与Y 相互独立,且方差存在,试证:22)]()[()()]([)()()(Y E X D Y D X E Y D X D XY D ++=,由此得出)()()(Y D X D XY D ≥.证:22)]([])[()(XY E XY E XY D -=222)]()([)(Y E X E Y X E -=2222)]([)]([)()(Y E X E Y E X E -=2222)]([)]([})]([)(}{)]([)({Y E X E Y E Y D X E X D -++=22)]()[()()]([)()(Y E X D Y D X E Y D X D ++=.因为)(X D ,)(Y D ,2)]([X E ,2)]([Y E 非负,所以)()()(Y D X D XY D ≥.12.已知随机变量X 的密度函数为⎩⎨⎧≤≤++=其他.,010,)(2x c bx x a x f又已知5.0)(=X E ,15.0)(=X D ,求a ,b ,c .解:c b a x c bx x a x x f ++=++==⎰⎰∞+∞-2131d )(d )(1102,c b a x c bx x a x x x f x X E 213141d )(d )()(5.0102++=++===⎰⎰∞+∞-,⎰⎰++-=-==∞+∞-1222d )()5.0(d )()]([)(15.0xc bx x a x x x f X E x X D 41314151-++=c b a ,解之得12=a ,12-=b ,3=c .13.设),(Y X 的分布律为(1)求)(X E 及)(Y E ;(2)设XYZ =,求)(Z E ;(3)设2)(Y X Z -=,求)(Z E .解:(1)2)13.00(3)1.001.0(2)1.01.02.0(1)(=++⨯+++⨯+++⨯=X E ,0)1.01.01.0(1)3.001.0(0)01.02.0()1()(=++⨯+++⨯+++⨯-=Y E ,(2)1.01)3.001.0(00)31(1.021(2.01)(⨯+++⨯+⨯-+⨯-+⨯-=Z E 1511.0311.021-=⨯+⨯+,(3)1.0)01(0)]1(3[1.0)]1(2[2.0)]1(1[)(2222⨯-+⨯--+⨯--+⨯--=Z E 51.0)13(1.0)12(1.0)11(3.0)03(0)02(22222=⨯-+⨯-+⨯-+⨯-+⨯-+.14.设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,0,10,20,3),(y x yx y x f求)(X E ,)(Y E ,)(Y X E +及)(22Y X E +.解:⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(911d d 31020=+⋅=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x yf Y E d d ),()(95d d 31020=+⋅=⎰⎰y x y x y ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(916d d 3)(1020=+⋅+=⎰⎰y x y x y x ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(2222613d d 3)(102022=+⋅+=⎰⎰y x y x y x .15.),(Y X 在区域}1,0,0|),{(≤+≥≥=y x y x y x D 上服从均匀分布,求)(X E ,)23(Y X E -及)(XY E .解:由题可知),(Y X 的联合密度函数为⎩⎨⎧≤≤-≤≤=其他.,0,10,10,2),(y y x y x f ⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(31d d 21010==⎰⎰-yy x x ,⎰⎰∞+∞-∞+∞--=-y x y x f y x Y X E d d ),()23()23(31d d )23(21010=-=⎰⎰-yy x y x ,⎰⎰∞+∞-∞+∞-=y x y x xyf XY E d d ),()(121d d 21010==⎰⎰-y y x xy .16.设二维随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧>+≤+=.1,0,1,1),(2222y x y x y x f π证明:随机变量X 与Y 不相关,也不相互独立.证:⎰⎰⎰⎰⋅=⋅=∞+∞-∞+∞-πθθππ201d d cos 1d d 1)(r r r y x x X E ,同理,0)(=Y E ,⎰⎰⎰⎰⋅⋅=⋅=∞+∞-∞+∞-πθθθππ201d d sin cos 1d d 1)(r r r r y x xy XY E ,0)()()(),cov(=-=Y E X E XY E Y X ,故随机变量X 与Y 不相关.当11≤≤-x 时,ππ21112d 1d ),()(22x y y y x f x f x x X -===⎰⎰---∞+∞-,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2x x x f X π同理,⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2y y y f Y π易得)()(),(y f x f y x f Y X ≠,故随机变量X 与Y 不相互独立.17.设随机变量1X ,2X 的概率密度分别为⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x f x ,⎩⎨⎧≤>=-.0,0,0,e 4)(42y y y f y 试用数学期望的性质求:(1))(21X X E +及)32(221X X E -;(2)又设1X ,2X 相互独立,求)(21X X E .解:由题可知1X ~)2(E ,2X ~)4(E ,则21)(1=X E ,41)(2=X E ,161)(2=X D ,81)]([)()(22222=+=X E X D X E .(1)43)()()(2121=+=+X E X E X X E ,85)(3)(2)32(221221=-=-X E X E X X E .(2)81)()()(2121==X E X E X X E .18.(1)设1X ,2X ,3X 及4X 独立同在)1,0(上服从均匀分布,求)51(41∑=k k kX D ;(2)已知随机变量X ,Y 的方差分别为25和36,相关系数为4.0,求Y X U 23+=的方差.解:(1)由题易得121)(=i X D ,)51(41∑=k k kX D )(5141∑==k kkX D )](4)(3)(2)([514321X D X D X D X D +++=21)4321(121512222=+++⋅=.(2)由已知25)(=X D ,36)(=Y D ,4.0)()(),cov(==Y D X D Y X XY ρ,得12),cov(=Y X ,)2,3cov(2)2()3()23()(Y X Y D X D Y X D U D ++=+=513),cov(232)(2)(322=⋅⋅++=Y X Y D X D .19.一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如果到达一个车站没有旅客下车就不停车,以X 表示停车的次数,求)(X E (设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立).解:引入随机变量⎩⎨⎧=站无人下车.,在第站有人下车;,在第i i X i 01,10,,2,1 =i .易知1021X X X X +++= .按题意,任一旅客在第i 站不下车的概率为9.0,因此20位旅客都不在第i 站下车的概率为209.0,在第i 站有人下车的概率为209.01-,也就是209.0)0(==i X P ,209.01)1(-==i X P ,10,,2,1 =i .由此209.01)(-=i X E ,10,,2,1 =i .进而)()()()()(10211021X E X E X E X X X E X E +++=+++= 784.8)9.01(1020=-=(次).20.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求)(X E .解:引入随机变量⎩⎨⎧=号盒子.号球未放入第第号盒子号球放入第第i i i i X i ,0,,1,n i ,,2,1 =,则n X X X X +++= 21,显然n X P i 1)1(==,则nX P i 11)0(-==,n i ,,2,1 =,从而nX E i 1)(=,n i ,,2,1 =,于是1)()()()()(2121=+++=+++=n n X E X E X E X X X E X E .21.设随机变量),(Y X 的分布律为试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.证:0)25.00(2)025.0(1)025.0()1()25.00(2)(=+⨯++⨯++⨯-++⨯-=X E ,5)25.00025.0(4)025.025.00(1)(=+++⨯++++⨯=Y E ,0)4(25.0)8(0225.0125.0)1(02)(⨯-+⨯-+⨯+⨯+⨯-+⨯-=XY E 025.0804=⨯+⨯+,所以0)()()(),cov(=-=Y E X E XY E Y X ,故X 与Y 不相关.易知25.025.00)2(=+=-=X P ,5.0025.025.00)1(=+++==Y P ,0)1,2(==-=Y X P ,有)1()2()1,2(=-=≠=-=Y P X P Y X P ,故X 与Y 不相互独立.22.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其他.,0,10,10,),(y x y x y x f 求)(X E ,)(Y E ,)(X D ,)(Y D ,)(XY E ,),cov(Y X 及XY ρ.解:127d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,125d d )(d d ),()(1010222=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,得127)(=Y E ,14411)(=Y D ,31d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ.23.设X ~),(2σμN ,Y ~),(2σμN ,且X ,Y 相互独立.求Y X Z βα+=1和Y X Z βα-=2的相关系数(α,β是不为0的常数).解:由题可知μ==)()(Y E X E ,2)()(σ==Y D X D ,则2222)]([)()(σμ+=+=X E X D X E ,2222)]([)()(σμ+=+=Y E Y D Y E ,μβαβα)()()(1+=+=Y X E Z E ,μβαβα)()()(2-=-=Y X E Z E ,222221)()()()()(σβαβαβα+=+=+=Y D X D Y X D Z D ,222222)()()()()(σβαβαβα+=+=-=Y D X D Y X D Z D ,)()])([()(222221Y X E Y X Y X E Z Z E βαβαβα-=-+=))(()()(22222222σμβαβα+-=-=Y E X E ,222212121)()()()(),cov(σβα-=-=Z E Z E Z Z E Z Z ,22222121)()(),cov(21βαβαρ+-==Z D Z D Z Z Z Z .24.设),(Y X 的联合概率密度为⎩⎨⎧≤≤≤≤--=.,0,10,10,2),(其他y x y x y x f (1)求),cov(Y X ,XY ρ和)32(Y X D -;11(2)X 与Y 是否独立?解:(1)125d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,41d d )2(d d ),()(1010222=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,61d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,125)(=Y E ,14411)(=Y D ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ,)3,2cov(2)3()2()32(Y X Y D X D Y X D -+-+=-144155),cov(12)(3)(222=-+=Y X Y D X D .(2)当10≤≤x 时,x y y x y y x f x f X -=--==⎰⎰∞+∞-23d )2(d ),()(10,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(x x x f X 同理,⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(y y y f Y 因为)()(),(y f x f y x f Y X ≠,故X 与Y 不相互独立.。
概率作业纸答案

第一章 随机事件及其概率第三节 事件的关系及运算一、选择1.事件AB 表示 ( C )(A ) 事件A 与事件B 同时发生 (B ) 事件A 与事件B 都不发生(C ) 事件A 与事件B 不同时发生 (D ) 以上都不对 2.事件B A ,,有B A ⊂,则=B A Y ( B )(A ) A (B )B (C ) AB (D )A B U二、填空1.设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示⑴仅A 发生为ABC⑵,,A B C 中正好有一件发生为ABC ABC ABC U U ⑶,,A B C 中至少有一件发生为A B C U U三、简答题1.任意抛掷一颗骰子,观察出现的点数。
事件A 表示“出现点数为偶数”,事件B 表示“出现点数可以被3整除”,请写出下列事件是什么事件,并写出它们包含的基本事件 ,,,,A B A B AB A B ++解:A 表示“出现点数为偶数”,{}2,4,6A =B 表示“出现点数可以被3整除”,{}3,6B =A B +表示“出现点数可以被2或3整除”,{}2,3,4,6A B += AB 表示“出现点数既可以被2整除,也可以被3整除”,{}6AB =A B +表示“出现点数既不可以被2整除,也不可以被3整除”,{}1,5A B +=2.向指定目标射击两次。
设事件,,,A B C D 分别表示“两次均未击中”、“击中一次”、“击中两次”、“至少击中一次”,请写出所有基本事件,并用基本事件表示事件,,,A B C D解:基本事件为 1w :“第一次击中,第二次击中”2w :“第一次未击中,第二次击中”3w :“第一次击中,第二次未击中” 4w :“第一次未击中,第二次未击中”4{}A w =,23{,}B w w =,1{}C w =,123{,,}D w w w =3.袋中有10个球,分别写有号码1---10,其中1,2,3,4,5号球为红球;6,7,8号球为白球;9,10号球为黑球。
概率作业纸第四章答案

第四章 正态分布第一节 正态分布的概率密度与分布函数一、选择1. 设),(~2σμN X ,那么当σ增大时,则)(σμ<-X P ( C ) (A) 增大 (B) 减少 (C) 不变 (D) 增减不定 2. 随机变量~(,1),X N μ且{2}{2},P X P X >=≤则μ=( B ) (A) 1 (B) 2 (C) 3 (D) 4二、填空1. 设随机变量),100(~2σN X ,且3085.0)103(=>X P ,则=<<)10397(X P 0.383 2.设随机变量),50(~2σN X ,且6826.0)5347(=<<X P ,则=>)53(X P 0.1587三、计算题1. 某地区的月降水量X (单位:mm )服从正态分布)4,40(2N ,试求该地区连续10个月降水量都不超过50mm 的概率.9396.09938.010Y P 9938.010B Y mm 50Y 10mm 50109938.0)5.2()44050440P )50P A P mm 50A 10=)==(),(~的月数”,则过=“该地区降水量不超设天贝努利试验,相当做超过个月该地区降水量是否观察(()=(”=“某月降水量不超过解:设==-≤-=≤φx x 第二节 正态分布的数字特征一、选择1. 设随机变量X 与Y 独立,)4.0,10(~,)2.0,10(~B Y B X ,则=+)2(Y X E ( D ) (A) 6 (B) 4 (C) 10 (D) 8二、填空___2______;1____e 1)(.1122的方差为的数学期望为则,的概率密度函数为已知连续型随机变量X X x f X x x-+-=π.___2___))21(,0(,.22π=--Y X E Y X N Y X 的数学期望则随机变量的随机变量,正态分布是两个相互独立且服从设三、计算题.d )(d )()2(;)1(e61)(.16442c x x p x x p DX EX x x p X c cx x ,求常数若已知,求,的概率密度函数为已知连续型随机变量⎰⎰∞+∞-+--=+∞<<∞-=π.203221)32()32(1)32()32(12132321)()32(2132321)()2(3)(,2)(),3,2(~32161)()1(32232)2(23232)2(32)2(644222222==-=-Φ-Φ-=-Φ-Φ-=-==-Φ=-======⎰⎰⎰⎰⎰⎰∞+--∞+⨯--∞+--∞-∞-⨯--∞-⨯--+--c c c c c c dt e x t dx edx x P c dt ex t dx edx x P X D X E N X eex P c t cx ct c c x c x x x 所以,,从而,知所以,得从而,知所以,由于解ππππππ第三节 二维正态分布一、计算题1.已知矢径OP 的终点的坐标为),(Y X 服从二维正态分布22221),(y x e y x f +-=π求矢径OP 的长度OP Z =的概率密度 解 22Y X OP Z +==)()()(22z Y X P z Z P z F Z ≤+=≤= 当0≤z 时,显然有0)(=z F Z ;当0>z 时dxdye z F y x zy x Z 2222221)(+≤+-=⎰⎰π.121222022z r z edr red ---==⎰⎰πθπ所以,Z 的分布函数为⎪⎩⎪⎨⎧≤>-=-.0,0;0,1)(22z z e z F z Z对z 求导数,即得Z 的概率密度⎪⎩⎪⎨⎧≤>=-.0,0;0,)(22z z ze z f z Z第四节 正态随机变量的线性函数的分布一、选择1.设X ,Y 是相互独立的随机变量,且),(~,),(~222211σμσμN Y N X ,则下列结论正确的是(B )(A ))(,(~22121σσμμ+++N Y X (B)),(~222121σσμμ+++N Y X (C)))(,(~22121σσμμ---N Y X (D)),(~222121σσμμ---N Y X{}{}212121212122,)D (,)C (,)B (,)A ()(,5,4);5,(~),4,(~,.2p p p p p p p p A Y P p X P p N Y N X Y X >=<=-≥=-≤=都有对任何实数才有的个别值只对都有对任何实数都有对任何实数则记均服从正态分布与设随机变量μμμμμμμμ二、填空1.设随机变量X 与Y 独立,且)2,1(~,)1,0(~2N Y N X ,则32+-=Y X Z 的概率密度为+∞<<-∞=--z ez f z z ,41)(16)2(2π2.设随机变量X 与Y 独立,且)1,1(~,)1,0(~N Y N X ,则)1(≤+Y X P = 0.5.___21___,21}1{).21,(.3=则如果分布相互独立且都服从正态与已知随机变量μμ=≤+Y X P N Y X第五节 中心极限定理一、填空____21___}2)({2.1≤≥-X E X P X 式有估计,则根据切比雪夫不等的方差为设随机变量二、计算题1.已知一本书有500页,每一页的印刷错误的个数服从泊松分布)2.0(P .各页有没有错误是相互独立的,求这本书的错误个数多于88个的概率.((1.2)0.8849Φ=) 解:设i X 表示第i 页上的错误个数,)500,2,1(, =i 则)2.0(~P X i ,因此2.0)(,2.0)(==i i X D X E )500,2,1(, =i设X 表示这本书上的错误总数,由列维中心极限定理知)100,100(~5001N X X i i ∑==因此{}{}12881881(1.2)0.884910P X P X P -⎫>=-≤=-≤=Φ=⎬⎭ 2.某保险公司多年的统计资料表明,在索赔户中被盗索赔户占20%,以X 表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数. 求被盗索赔户不小于14户且不多于30户的概率近似值. ( 利用棣莫弗--拉普拉斯定理近似计算.933.0)5.1(,994.0)5.2(=Φ=Φ )解: )(2.0,100~B X , 因为 100=n 较大,所以X 近似服从正态分布. 20=np , 16=npq . (p q -=1) )()(42014)42030(3014-Φ--Φ=≤≤X P )5.1)5.2(-Φ-Φ=(927.0)933.01(994.0=--=3.某品牌家电三年内发生故障的概率为0.2,且各家电质量相互独立.某代理商发售了一批此品牌家电,三年到期时进行跟踪调查:(1)抽查了四个家电用户,求至多只有一台家电发生故障的概率; (2)抽查了100个家电用户,求发生故障的家电数不小于25的概率( (2)利用棣莫弗---拉普拉斯定理近似计算. 8944.0)25.1(=Φ )解:设X 表示发生故障的家电数,则 (1) )(2.0,4~B X)(1≤X P =)(0=X P +)(1=X P=48.0+8192.08.02.0314=⨯⨯C(2) )(2.0,100~B X , 因为 100=n 较大,所以X 近似服从正态分布. 20=np , 16=npq . (p q -=1))()(420251)25(125-Φ-=≤-=≥X P X P )25.11(Φ-= 1056.08944.01=-=。
概率论第四章习题解答(全)

(0.9)10 (0.9)9 3486 0.3874 0.7361
则需要调整设备的概率
P{Y 1} 1 P{Y } 1 0.7361 0.2639
(3)求一天中调整设备的次数 X 的分布律 由于 X 取值为 0,1,2,3,4。 p 0.2369 ,则 X B (4, 0.2369) 于是
个随机变量,其概率密度为
1 x, 0 x 1500, 15002 1 f ( x) ( x 3000),1500 x 3000, 2 1500 0, 其它
求 E( X ) 解 按连续型随机变量的数学期望的定义有
0 1500
E ( X ) xf ( x)dx xf ( x)dx
X p
2
3
4
9
1 8
5 8
1 8
1 8
所以
1 5 1 1 15 E( X ) 2 3 4 9 。 8 8 8 8 4
(2)因为 Y 的取值为 2,3,4,9 当 Y 2 时,包含的字母为“O”,“N”,故
P{Y 2}
1 C2 1 ; 30 15
当 Y 3 时,包含的 3 个字母的单词共有 5 个,故
P (Ck ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 )
而
P{ X 1} P ( A1 )
1 2
1 1 P{ X 2} P ( A1 A2 ) P ( A2 | A1 ) P ( A1 ) 3 2 1 2 1 1 1 P ( A2 | A1 A2 ) P ( A2 | A1 ) P ( A1 ) , 4 3 2 4 3 一般地,若当 X k 时,盒中共有 k 1 只球,其中只有一只白球,故 P ( X k ) P ( A1 A2 Ak 1 Ak ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 ) 1 k 1 k 2 1 2 1 1 1 k 1 k k 1 4 3 2 k k
概率论与数理统计》课后习题答案第四章

习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。
解 由题意~(5,0.1)X B ,则X 的数学期望为 ()50.10.E X =⨯= 4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。
解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ== 所以地每年因交通事故死亡的平均人数为4人。
5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752ab a b ⎧=⎪⎪+⎨⎪=⎪+⎩可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解1201331221()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求 (1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。
(完整版)概率论第四章答案

60解 E(Y) E(2X) 2E(X) 2 xe xdx 2,E(Z) E(e 2X ) e 2x e x dx 1.33. 游客乘电梯从底层到电视塔顶观光 , 电梯于每个整点的第 5 分钟、第 25 分钟和第 55分钟从底层起行 . 假设一游客在早八点的第 X 分钟到达底层侯梯处 , 且 X 在区间[0, 60] 上服从均匀分布 . 求该游客等候电梯时间的数学期望 . 解已知X 在[0,60] 上服从均匀分布 , 其概率密度为1X -20 2 P0.40.30.3E(X);E(2-3 X); E(X 2);2 E(3X 25).解 由定义和数学期望的性质知E(X) ( 2) 0.4 0 0.3 2 0.30.2;E(2 3X) 2 3E(X ) 2 3 (0 2) 2.6; E(X 2) ( 2)2 0.4 0 20.3220 3 2.8 ;E(3X 2 5) 3E(X 2)53 2.8 5 13.4. 2. 设随机变量 X 的概率密度为xe, x 0, 1. 设随机变量 X 的分布律为习题 4-1f (x)2X求Y 2X 和Z e 2X的数学期望 .0,x ≤0.0,其它.记Y 为游客等候电梯的时间,则5 X, 0 X ≤5,25 X,5 X ≤25,Y g(X)55 X, 25 X ≤55,65 X,55 X ≤60.160 因此, E(Y) E[g(X)] g(x) f (x)dxg(x)dxf (x) 60, 0≤x≤60,60(A) 若 X ~ B(n, p),则E(X) np.c a , Yc,X 1, X 0.于是 E(Y) (c a) P{ X 1} c P{X 0} ap c .据题意有 ap c a 10% , 因此应要求顾客角保费 c (0.1 p)a .习题 4-21. 选择题(1) 已知 E(X ) 1,D(X)3 则 E[3(X2 2)2] ().(A) 9.(B) 6.(C) 30.(D)36解 E[3(X 2)2] 3E(X24X 4)3[E(X 2)4E(X)4]3{D(X) [E(X)]2 4E(X) 4}3 (3 14 4) 36 .可见,应选 (D).(2) 设 X ~ B(n, p),E(X )6,D(X) 3.6 , 则有 ( ).(A) n 10, p 0.6 . (B) n 20, p 0.3 (C) n 15, p 0.4 .(D) n 12, p 0.5解 因为 X ~ B(n, p), 所以 E(X)=np,D(X)=np(1-p), 得到 np=6, np(1-p)=3n=15 , p=0.4 . 可见,应选 (C).(3) 设 X 与 Y 相互独立,且都服从2N( , 2) , 则有 ( ).(A) E(X Y) E(X) E(Y). (B) E(X Y) 2 .(C) D(X Y) D(X)D(Y).(D) D(XY) 2 2.解 注意到 E(X Y) E(X) E(Y) 0.由于 X 与Y 相互独立 ,所以D(X Y) D(X) D(Y) 222. 选 (D).(4) 在下列结论中 , 错误的是 ().6 . 解之 ,1 5 25(5 x)dx (25 x)dx600 5=11.67(分钟 )..14. 某保险公司规定 , 如果在一年内顾客的投保事件 A 发生 , 该公司就赔偿顾客 a 元. 若一年内事件 A 发生的概率为 p, 为使该公司受益的期望值等于 a 的 10%, 该公司应该要求 顾客交多少保险费?解 设保险公司要求顾客交保费 55(55 x)dx60 (65 x)dx55c 元. 1, 0, 则 P{X 1} p, P{X 0} p . 引入随机变量 事件A 发生, 事件A 不发生. 保险公司的受益值(B) 若 X ~ U 1,1 ,则 D(X) 0 . (C) 若 X 服从泊松分布 , 则 D(X) E(X).(D) 若 X ~ N( , 1 2), 则 X~ N (0,1) .14.3 又 X 1, X 2 , X 3相互独立 , 所以D(Y) D(X 1 2X 2 3X 3) D(X 1) 4D(X 2) 9D(X 3)1 3 4 4 9 20.914. 设两个随机变量 X 和 Y 相互独立 , 且都服从均值为 0, 方差为 的正态分布 , 求2 |X Y |的的期望和方差 .11 解 记U X Y . 由于X ~ N(0, ),Y ~ N(0, ),所以22E(U) E(X) E(Y) 0, D(U) D(X) D(Y) 1. 由此 U ~ N (0,1) . 进而3203~ U( 1,1) , 则 D(X) (b a)122. 已知 X, Y 独立, E(X)= E(Y)=2, E(X 2)= E(Y 2)=5,解 由数学期望和方差的性质有E(3X- 2Y)= 3E(X)-2 E (Y)=3×2-2×2=2,D(3X 2Y) 9D(X) 4D(Y)9 {E(X 2) [E(X)]2} 9 (5 4) 4 (5 4) X 2, X 3 相 互独立 , 其 中 2X 2解X221. 选(B).312求 E(3X-2Y),D(3X-2Y).3. 设随 机变 量 2X 2 ~ N (0, 22), X 3解 由题设知X 1,~ P (3), 记 Y X 14 {E(Y 2) [E(Y)]2}13.X 1 服从区 间[0, 6]上的均匀分布, 3X 3 ,求 E(Y)和 D(Y) .E(X 1) 3, D(X 1) E(X 3)(6 0)2 3,12 113,D(X 3)E(X 2) 0,D(X 2 ) 4,由期望的性质可得E(Y) E(X 12X 2 3X 3) E(X 1) 2E(X 2 ) 3E(X 3)5. 设随机变量X ~U[ 1,2], 随机变量1, X 0,Y 0, X 0,1, X 0. 求期望E(Y) 和方差D(Y) .解因为X的概率密度为1, 1≤x≤2,f X (x) 3于是Y的分布率为P{Y 1} P{XP{YP{Y 1} P{ X因此0, 其它.0110}-f X(x)dx dx-133 0}P{ X 0} 0 ,+2120}0 f X (x)dx dx0033 21 x22 E(|X Y|) E(|U |) |x| e 2dx 0 xe E(|U |2) E(U2) D(U ) [E(U)]22x2 dx02故而D(|X Y|) D(|U|) E(|U|2) [E(|U |)]22e1.2212故有6. 设随机变量U1,X1,求E(X+Y), D(X+Y).E(Y)E(Y2 ) (1)20212D(Y) E(Y2 )[E(Y)]2321.389.在区间[-2, 2]上服从均匀分布若U ≤1, 若U1.9, 随机变量1, 若U≤1, Y 1,若U 1.解(1) 随机变量(X, Y) 的可能取值为(-1,- 1),(- 1,1),(1,- 1),(1,1).-11 1P{X 1,Y 1}P{U ≤ 1,U ≤ 1} P{U ≤ 1}dx-24 4P{ X 1,Y 1}P{U ≤ 1,U1} 0,111 P{ X 1,Y1}P{U1,U ≤1}14dx , 221 1 P{X 1,Y1}P{U1,U1}dx .144 于是得 X 和Y 的联合密度分布X+Y-2 0 21 1 1 P{ X+Y =k}424(X+Y)24P{ (X+Y)2=k}1 1 22由此可见2 2 2 E(X Y) 0;D(X Y) E[( X Y)2] 2. 44习题 4-31. 选择题(1) 在下列结论中 , ( )不是随机变量 X 与 Y 不相关的充分必要条件(A) E(XY)=E(X)E(Y). (B) D(X+Y)=D(X)+D(Y).(C) Cov(X,Y)=0.(D) X 与 Y 相互独立 .解 X 与 Y 相互独立是随机变量 X 与 Y 不相关的充分条件 ,而非必要条件 . 选(D).(2) 设随机变量 X 和 Y 都服从正态分布 , 且它们不相关 , 则下列结论中不正确的是(C) X 与 Y 未必独立 . (D) 解 对于正态分布不相关和独立是等价的 ).(A) X 与 Y 一定独立 . (B) (X, Y)服从二维正态分布 X+Y 服从一维正态分布 . 选 (A).(2) X(3) 设(X, Y)服从二元正态分布, 则下列说法中错误的是( ).(A) ( X, Y) 的边缘分布仍然是正态分布 . (B) X 与 Y 相互独立等价于 X 与 Y 不相关 . (C) (X, Y)是二维连续型随机变量 .(D)由(X, Y)的边缘分布可完全确定 (X, Y)的联合分布 .解 仅仅由 (X, Y)的边缘分布不能完全确定 (X, Y)的联合分布 . 选 (D) 2 设 D(X)=4, D(Y)=6, ρXY =0.6, 求 D(3X-2Y) .解 D(3X 2Y) 9D(X) 4D(Y) 12Cov( X,Y)9 4 4 6 12 XY D(X) D(Y)36 24 12 0.6 2 6 24.727 .3. 设随机变量 X, Y 的相关系数为 0.5, E(X) E(Y) 0, E(X2) E(Y 2) 2,2求 E[(X Y)2] .2 2 2 解 E[(X Y)2] E(X 2) 2E(XY) E(Y 2)4 2[Cov( X,Y) E(X)E(Y)] 4 2 XY D(X) D(Y) 4 2 0.5 2 6.4. 设随机变量 (X, Y)的分布律为1 0 0.42 0 a 1 1 0.2 2 1 b 0.2 2b0.1. 由此可得边缘分布律5. 已知随机变量 ( X ,Y ) ~ N (0.5, 4; 0.1, 9; 0) , Z=2X- Y, 试求方差D(Z), 协方差X 1 2 Y 01P{X i} 0.6 0.4 P{Y j} 0.5 0.5E(Y) 0 0.5 1 0.5 0.5. 0.5 0.1. E(X) 1 0.6 2 0.4 1.4 , Cov( X,Y) E(XY) E(X)E(Y) 0.8 1.4 0.8 E(XY) 得 b 0.3. 进而 a于是故 若 E(XY)=0.8, 求常数 解 首先由p ij 1 得 a b 0.4. 其次由i 1 j1Cov( X ,Z) , 相关系数 ρXZ .解 由于 X,Y 的相关系数为零 , 所以 X 和 Y 相互独立(因X 和Y 服从正态分布 ). 因此D(Z) D(2X Y) 4D(X) D(Y) 4 4 9 25 ,Cov( X,Z) Cov( X,2X Y)2Cov(X,X) Cov( X,Y) .1 X Y关系数XY , Z . 求: (1) E(Z), D(Z); (2) X 与 Z 的相关系数 ρXZ ; (3)问 XY2 3 2 X 与 Z 是否相互独立 ?为什么? 22 解 (1) 由于 X ~ N (1,32 ) , Y ~ N(0,42) , 所以(3) 由 XZ 0知X 与Z 不相关, 又 X 与Z 均服从正态分布 , 故知 X 与 Z 相互独立 .7.证明: 对随机变量 (X, Y), E(XY)=E(X)E(Y)或者 D(X Y)=D(X)+D(Y)的充要条件是 X 与 Y 不相关 .证 首先我们来证明 E(XY) E(X)E(Y) 和D(X Y) D(X) D(Y)是等 价的. 事实上, 注意到 D(X Y) D(X) D(Y) 2Cov( X,Y) . 因此D(X Y) D(X) D(Y) Cov( X,Y) 0 E(XY) E(X)E(Y).因此2D(X) Cov( X,Z) D(X) D(Z) 6. 设随机变量 (X, Y)服从二维正态分布 : XXZ0880.8 . 2522~ N(1,32), Y ~N(0, 42);X 与 Y 的相因此E(Z)D(Z) (2) 由于Cov( X,Z)所以XZXYD(X) D(Y) 12 346.Y 2) 1 13E(X)1E(Y) 2 1 3 11 2 0 1 3 Y 1 111Y 2) D(X) 9 D(Y) 42Cov( 3 X , 12Y) 1 16 1 Cov( X,Y) 1 4 1( 6) 3.4 33Y1 11 1) D(X) Cov( X,Y)9( 6)2 323 2E(X) 1,D(X) 9,E(Y) 0,D(Y) 16,Cov( X,Y)9 X Cov( X, 3 E(X 3D(X 3 1 9Cov( X,Z)D(X) D(Z)0.0,其次证明必要性 . 假设 E(XY)=E(X)E(Y), 则Cov( X,Y) E(XY) E(X)E(Y) 0 .最后证明充分性 . 假设 X 与 Y 不相关, 即 XY 0, 则Cov( X,Y)E(XY) E(X)E(Y) .总习题四1. 设 X 和 Y 是相互独立且服从同一分布的两个随机变量 , 已知 X 的分布律为 1 P{X i} ,i 1,2,3 . 又设U max{ X ,Y}, V min{ X,Y} .3(1) 写出二维随机变量 (U, V)的分布律 ;(2) 求 E(U ). 解 (1) 下面实际计算一下 P{U 1,V 3}.注意到U max{ X,Y}, V min{ X ,Y} , 因此P{U 1,V 3} P{X 1,Y 3}P{X 1}P{Y 1111(2) 由的分布律可得关于 U 的边缘分布律进而XYCov( X,Y)D(X) D(Y)0, 即 X 与 Y 不相关 .0 . 由此知P{X 3,Y 1} 3} P{X 3}P{Y 1} 21 3 5 22 所以 E(U) 112 33 5 22. 99 9 92. 从学校乘汽车到火车站的途中有 3 个交通岗 . 假设在各个交通岗遇到红灯的事件是2相互独立的 , 并且概率是 . 设 X 为途中遇到红灯的次数 , 求随机变量 X 的分布律、 分布函5数和数学期望 .3. 设随机变量 (X,Y) 的概率密度为212y 2, 0≤ y ≤x ≤1, f(x,y) 0, 求E(X), E(Y), E(XY), E(X 2 Y 2).X0 1 2 3P2754 36 8125 125 125 1252754 36 8k} 0 1 2 3125125 125 125解 令 X 表示途中遇到红灯的次数 , 由题设知 X ~ B(3,2) . 即 X 的分布律为53从而 E(X) kP{Xk16 5其它. 解 E(X) xf ( x, y)dxdy 1dx12y 2dy4x 4dxE(X) yf ( x, y)dxdy 0dx 0y12y 2dy 03x 4dxE(XY)xyf(x,y)dxdy1 dx 0x0 xy 12 y 2dy3x 5dxE(X 2 Y 2)(x 2 y 2) f (x,y)dxdy4. 设随机变量(4x5 12 x 5)dx 05 (X,Y)的概率密度为1sin( x f(x,y) 20,2 325 30 1 dx16 15 .(x 2y 2)35 3 612y 2dyy),π0≤x ≤ π, 0≤y ≤22 其它.求E(X),D(X),E(Y),D(Y),E(XY)和Cov(X,Y).于是有1. 22 所以协方差Cov( X,Y) E(XY) E(X)E(Y) 1.2 1615. 设随机变量 X 与 Y 独立, 同服从正态分布 N(0, ) , 求2(1) E(X Y); D( X Y);(2) E (max{ X ,Y}); E(min{ X,Y}) .11解 (1) 记 X Y .由于 X ~ N(0, ),Y ~ N(0, ),所以E( ) E(X) E(Y) 0, D( ) D(X) D(Y) 1. 由此 ~ N(0,1).所以解 E(X)122xf(x,y)dxdy 2 2 x sin( x y)dxdy2E(X 2)2x f (x, y)dxdy2y)dxdy 2. 2 0 2 0x 2 sin(x x 2 E(| X Y |) E(| |)12|x| 2 e 2dx 2 0xe x 22 dx82D(X)2E(X 2)2[E(X)]22.16 22利用对称性 ,有E(Y) 4,D(Y) 16 2. 2 又E(XY)1 xyf ( x, y)dxdy22xy sin( x y)dxdy 1 2 1 2 02 xdx 02 xdx 02ysin(x y)dy 2 y[sin x cos y cos xsin y]dyE(XY) xyf (x, y)dxdy2e x 22E(| |2) 0E( 2) D( ) [E( )]21 故而D(| X Y|) D(| 22|) E(| |2) [E(| |)]2 1021.221 2所以 (2) 注意到max( X , Y) (X Y) |X Y | , min( X , Y)X Y |X Y|E[max( X , Y)] 112{E(X) E(Y) E[| X Y|]} 12 12 212,1 12{E(X) 6. 设随机变量 (X,Y) 的联合概率密度为 x y, 0≤ x ≤2,0≤y ≤2,f (x, y) 8E[min( X,Y)] E(Y) E[| X Y|]} 0, 求: E(X), E(Y), Cov( X,Y), ρXY , D (X+Y ). 解 其它.注意到 f (x, y)只在区域 G:0≤x ≤2,0≤y ≤ 2上不为零,x x y dxdyG 82x(xE(X) xf(x,y)dxdy 因而所以E(X 2)2 dx 02dxD(X)21 0 x(x y)dy 42 x f (x,y)dxdy22 10x (x y)dy 4 22E(X 2) [E(X)]27 1)dx 7623(x 35 72 3 622x )dx11 3612 2 1 22 44 dx xy(x y)dy (x x)dx .8 0 0 4 0337 2 2 5 11E(X) , E(Y 2) E(X 2) , D(Y) D(X) . 6 3 364 491 Cov( X,Y) E(XY) E(X)E(Y) ,3 3636Cov( X,Y) 1XYD(X) D(Y) 11 5D(X Y) D(X) D(Y) 2Cov( X,Y) .917. 设A, B 为随机事件 , 且 P(A) ,P(B|A)41, A 发生 , XY 0, A 不发生 ,Y1P(AB)1111 解由P(B| A)得 P(AB)P(A) , 进而由3P(A)334 121P(AB)1P(A|B)得 P(B) 2P(AB). 在此基础上可以求得2P(B)6(1) P{ X1,Y 1} P(AB)112111P{X 0,Y 1}P(AB) P(B)P(AB)6 12 121 11P{ X 1,Y 0}P(AB)P(A) P(AB)412 6P{X 0,Y 0} P(AB)1 P(AUB) 1 [P(A)P(B) P(AB)]求: (1) 二维随机变量 (X, Y)的概率分布 ; (2) X 与Y 的相关系数XY111 21[111]2.4 6 12 3故(X, Y)的概率分布为由对称性知E(Y)这样,11,P(A|B) , 令 321, B 发生 , 0, B 不发生 .21312111612(2) 由(1)易得关于X 和Y的边缘分布律X0131P{X=k}44Y0151P{Y=k}66因此E(X)1,E(X2)1,4422113D(X) E(X 2)[E(X)]241616E(Y) 1,E(Y2) 1,D(Y) E(Y2)2[E(Y)]2 1 1 566 6 36 36又由(X, Y)的分布律可得21111 E(XY) 0 0 0 1 1 011.3121212 12故111E(XY) E(X)E(Y) 12 4615XY D(X) D(Y)3515.16 3601X。
概率论与数理统计第四章习题答案

ξ
n
≤ 0.84) = P (0.76n ≤ ξ ≤ 0.84n) = P ( ξ − 0.8n ≤ 0.04n) ≥ 1− Dξ 100 = 1− 2 n (0.04n)
由题意 所以
P (0.76 ≤ 1−
ξ
n
≤ 0.84) ≥ 0.9
100 ≥ 0.9,从而 n ≥ 1000 n 故,至少应生产1000件产品。
c , r , s , t , u 的值。
3⎞ ⎟ c⎟ ⎠ − ∞ < x < −1 −1≤ x < 0 0≤ x<1
2
乐山师范学院化学学院
解:P (ξ = 1.2) = F (1.2) − F (1.2 − 0) =
1 1 − =0 2 2
1 2 = 3 3 0 = P (ξ = −1) = F ( −1) − F ( −1 − 0) = r − 0 = r ∴ r = 0 1 1 = P (ξ = 0) = F (0) − F (0 − 0) = s − r = s ∴ s = 3 3 1 1 1 a = P (ξ = 1) = F (1) − F (1 − 0) = − s = ∴a = 2 6 6 1 1 2 = P (ξ = 2) = F ( 2) − F ( 2 − 0) = t − ∴t = 6 2 3 又 x ≥ 3时,F ( x ) = 1, ∴u = 1 2 1 1 c = P (ξ = 3) = F ( 3) − F ( 3 − 0) = 1 − = ∴c = 3 3 3 1 1 而 ∑ p i = 1, 从而 + a + b + + c = 1, ∴ b = 0 3 6 i 1 1 1 2 因此, a = ,b = 0,c = ,r = 0,s = ,t = ,u = 1. 6 3 3 3 P (ξ > 0.5) = 1 − P (ξ ≤ 0.5) = 1 − P (ξ = 0) = 1 −
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 正态分布
第一节 正态分布的概率密度与分布函数
一、选择
1. 设),(~2
σμN X ,那么当σ增大时,则)(σμ<-X P ( C ) (A) 增大 (B) 减少 (C) 不变 (D) 增减不定 2. 随机变量~(,1),X N μ且{2}{2},P X P X >=≤则μ=( B ) (A) 1 (B) 2 (C) 3 (D) 4
二、填空
1. 设随机变量),100(~2
σ
N X ,且3085.0)103(=>X P ,
则=<<)10397(X P 0.383 2.设随机变量),50(~2
σ
N X ,且6826.0)5347(=<<X P ,
则=>)53(X P 0.1587
三、计算题
1. 某地区的月降水量X (单位:mm )服从正态分布)4,40(2
N ,试求该地区连续10个月降水量都不超过50mm 的概率.
9396
.09938.010Y P 9938.010B Y mm 50Y 10mm 50109938
.0)5.2()4
40
50440P )50P A P mm 50A 10=)==(),(~的月数”,则过=“该地区降水量不超设天贝努利试验,相当做超过个月该地区降水量是否观察(()=(”
=“某月降水量不超过解:设==-≤-=≤φx x 第二节 正态分布的数字特征
一、选择
1. 设随机变量X 与Y 独立,)4.0,10(~,)
2.0,10(~B Y B X ,则=+)2(Y X E ( D ) (A) 6 (B) 4 (C) 10 (D) 8
二、填空
___
2______;1____e 1
)(.11
22
的方差为的数学期望为则,
的概率密度函数为已知连续型随机变量X X x f X x x
-+-=π
.___2___))2
1(,0(,.22π=--Y X E Y X N Y X 的数学期望则随机变量的随机变量,
正态分布是两个相互独立且服从设
三、计算题
.
d )(d )()2(;
)1(e
61)(.16
4
42c x x p x x p DX EX x x p X c c
x x ,求常数若已知,求,
的概率密度函数为已知连续型随机变量⎰⎰∞
+∞-+--
=+∞<<∞-=π
.
203
221)32
(
)
3
2(
1)3
2(
)
3
2(121
3
23
21)()
32(
213
2321)()2(3)(,2)(),3,2(~3
21
61
)()1(3
22
3
2)2(2
32
3
2)2(3
2)2(6
4
4222222==-=-Φ-Φ-=-Φ-Φ-=-=
=-Φ=-=
====
=
⎰
⎰
⎰
⎰
⎰
⎰
∞+--∞+⨯--
∞+-
-∞
-∞
-⨯--
∞
-⨯--
+--
c c c c c c dt e x t dx e
dx x P c dt e
x t dx e
dx x P X D X E N X e
e
x P c t c
x c
t c c x c x x x 所以,,从而,知所以,得从而,知所以,由于
解π
ππ
πππ
第三节 二维正态分布
一、计算题
1.已知矢径OP 的终点的坐标为),(Y X 服从二维正态分布
2
2
221
),(y x e y x f +-=
π
求矢径OP 的长度OP Z =的概率密度 解 22Y X OP Z +=
=
)()()(22z Y X P z Z P z F Z ≤+=≤= 当0≤z 时,显然有0)(=z F Z ;当0>z 时
dxdy
e z F y x z
y x Z 2
2
22221)(+≤+-
=
⎰⎰
π
.121
2
2
20
22z r z e
dr re
d -
-
-==
⎰⎰
π
θπ
所以,Z 的分布函数为
⎪⎩⎪⎨⎧≤>-=-
.0,
0;0,1)(2
2
z z e z F z Z
对z 求导数,即得Z 的概率密度
⎪⎩⎪⎨⎧≤>=-.0,
0;0,)(2
2
z z ze z f z Z
第四节 正态随机变量的线性函数的分布
一、选择
1.设X ,Y 是相互独立的随机变量,且),(~,),(~2
222
11σμσμN Y N X ,则下列结论正确的是(B )
(A ))(,(~22121σσμμ+++N Y X (B)),(~2
22121σσμμ+++N Y X (C)))(,(~22121σσμμ---N Y X (D)),(~2
22
121σσμμ---N Y X
{}{}2
12
121212122,)D (,)C (,)B (,)A ()
(,5,4);5,(~),4,(~,.2p p p p p p p p A Y P p X P p N Y N X Y X >=<=-≥=-≤=都有对任何实数才有的个别值只对都有对任何实数都有对任何实数则记均服从正态分布与设随机变量μμμμμμμμ
二、填空
1.设随机变量X 与Y 独立,且)2,1(~,)1,0(~2
N Y N X ,则32+-=Y X Z 的
概率密度为+∞<<-∞=
--
z e
z f z z ,41)(16
)2(2π
2.设随机变量X 与Y 独立,且)1,1(~,)1,0(~N Y N X ,则)1(≤+Y X P = 0.5
.
___21___,2
1
}1{).21
,(.3=则如果
分布相互独立且都服从正态与已知随机变量μμ=≤+Y X P N Y X
第五节 中心极限定理
一、填空
____
21___}2)({2.1≤≥-X E X P X 式有估计,则根据切比雪夫不等的方差为设随机变量
二、计算题
1.已知一本书有500页,每一页的印刷错误的个数服从泊松分布)
2.0(P .各页有没有错误是相互独立的,求这本书的错误个数多于88个的概率.((1.2)0.8849Φ=) 解:设i X 表示第i 页上的错误个数,)500,2,1(, =i 则)2.0(~P X i ,因此2.0)(,2.0)(==i i X D X E )500,2,1(, =i
设X 表示这本书上的错误总数,由列维中心极限定理知
)100,100(~500
1
N X X i i ∑==
因此{}{
}12881881(1.2)0.884910P X P X P -⎫
>=-≤=-≤=Φ=⎬⎭ 2.某保险公司多年的统计资料表明,在索赔户中被盗索赔户占20%,以X 表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数. 求被盗索赔户不小于14户且不多于30户的概率近似值. ( 利用棣莫弗--拉普拉斯定理近似计算.
933.0)5.1(,994.0)5.2(=Φ=Φ )
解: )(2.0,100~B X , 因为 100=n 较大,
所以X 近似服从正态分布. 20=np , 16=npq . (p q -=1) )
()(4
20
14)42030(
3014-Φ--Φ=≤≤X P )5.1)5.2(-Φ-Φ=(
927.0)933.01(994.0=--=
3.某品牌家电三年内发生故障的概率为0.2,且各家电质量相互独立.某代理商发售了一批此品牌家电,三年到期时进行跟踪调查:
(1)抽查了四个家电用户,求至多只有一台家电发生故障的概率; (2)抽查了100个家电用户,求发生故障的家电数不小于25的概率
( (2)利用棣莫弗---拉普拉斯定理近似计算. 8944.0)25.1(=Φ )
解:设X 表示发生故障的家电数,则 (1) )(2.0,
4~B X
)(1≤X P =)(0=X P +)
(1=X P
=4
8.0+8192.08.02.03
1
4=⨯⨯C
(2) )(2.0,100~B X , 因为 100=n 较大,
所以X 近似服从正态分布. 20=np , 16=npq . (p q -=1)
)()
(4
20
251)25(125-Φ-=≤-=≥X P X P )25.11(
Φ-= 1056.08944.01=-=。