模式识别实验报告
模式识别上机实验报告

实验一、二维随机数的产生1、实验目的(1) 学习采用Matlab 程序产生正态分布的二维随机数 (2) 掌握估计类均值向量和协方差矩阵的方法(3) 掌握类间离散度矩阵、类内离散度矩阵的计算方法(4) 熟悉matlab 中运用mvnrnd 函数产生二维随机数等matlab 语言2、实验原理多元正态分布概率密度函数:11()()2/21/21()(2)||T X X d p X eμμπ---∑-=∑其中:μ是d 维均值向量:Td E X μμμμ=={}[,,...,]12Σ是d ×d 维协方差矩阵:TE X X μμ∑=--[()()](1)估计类均值向量和协方差矩阵的估计 各类均值向量1ii X im X N ω∈=∑ 各类协方差矩阵1()()iTi iiX iX X N ωμμ∈∑=--∑(2)类间离散度矩阵、类内离散度矩阵的计算类内离散度矩阵:()()iTi iiX S X m X m ω∈=--∑, i=1,2总的类内离散度矩阵:12W S S S =+类间离散度矩阵:1212()()Tb S m m m m =--3、实验内容及要求产生两类均值向量、协方差矩阵如下的样本数据,每类样本各50个。
1[2,2]μ=--,11001⎡⎤∑=⎢⎥⎣⎦,2[2,2]μ=,21004⎡⎤∑=⎢⎥⎣⎦ (1)画出样本的分布图;(2) 编写程序,估计类均值向量和协方差矩阵;(3) 编写程序,计算类间离散度矩阵、类内离散度矩阵; (4)每类样本数增加到500个,重复(1)-(3)4、实验结果(1)、样本的分布图(2)、类均值向量、类协方差矩阵根据matlab 程序得出的类均值向量为:N=50 : m1=[-1.7160 -2.0374] m2=[2.1485 1.7678] N=500: m1=[-2.0379 -2.0352] m2=[2.0428 2.1270] 根据matlab 程序得出的类协方差矩阵为:N=50: ]0628.11354.01354.06428.1[1=∑ ∑--2]5687.40624.00624.08800.0[N=500:∑--1]0344.10162.00162.09187.0[∑2]9038.30211.00211.09939.0[(3)、类间离散度矩阵、类内离散度矩阵根据matlab 程序得出的类间离散度矩阵为:N=50: ]4828.147068.147068.149343.14[=bS N=500: ]3233.179843.169843.166519.16[b =S根据matlab 程序得出的类内离散度矩阵为:N=50:]0703.533088.73088.71052.78[1=S ]7397.2253966.13966.18975.42[2--=S ]8100.2789123.59123.50026.121[=W SN=500: ]5964.5167490.87490.86203.458[1--=S ]8.19438420.78420.70178.496[2=S ]4.24609071.09071.06381.954[--=W S5、结论由mvnrnd 函数产生的结果是一个N*D 的一个矩阵,在本实验中D 是2,N 是50和500.根据实验数据可以看出,当样本容量变多的时候,两个变量的总体误差变小,观测变量各个取值之间的差异程度减小。
模式识别实验报告

模式识别实验报告————————————————————————————————作者:————————————————————————————————日期:实验报告实验课程名称:模式识别姓名:王宇班级: 20110813 学号: 2011081325实验名称规范程度原理叙述实验过程实验结果实验成绩图像的贝叶斯分类K均值聚类算法神经网络模式识别平均成绩折合成绩注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和2、平均成绩取各项实验平均成绩3、折合成绩按照教学大纲要求的百分比进行折合2014年 6月实验一、 图像的贝叶斯分类一、实验目的将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。
二、实验仪器设备及软件 HP D538、MATLAB 三、实验原理 概念:阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。
并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。
最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。
而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。
类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。
上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。
这时如用全局阈值进行分割必然会产生一定的误差。
分割误差包括将目标分为背景和将背景分为目标两大类。
实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。
模式识别 实验报告一

402
132
识别正确率
73.36
84.87
99.71
70.31
82.89
86.84
结果分析:
实验中图像3的识别率最高,图像1和图像2的识别率次之。图像1和图像2的分辨率相对图像3更低,同时图像2有折痕影响而图像1则有大量噪声。通过阈值处理能较好的处理掉图像1的噪声和图像2的折痕,从而使得图像1的识别率有所提升,而图像2的识别率变化不大。从而可以得出结论,图像3和图像2识别率不同的原因主要在于图像分辨率,而图像2和图像1识别率的不同则在于噪声干扰。
实验报告
题目
模式识别系列实验——实验一字符识别实验
内容:
1.利用OCR软件对文字图像进行识别,了解图像处理与模式识别的关系。
2.利用OCR软件对文字图像进行识别,理解正确率的概念。
实验要求:
1.利用photoshop等软件对效果不佳的图像进行预处理,以提高OCR识别的正确率。
2.用OCR软件对未经预处理和经过预处理的简体和繁体中文字符图像进行识别并比较正确率。
图像4内容既有简体又有繁体,从识别结果中可了解到错误基本处在繁体字。
遇到的问题及解决方案:
实验中自动旋转几乎没效果,所以都是采用手动旋转;在对图像4进行识别时若采用系统自己的版面分析,则几乎识别不出什么,所以实验中使用手动画框将诗的内容和标题及作者分开识别。
主要实验方法:
1.使用汉王OCR软件对所给简体和繁体测试文件进行识别;
2.理,再次识别;
实验结果:
不经过图像预处理
经过图像预处理
实验图像
图像1
图像2
图像3
图像4
图像1
图像2
字符总数
458
《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告---最小错误率贝叶斯决策分类一、实验原理对于具有多个特征参数的样本(如本实验的iris 数据样本有4d =个参数),其正态分布的概率密度函数可定义为112211()exp ()()2(2)T d p π-⎧⎫=--∑-⎨⎬⎩⎭∑x x μx μ 式中,12,,,d x x x ⎡⎤⎣⎦=x 是d 维行向量,12,,,d μμμ⎡⎤⎣⎦=μ是d 维行向量,∑是d d ⨯维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。
本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数()(|)(),1,2,3i i i g p P i ωω==x x (3个类别)其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。
由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。
我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为1122()1()exp ()(),1,2,32(2)T i i dP g i ωπ-⎧⎫=-∑=⎨⎬⎩⎭∑x x -μx -μ对上式右端取对数,可得111()()()ln ()ln ln(2)222T i i i i dg P ωπ-=-∑+-∑-i i x x -μx -μ上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。
则判别函数()i g x 可简化为以下形式111()()()ln ()ln 22T i i i i g P ω-=-∑+-∑i i x x -μx -μ二、实验步骤(1)从Iris.txt 文件中读取估计参数用的样本,每一类样本抽出前40个,分别求其均值,公式如下11,2,3ii iii N ωωω∈==∑x μxclear% 原始数据导入iris = load('C:\MATLAB7\work\模式识别\iris.txt'); N=40;%每组取N=40个样本%求第一类样本均值 for i = 1:N for j = 1:4w1(i,j) = iris(i,j+1); end endsumx1 = sum(w1,1); for i=1:4meanx1(1,i)=sumx1(1,i)/N; end%求第二类样本均值 for i = 1:N for j = 1:4 w2(i,j) = iris(i+50,j+1);end endsumx2 = sum(w2,1); for i=1:4meanx2(1,i)=sumx2(1,i)/N; end%求第三类样本均值 for i = 1:N for j = 1:4w3(i,j) = iris(i+100,j+1); end endsumx3 = sum(w3,1); for i=1:4meanx3(1,i)=sumx3(1,i)/N; end(2)求每一类样本的协方差矩阵、逆矩阵1i -∑以及协方差矩阵的行列式i ∑, 协方差矩阵计算公式如下11()(),1,2,3,41i ii N i jklj j lk k l i x x j k N ωωσμμ==--=-∑其中lj x 代表i ω类的第l 个样本,第j 个特征值;ij ωμ代表i ω类的i N 个样品第j 个特征的平均值lk x 代表i ω类的第l 个样品,第k 个特征值;iw k μ代表i ω类的i N 个样品第k 个特征的平均值。
《模式识别》实验报告K-L变换特征提取

《模式识别》实验报告K-L变换特征提取基于K-L 变换的iris 数据分类⼀、实验原理K-L 变换是⼀种基于⽬标统计特性的最佳正交变换。
它具有⼀些优良的性质:即变换后产⽣的新的分量正交或者不相关;以部分新的分量表⽰原⽮量均⽅误差最⼩;变换后的⽮量更趋确定,能量更集中。
这⼀⽅法的⽬的是寻找任意统计分布的数据集合之主要分量的⼦集。
设n 维⽮量12,,,Tn x x x =x ,其均值⽮量E=µx ,协⽅差阵()T x E=--C x u)(x u ,此协⽅差阵为对称正定阵,则经过正交分解克表⽰为x =TC U ΛU ,其中12,,,[]n diag λλλ=Λ,12,,,n u u u =U 为对应特征值的特征向量组成的变换阵,且满⾜1T-=UU。
变换阵TU 为旋转矩阵,再此变换阵下x 变换为()T -=x u y U ,在新的正交基空间中,相应的协⽅差阵12[,,,]xn diag λλλ==x U C U C。
通过略去对应于若⼲较⼩特征值的特征向量来给y 降维然后进⾏处理。
通常情况下特征值幅度差别很⼤,忽略⼀些较⼩的值并不会引起⼤的误差。
对经过K-L 变换后的特征向量按最⼩错误率bayes 决策和BP 神经⽹络⽅法进⾏分类。
⼆、实验步骤(1)计算样本向量的均值E =µx 和协⽅差阵()T xE ??=--C x u)(x u5.8433 3.0573 3.7580 1.1993??=µ,0.68570.0424 1.27430.51630.04240.189980.32970.12161.27430.3297 3.1163 1.29560.51630.12161.29560.5810x----=--C (2)计算协⽅差阵xC 的特征值和特征向量,则4.2282 , 0.24267 , 0.07821 , 0.023835[]diag =Λ-0.3614 -0.6566 0.5820 0.3155 0.0845 -0.7302 -0.5979 -0.3197 -0.8567 0.1734 -0.0762 -0.4798 -0.3583 0.0755 -0.5458 0.7537??=U从上⾯的计算可以看到协⽅差阵特征值0.023835和0.07821相对于0.24267和4.2282很⼩,并经计算个特征值对误差影响所占⽐重分别为92.462%、5.3066%、1.7103%和0.52122%,因此可以去掉k=1~2个最⼩的特征值,得到新的变换阵12,,,newn k u u u -=U。
模式识别与智能信息处理实践实验报告

模式识别与智能信息处理实践实验报告
一、实验目的
本次实验的目的是:实现基于Matlab的模式识别与智能信息处理。
二、实验内容
1.对实验图片进行处理
根据实验要求,我们选取了两张图片,一张是原始图片,一张是锐化处理后的图片。
使用Matlab的imtool命令进行处理,实现对图片锐化、模糊处理、边缘检测、图像增强等功能。
2.基于模式识别算法进行图像分类
通过Matlab的k-means算法和PCA算法对实验图片进行图像分类,实现对图像数据特征提取,并将图像分类结果可视化。
3.使用智能信息处理技术处理实验数据
使用Matlab的BP网络算法,对实验图片进行处理,并实现实验数据的智能信息处理,以获得准确的分类结果。
三、实验结果
1.图片处理结果
2.图像分类结果
3.智能信息处理结果
四、总结
本次实验中,我们利用Matlab进行模式识别与智能信息处理的实践,实现了对图片的处理,图像分类,以及智能信息处理,从而获得准确的分
类结果。
《模式识别》线性分类器设计实验报告

《模式识别》实验报告三、线性分类器实验1.(a)产生两个都具有200 个二维向量的数据集X1 和X1 ’。
向量的前半部分来自m1=[-5;0]的正态分布,并且S1=I 。
向量的后半部分来自m2=[5;0]的正态分布,并且S1=I。
其中I是一个2×2 的单位矩阵。
(b)在上面产生的数据集上运用Fisher 线性判别、感知器算法和最小平方误差判别算法,需要初始化参数的方法使用不同的初始值。
(c)测试每一种方法在X1 和X1 ’ 上的性能(错误率)。
(d)画出数据集X1 和X1 ’,已经每种方法得到对应参数向量W 的分界线。
Fisher线性判别图1 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数向量w = [-9.9406, 0.9030]’错误率error=0,感知器算法:图2 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1;0.1];迭代次数iter=2参数向量w = [-4.8925, 0.0920]’错误率error=0图3 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 1];迭代次数iter=2参数向量w = [-3.9925, 0.9920]’错误率error=0图4 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[10; 10];迭代次数iter=122参数向量w = [-5.6569, 7.8096]’错误率error=0图5 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[50; 50];迭代次数iter=600参数向量w = [-27.0945, 37.4194]’错误率error=0图6 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[50; 100];迭代次数iter=1190参数向量w = [-54.0048, 74.5875]’错误率error=0最小平方误差判别算法:图7 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1; 0.1];参数向量w = [-0.1908, -0.0001]’错误率error=0图8 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.5; 0.5];参数向量w = [-0.1924, 0.1492]’错误率error=0图9 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 0.5];参数向量w = [-0.1914, 0.0564]’错误率error=0图10 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 1];参数向量w = [-0.1943, 0.3359]’错误率error= 0.00502.重复1.中的实验内容,数据集为X2 和X2 ’。
模式识别实验报告

模式识别实验报告关键信息项:1、实验目的2、实验方法3、实验数据4、实验结果5、结果分析6、误差分析7、改进措施8、结论1、实验目的11 阐述进行模式识别实验的总体目标和期望达成的结果。
111 明确实验旨在解决的具体问题或挑战。
112 说明实验对于相关领域研究或实际应用的意义。
2、实验方法21 描述所采用的模式识别算法和技术。
211 解释选择这些方法的原因和依据。
212 详细说明实验的设计和流程,包括数据采集、预处理、特征提取、模型训练和测试等环节。
3、实验数据31 介绍实验所使用的数据来源和类型。
311 说明数据的规模和特征。
312 阐述对数据进行的预处理操作,如清洗、归一化等。
4、实验结果41 呈现实验得到的主要结果,包括准确率、召回率、F1 值等性能指标。
411 展示模型在不同数据集或测试条件下的表现。
412 提供可视化的结果,如图表、图像等,以便更直观地理解实验效果。
5、结果分析51 对实验结果进行深入分析和讨论。
511 比较不同实验条件下的结果差异,并解释其原因。
512 分析模型的优点和局限性,探讨可能的改进方向。
6、误差分析61 研究实验中出现的误差和错误分类情况。
611 分析误差产生的原因,如数据噪声、特征不充分、模型复杂度不足等。
612 提出减少误差的方法和建议。
7、改进措施71 根据实验结果和分析,提出针对模型和实验方法的改进措施。
711 描述如何优化特征提取、调整模型参数、增加训练数据等。
712 预测改进后的可能效果和潜在影响。
8、结论81 总结实验的主要发现和成果。
811 强调实验对于模式识别领域的贡献和价值。
812 对未来的研究方向和进一步工作提出展望。
在整个实验报告协议中,应确保各项内容的准确性、完整性和逻辑性,以便为模式识别研究提供有价值的参考和借鉴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告实验课程名称:模式识别姓名:王宇班级: 20110813 学号: 2011081325注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和2、平均成绩取各项实验平均成绩3、折合成绩按照教学大纲要求的百分比进行折合2014年 6月实验一、 图像的贝叶斯分类一、实验目的将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。
二、实验仪器设备及软件 HP D538、MATLAB 三、实验原理 概念:阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。
并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。
最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。
而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。
类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。
上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。
这时如用全局阈值进行分割必然会产生一定的误差。
分割误差包括将目标分为背景和将背景分为目标两大类。
实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。
这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。
图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。
如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。
如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。
假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。
以1p 与2p 分别表示目标与背景的灰度分布概率密度函数,1P 与2P 分别表示两类的先验概率,则图像的混合概率密度函数可用下式表示为1122()()()p x P p x P p x =+式中1p 和2p 分别为2121()21()x p x μσ--=2222()22()x p x μσ--=121P P +=1σ、2σ是针对背景和目标两类区域灰度均值1μ与2μ的标准差。
若假定目标的灰度较亮,其灰度均值为2μ,背景的灰度较暗,其灰度均值为1μ,因此有12μμ<现若规定一门限值T 对图像进行分割,势必会产生将目标划分为背景和将背景划分为目标这两类错误。
通过适当选择阈值T ,可令这两类错误概率为最小,则该阈值T 即为最佳阈值。
把目标错分为背景的概率可表示为12()()TE T p x dx -∞=⎰把背景错分为目标的概率可表示为21()()TE T p x dx +∞=⎰总的误差概率为2112()()()E T P E T PE T =+为求得使误差概率最小的阈值T ,可将()E T 对T 求导并令导数为零,可得1122()()P p T P p T =代换后,可得221212222111()()ln 22P T T P σμμσσσ---=-此时,若设12σσσ==,则有2122121ln 2P T P μμσμμ⎛⎫+=+ ⎪-⎝⎭若还有12P P =的条件,则122T μμ+=这时的最优阈值就是两类区域灰度均值1μ与2μ的平均值。
上面的推导是针对图像灰度值服从正态分布时的情况,如果灰度值服从其它分布,依理也可求出最优阈值来。
一般情况下,在不清楚灰度值分布时,通常可假定灰度值服从正态分布。
在实际使用最优阈值进行分割的过程中,需要利用迭代算法来求得最优阈值。
设有一幅数字图像(,)f x y ,混有加性高斯噪声,可表示为(,)(,)(,)g x y f x y n x y =+此处假设图像上各点的噪声相互独立,且具有零均值,如果通过阈值分割将图像分为目标与背景两部分,则每一部分仍然有噪声点随机作用于其上,于是,目标1(,)g x y 和2(,)g x y 可表示为11(,)(,)(,)g x y f x y n x y =+ 22(,)(,)(,)g x y f x y n x y =+迭代过程中,会多次地对1(,)g x y 和2(,)g x y 求均值,则111{(,)}{(,)(,)}{(,)}E g x y E f x y n x y E f x y =+= 222{(,)}{(,)(,)}{(,)}E g x y E f x y n x y E f x y =+=可见,随着迭代次数的增加,目标和背景的平均灰度都趋向于真实值。
因此,用迭代算法求得的最佳阈值不受噪声干扰的影响。
四、实验步骤及程序 1、实验步骤(1)确定一个初始阈值0T ,0T 可取为min max02S S T +=式中,min S 和max S 为图像灰度的最小值和最大值。
(2)利用第k 次迭代得到的阈值将图像分为目标1R 和背景2R 两大区域,其中1{(,)|(,)}k R f x y f x y T =≥ 2{(,)|0(,)}k R f x y f x y T =<<(3)计算区域1R 和2R 的灰度均值1S 和2S 。
(4)计算新的阈值1k T +,其中1212k S S T ++=(5)如果1||k k T T +-小于允许的误差,则结束,否则1k k =+,转步骤(2)。
2、实验源程序I=imread('1.jpg'); Im=rgb2gray(I);subplot(121),imhist(Im);title('Ö±·½Í¼') ZMax=max(max(I)); ZMin=min(min(I)); TK=(ZMax+ZMin)/2; bCal=1; iSize=size(I); while (bCal) iForeground=0; iBackground=0; ForegroundSum=0; BackgroundSum=0; for i=1:iSize(1) for j=1:iSize(2) tmp=I(i,j); if (tmp>=TK)iForeground=iForeground+1;ForegroundSum=ForegroundSum+double(tmp); elseiBackground=iBackground+1;BackgroundSum=BackgroundSum+double(tmp); end end endZO=ForegroundSum/iForeground; ZB=BackgroundSum/iBackground; TKTmp=double((ZO+ZB)/2); if (TKTmp==TK) bCal=0; elseTK=TKTmp;endenddisp(strcat('µü´úºóµÄãÐÖµ£º',num2str(TK))); newI=im2bw(I,double(TK)/255);subplot(121),imshow(I)title('Ô-ͼÏñ')subplot(122),imshow(newI)title('·Ö¸îºóµÄͼÏñ')五、实验结果与分析1、实验结果直方图0100200原图像图1 原图像以及其灰度直方图原图像分割后的图像图2 原图像以及分割后图像2、实验结果分析迭代后的阈值:94.8064实验中将大于阈值的部分设置为目标,小于阈值的部分设置为背景,分割结果大体上满足要求。
实际过程中在利用迭代法求得最优阈值后,仍需进行一些人工调整才能将此阈值用于实验图像的分割,虽然这种方法利用了图像中所有像素点的信息,但当光照不均匀时,图像中部分区域的灰度值可能差距较大,造成计算出的最优阈值分割效果不理想。
具体的改进措施分为以下两方面:一方面,在选取图片时,该图片的两个独立的峰值不够明显,因此在分割后产生误差,应改进选择的图片的背景和物体的对比度,使得分割的效果更好;另一方面,实验程序中未涉及计算最优阈值时的迭代次数,无法直观的检测,应在实验程序中加入此项,便于分析。
实验二、K 均值聚类算法一、实验目的将模式识别方法与图像处理技术相结合,掌握利用K 均值聚类算法进行图像分类的基本方法,通过实验加深对基本概念的理解。
二、实验仪器设备及软件 HP D538、MATLAB 、WIT 三、实验原理K 均值聚类法分为三个步骤: 初始化聚类中心1、根据具体问题,凭经验从样本集中选出C 个比较合适的样本作为初始聚类中心。
2、用前C 个样本作为初始聚类中心。
3、将全部样本随机地分成C 类,计算每类的样本均值,将样本均值作为初始聚类中心。
初始聚类1、按就近原则将样本归入各聚类中心所代表的类中。
2、取一样本,将其归入与其最近的聚类中心的那一类中,重新计算样本均值,更新聚类中心。
然后取下一样本,重复操作,直至所有样本归入相应类中。
判断聚类是否合理1、采用误差平方和准则函数判断聚类是否合理,不合理则修改分类。
循环进行判断、修改直至达到算法终止条件。
2、聚类准则函数误差平方和准则函数(最小平方差划分)∑∑=Γ∈-=ci x i im x J 12e∑Γ∈=ix ii x N m 13、单样本改进:每调整一个样本的类别就重新计算一次聚类的中心(){(){}22min 1k m x k m x d l j li j ji -=-=i=1,2,...c 只调整一个样本四、实验步骤及程序 1、实验步骤理解K 均值算法基本原理,编写程序实现对自选图像的分类,并将所得结果与WIT 处理结果进行对比。
K 均值算法步骤:1、给定类别数C 和允许误差m ax E ,1←k2、初始化聚类中心()c i k m i ,...,2,1,=3、修正(){(){}22min 1k m x k m x d i jii jji -=-=0其他i=1,2,......,c;j=1,2,...N4、修正聚类中心()∑∑===+Nj jiNj jjii dx dk m 1115、计算误差()()∑=-+=ci i i k m k m e 121如果max E e 则结束,否则转(3)2、实验源程序clc clear ticRGB= imread ('Water lilies.jpg'); %¶ÁÈëÏñ img=rgb2gray(RGB); [m,n]=size(img);subplot(2,2,1),imshow(img);title(' ͼһ Ô-ͼÏñ')subplot(2,2,2),imhist(img);title(' ͼ¶þ Ô-ͼÏñµÄ»Ò¶ÈÖ±·½Í¼') hold off ; img=double(img); for i=1:200 c1(1)=25; c2(1)=125;c3(1)=200;%Ñ¡ÔñÈý¸ö³õʼ¾ÛÀàÖÐÐÄ r=abs(img-c1(i)); g=abs(img-c2(i));b=abs(img-c3(i));%¼ÆËã¸÷ÏñËØ»Ò¶ÈÓë¾ÛÀàÖÐÐĵľàÀë r_g=r-g;g_b=g-b;r_b=r-b;n_r=find(r_g<=0&r_b<=0);%ѰÕÒ×îСµÄ¾ÛÀàÖÐÐÄn_g=find(r_g>0&g_b<=0);%ѰÕÒÖмäµÄÒ»¸ö¾ÛÀàÖÐÐÄn_b=find(g_b>0&r_b>0);%ѰÕÒ×î´óµÄ¾ÛÀàÖÐÐÄi=i+1;c1(i)=sum(img(n_r))/length(n_r);%½«ËùÓеͻҶÈÇóºÍȡƽ¾ù£¬×÷ΪÏÂÒ»¸öµÍ»Ò¶ÈÖÐÐÄc2(i)=sum(img(n_g))/length(n_g);%½«ËùÓеͻҶÈÇóºÍȡƽ¾ù£¬×÷ΪÏÂÒ»¸öÖмä»Ò¶ÈÖÐÐÄc3(i)=sum(img(n_b))/length(n_b);%½«ËùÓеͻҶÈÇóºÍȡƽ¾ù£¬×÷ΪÏÂÒ»¸ö¸ß»Ò¶ÈÖÐÐÄd1(i)=abs(c1(i)-c1(i-1));d2(i)=abs(c2(i)-c2(i-1));d3(i)=abs(c3(i)-c3(i-1));if d1(i)<=0.001&&d2(i)<=0.001&&d3(i)<=0.001R=c1(i);G=c2(i);B=c3(i);k=i;break;endendRGBimg=uint8(img);img(find(img<R))=0;img(find(img>R&img<G))=128;img(find(img>G))=255;tocsubplot(2,2,3),imshow(img);title(' ͼÈý ¾ÛÀàºóµÄͼÏñ')subplot(2,2,4),imhist(img);title(' ͼËÄ ¾ÛÀàºóµÄͼÏñÖ±·½Í¼')五、实验结果与分析1.WIT结果图3 WIT聚类分析系统分析界面图4 WIT聚类分析系统分析结果聚类类别数 3聚类中心 R=18.8709 G=93.3122 B=190.678迭代次数 256运行时间 60.159ms2、K均值聚类结果图一 原图像2000400060008000 图二 原图像的灰度直方图100200图三 聚类后的图像04 图四 聚类后的图像直方图0100200图5 K 均值聚类分析结果 聚类类别数 3聚类中心 R =19.9483 G =94.4184 B =192.3320 迭代次数 8运行时间 2.278493 seconds小结:K 均值聚类方法和WIT 系统操作后对应的聚类中心误差较小,分别是19.9483 94.4184 192.3320和 18.8709 93.3122 190.678。