(完整版)圆的垂径定理及推论知识点与练习

合集下载

专题24.3 垂径定理【十大题型】(人教版)(原卷版)

专题24.3 垂径定理【十大题型】(人教版)(原卷版)

专题24.3 垂径定理【十大题型】【人教版】【题型1 利用垂径定理求线段长度】 (1)【题型2 利用垂径定理求角度】 (2)【题型3 利用垂径定理求最值】 (3)【题型4 利用垂径定理求取值范围】 (4)【题型5 利用垂径定理求整点】 (6)【题型6 利用垂径定理求面积】 (7)【题型7 垂径定理在格点中的运用】 (8)【题型9 垂径定理与分类讨论中的综合运用】 (10)【题型10 垂径定理的应用】 (11)【题型1 利用垂径定理求线段长度】【例1】(2022•雨花区校级开学)如图,⊙O的半径OD⊥弦AB交AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,EC=2√13,则CD的长为()A.1B.3C.2D.4【变式1-1】(2022•宁津县二模)如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6B.6√2C.8D.8√2【变式1-2】(2022•建华区二模)如图,⊙O的直径AB与弦CD相交于点E,若AE=5,EB=1,∠AEC =30°,则CD的长为()A.5B.2√3C.4√2D.2√2+√3+1【变式1-3】(2022春•徐汇区校级期中)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,且CE=CB,若BE=2AE,CD=5,那么⊙O的半径为.【题型2 利用垂径定理求角度】【例2】(2022•泰安模拟)如图,⊙O的半径OA,OB,且OA⊥OB,连接AB.现在⊙O上找一点C,使OA2+AB2=BC2,则∠OAC的度数为()A.15°或75°B.20°或70°C.20°D.30°̂上的【变式2-1】(2022秋•天心区期中)如图,已知⊙O半径OA=4,点B为圆上的一点,点C为劣弧AB一动点,CD⊥OA,CE⊥OB,连接DE,要使DE取得最大值,则∠AOB等于()A.60°B.90°C.120°D.135°【变式2-2】(2022秋•青田县期末)如图,在⊙O中,半径OC过弦AB的中点E,OC=2,OE=√2.(1)求弦AB的长;(2)求∠CAB的度数.【变式2-3】(2022秋•开州区期末)如图,在⊙O中,弦BC与半径OA垂直于点D,连接AB、AC.点E 为AC的中点,连接DE.(1)若AB=6,求DE的长;(2)若∠BAC=100°,求∠CDE的度数.【题型3 利用垂径定理求最值】【例3】(2022•威海模拟)⊙O中,点C为弦AB上一点,AB=1,CD⊥OC交⊙O于点D,则线段CD的最大值是()A.12B.1C.32D.2【变式3-1】(2022•河北模拟)如图所示,在⊙O中,AB为弦,OC⊥AB交AB于点D.且OD=DC.P为⊙O上任意一点,连接P A,PB,若⊙O的半径为1,则S△P AB的最大值为()A.1B.2√33C.3√34D.3√32【变式3-2】(2022秋•龙凤区校级期末)如图,矩形ABCD中,AB=20,AD=15,P,Q分别是AB,AD 边上的动点,PQ=16,以PQ为直径的⊙O与BD交于点M,N,则MN的最大值为.【变式3-3】(2022秋•延平区校级期末)在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.910B.65C.85D.125【题型4 利用垂径定理求取值范围】【例4】(2022•包河区校级二模)如图,在⊙O中,直径AB=10,CD⊥AB于点E,CD=8.点F是弧BC 上动点,且与点B、C不重合,P是直径AB上的动点,设m=PC+PF,则m的取值范围是()A.8<m≤4√5B.4√5<m≤10C.8<m≤10D.6<m<10【变式4-1】(2022•佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.【变式4-2】(2022秋•盐都区校级月考)如图,点P是⊙O内一定点.(1)过点P作弦AB,使点P是AB的中点(不写作法,保留作图痕迹);(2)若⊙O的半径为13,OP=5,①求过点P的弦的长度m范围;②过点P的弦中,长度为整数的弦有条.【变式4-3】(2022秋•天河区校级期中)已知⊙O的半径为5,点O到弦AB的距离OH=3,点P是圆上一动点,设过点P且与AB平行的直线为l,记直线AB到直线l的距离为d.(1)求AB的长;(2)如果点P只有两个时,求d的取值范围;(3)如果点P有且只有三个时,求连接这三个点所得到的三角形的面积.【题型5 利用垂径定理求整点】【例5】(2022•山海关区一模)已知⊙O的直径CD=10,CD与⊙O的弦AB垂直,垂足为M,且AM=4.8,则直径CD上的点(包含端点)与A点的距离为整数的点有()A.1个B.3个C.6个D.7个【变式5-1】(2022秋•新昌县期末)如图,AB是⊙O的弦,OC⊥AB于点C,连接OB,点P是半径OB上任意一点,连接AP,若OB=5,OC=3,则AP的长不可能是()A.6B.7C.8D.9【变式5-2】(2022•桥西区校级模拟)如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是3,⊙C上的整数点有个.【变式5-3】(2022秋•肇东市期末)已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A.4个B.3个C.2个D.1个【题型6 利用垂径定理求面积】【例6】(2022•武汉模拟)如图,在半径为1的⊙O中有三条弦,它们所对的圆心角分别为60°,90°,120°,那么以这三条弦长为边长的三角形的面积是()A.√2B.1C.√32D.√22【变式6-1】(2022秋•黄州区校级月考)如图,矩形MNGH的四个顶点都在⊙O上,顺次连接矩形各边的中点,得到菱形ABCD,若BD=12,DF=4,则菱形ABCD的面积为.【变式6-2】(2022秋•西城区校级期中)如图,AB为⊙O直径,过点O作OD⊥BC于点E,交⊙O于点D,CD∥AB.(1)求证:E为OD的中点;(2)若CB=6,求四边形CAOD的面积.【变式6-3】(2022•新洲区模拟)如图,点A,C,D均在⊙O上,点B在⊙O内,且AB⊥BC于点B,BC ⊥CD于点C,若AB=4,BC=8,CD=2,则⊙O的面积为()A.125π4B.275π4C.125π9D.275π9【题型7 垂径定理在格点中的运用】【例7】(2022秋•襄都区校级期末)如图所示,一圆弧过方格的格点AB,试在方格中建立平面直角坐标系,使点A的坐标为(0,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)【变式7-1】(2022春•海门市期中)如图所示,⊙P过B、C两点,写出⊙P上的格点坐标.【变式7-2】(2022•商城县三模)如图所示的网格中,每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上,点C同时也在AB̂上,若点P是BĈ的一个动点,则△ABP面积的最大值是.【变式7-3】(2017秋•靖江市校级月考)如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格作出该圆弧所在圆的圆心D点的位置,并写出D点的坐标为;(2)连接AD、CD,则⊙D的半径为,∠ADC的度数.【题型8 垂径定理在坐标系中的运用】【例8】(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B (0,4),与x轴交于C,D,则点D的坐标为()A.(4−2√6,0)B.(−4+2√6,0)C.(−4+√26,0)D.(4−√26,0)【变式8-1】(2022秋•西林县期末)如图,⊙P与y轴交于点M(0,﹣4),N(0,﹣10),圆心P的横坐标为﹣4.则⊙P的半径为()A.3B.4C.5D.6【变式8-2】(2022•印江县三模)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;…,按此作法进行下去,则点A2022的坐标为.【变式8-3】(2015•宜春模拟)如图,半径为5的⊙P与y轴交于点M(0,﹣4),N(0,﹣10),函数y =﹣2x+m图象过点P,则m=.【题型9 垂径定理与分类讨论中的综合运用】【例9】(2022秋•化德县校级期末)⊙O的半径为10cm,弦AB∥CD,且AB=12cm,CD=16cm,则AB 和CD的距离为()A.2cm B.14cm C.2cm或14cm D.10cm或20cm【变式9-1】(2022•包河区二模)已知圆O的半径为5,弦AB=8,D为弦AB上一点,且AD=1,过点D 作CD⊥AB,交圆O于C,则CD长为()A.1B.7C.8或1D.7或1【变式9-2】(2022秋•方正县期末)如图,⊙O的弦AB与半径OC垂直,点D为垂足,OD=DC,AB=2√3,点E在⊙O上,∠EOA=30°,则△EOC的面积为.【变式9-3】(2022秋•淮南月考)如图,已知⊙O的半径为2.弦AB的长度为2,点C是⊙O上一动点,若△ABC为等腰三角形,则BC2的长为.【题型10 垂径定理的应用】【例10】(2022秋•武昌区校级期末)某地有一座圆弧形拱桥,它的跨度(弧所对的弦的长)24m,拱高(弧的中点到弦的距离)4米,则求拱桥的半径为()A.16m B.20m C.24m D.28m【变式10-1】(2022•望城区模拟)《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸【变式10-2】(2022秋•西城区校级期中)京西某游乐园的摩天轮采用了国内首创的横梁结构,风格更加简约.如图,摩天轮直径88米,最高点A距离地面100米,匀速运行一圈的时间是18分钟.由于受到周边建筑物的影响,乘客与地面的距离超过34米时,可视为最佳观赏位置,在运行的一圈里最佳观赏时长为分钟.【变式10-3】(2022•浙江)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,̂,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通∠AOB=120°,从A到B只有路AB过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:√3≈1.732,π取3.142)。

垂径定理及其推论

垂径定理及其推论

则OE=3cm,AE=BE.
∵AB=16cm ∴AE=8cm
在Rt△AOE中,根据勾股定理有OA=10cm
∴⊙O的半径为10cm.
.
26
4、如图,CD是⊙O的直径,弦AB⊥CD
于E,CE=1,AB=10,求直径CD的长。
解:连接OA,
A
∵ CD是直径,OE⊥AB
C E O·
D
∴ AE=1/2 AB=5 B
③④ ①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦
③⑤ ①②④ ,并且平分弦所对的另一条弧.
④⑤ ①②③ 平分弦所对的两条弧的.直线经过圆心,并且垂直平分弦.22
4. 解决有关弦的问题
经常是过圆心作弦的垂线,或作垂直于弦
的直径,连结半径等辅助线,为应用垂径定理
创造条件.
.
23
随堂练习
条件 结论
命题
①③ ②④⑤ 平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧.
①④ ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对
①⑤ ②③④ 的另一条弧.
②③ ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.
②④ ①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平 ②⑤ ①③④ 分弦和所对的另一条弧.
知识要点
垂径定理
垂直于弦的直径平分弦,并且平分 弦所对的两条弧.
C
O
E
A
B
.D
1
垂径定理 C
O
E
A
B
排列CD这组是五合直条,径进会,行出AB是弦, D 现多CD少⊥个A命B题?
AE=BE 将A题⌒C设=与B⌒C结论调换 过A来⌒D,=还B⌒D成立吗?

圆的垂径定理及推论知识点与练习(最新整理)

圆的垂径定理及推论知识点与练习(最新整理)

圆的垂径定理及其推论知识点与练习(1)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧。

若直径AB ⊥弦CD 于点E ,则CE=DE ,⌒ AC=⌒ AD ;⌒ BC=⌒ BD (2)推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

若CE=DE ,AB 是直径,则⌒ AC=⌒AD ;⌒ BC=⌒ BD②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

若AB ⊥CD ,CE=DE ,则CD 是直径,⌒ AC=⌒ AD ;⌒ BC=⌒ BD③平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

若⌒ AC=⌒ AD ,AB 是直径,则AB ⊥CD ,CE=DE ,⌒ BC=⌒BD ④圆的两条平行弦所夹的弧相等。

若CD ∥FG ,CD 、FG 为弦,则⌒FC=⌒ GD 特别提示:①垂径定理及其推论可概括为:过圆心垂直于弦直径 平分弦 知二推三平分弦所对的优弧平分弦所对的劣弧②垂径定理可改写为:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧.其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧.它的三个推论可看作“如果四个条件中有两个成立,那么另外两个也成立”.(3)垂径定理及推论的应用:它是证明圆内线段相等、角相等、垂直关系及利用勾股定理计算有关线段的长度提供了依据,也为圆中的计算、证明和作图提供了依据、思路和方法。

①垂径定理中的垂径可以是直径、半径或过圆心的直线、线段,其本质是“过圆心”;②在圆的有关计算中常用圆心到弦垂线段、弦的一半、半径构造出垂径定理的条件和直角三角形,从而应用勾股定理解决问题;例:如图,在⊙O 中,弦AB 所对的劣弧为圆的, 31圆的半径为2cm ,求AB 的长。

解:如图,连接OB ,过点O 作OD ⊥AB 交AB 于点C ,由题意得,∵⌒ AB= ×360º=120º31∴∠AOB=120º,∴∠AOC=60º,在Rt △AOC 中,∵∠AOC=60º,OA=2,∴OC =OA=1,∴AB=2AC=2=22122OC AO 3故AB 的长为23练习一、选择题1、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是( )A 、CM=DMB 、∠ACB=∠ADBC 、AD=2BD D 、∠BCD=∠BDCGA A(1题图) (2题图) (3题)2、圆弧形蔬菜大棚的剖面如图所示,AB=8m ,∠CAD=30°,则大棚高度CD 约为( )A 、2.0mB 、2.3mC 、4.6mD 、6.9m3、如图,在⊙O 中,AB 、AC 是互相垂直的两条弦,OD ⊥AB 于D ,OE ⊥AC 于E ,且AB=8cm ,AC=6cm ,那么⊙O 的半径OA 长为( )A 、4cmB 、5cmC 、6cmD 、8cm4、半径为2cm 的圆中,有一条长为2cm 的弦,则圆心到这条弦的距离为( )A 、1cmB 、 cmC 、 cmD 、2cm5、如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不一定成立的是( )A 、∠COE=∠DOEB 、CE=DEC 、OE=BED 、⌒ BC=⌒ BD(题5)(题6)6、如图所示,在⊙O 中,OD ⊥AB 于P ,AP=4cm ,PD=2cm ,则OP 的长等于( )A 、9cmB 、6cmC 、3cmD 、1cm 二、填空题1、如图1中有 对全等的直角三角形;有 个等腰三角形;有 条相等的弧。

24.1.2-3圆的垂直定理及弦、弧、圆心角

24.1.2-3圆的垂直定理及弦、弧、圆心角

B
(4)
(5)
填空:
1、如图:已知AB是⊙O的直径,弦CD与AB相交于点E,若 AB⊥CD(或AC=AD,或BC=BD) _____________________________________________________ , 则CE=DE(只需填写一个你认为适当的条件) 2、如图:已知AB是⊙O的弦,OB=4cm,∠ABO=300,则O 到AB的距离是___________cm ,AB=_________cm. 2 4 A C E 。 O B 第1题图 D 。 O H
⌒ ⌒ = AOB COD . (1)如果AB=CD,那么___________ AB CD ,_________________ AOB COD AB=CD (2)如果 ⌒ = ⌒ ,那么____________ , ______________ . AB CD ⌒ =⌒ AB=CD
又因为OE
所以
、OF是AB与CD对应边上的高,
O
·
F
D
OE = OF.
C
⌒ = ⌒ , ∠COD=35°, = 2.如图,AB是⊙O的直径, ⌒ BC CD DE
求∠AOE的度数.
解: E D C A

⌒ =⌒ = BC CD DE
BOC=COD=DOE=35
O
·
AOE 180 3 35
A O· B 如图中所示, ∠AOB就是一个圆心角。
三、探究
如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能 发现哪些等量关系?为什么? A′ A′ B B B′ B′
O
·
A
O
·
A
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时,显然 ∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′重合.而同圆的半径相等, OA=OA′,OB=OB′,从而点A与A′重合,B与B′重合.

垂径定理及其推论

垂径定理及其推论

圆部分知识点总结垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

垂径定理及其推论可概括为: 过圆心 垂直于弦直径平分弦知二推三 平分弦所对的优弧 平分弦所对的劣弧弧、弦、弦心距、圆心角之间的关系定理1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

2:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

点和圆的位置关系设⊙O 的半径是r ,点P 到圆心O 的距离为d ,则有:d<r ⇔点P 在⊙O 内;d=r ⇔点P 在⊙O 上; d>r ⇔点P 在⊙O 外。

过三点的圆1、不在同一直线上的三个点确定一个圆。

2、经过三角形的三个顶点的圆叫做三角形的外接圆。

3、三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, (3)相离:直线和圆没有公共点时,叫做直线和圆相离。

如果⊙O 的半径为r ,圆心O 到直线L 的距离为d,那么:直线L 与⊙O 相交⇔d<r ;直线L 与⊙O 相切⇔d=r ; 直线L 与⊙O 相离⇔d>r ;圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

24.1.2-3圆的垂直定理及弦、弧、圆心角

24.1.2-3圆的垂直定理及弦、弧、圆心角
C
A
M└

B O

你可以写出相应的命题吗? 相信自己是最棒的!
D
C
垂径定理及推论
条件 ①② ①③ 结论 命题
A
M└

B
O
③④⑤ 垂直于弦的直径平分弦,并且平分弦所的两条弧. D ②④⑤ 平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧 .
①④
①⑤ ②③ ②④ ②⑤
②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的 ②③④ 另一条弧.
A C O D A C O B (2) D A C


O B
(1) B
(3) D
(4)弦的垂直平分线一定是圆的直径。

(5)平分弧的直线,平分这条弧所对的 弦。 (6)弦垂直于直径,这条直径就被弦平分。
(7)平分弦的直径垂直于弦
C B O A C B C O A D A O E D (6)
AB CD ,____________. (3)如果∠AOB=∠COD,那么_____________ 相 等
A E B
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么? 因为AB=CD ,所以∠AOB=∠COD. 又因为AO=CO,BO=DO, 所以△AOB ≌ △COD.
练习
D
在下列图形中,你能否利用垂径定理 找到相等的线段或相等的圆弧
A
B E A
O
O
C C
B
C
B
D
O E C B
O
D
A
E D
B
A
E C
B
一、判断是非: (1)平分弦的直径,平分这条弦所对的弧。

2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)

2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)知识点总结1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

2.垂径定理的推论:推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题。

3.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。

4.圆周角定理:5.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

6.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。

②性质:I:圆内接四边形的对角互补。

II:圆内接四边形的任意一个外角等于它的内对角。

7.三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆。

圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。

8.切线的性质:①圆的切线垂直于经过切点的半径。

②经过圆心且垂直于切线的直线必经过切点。

③经过切点且垂直于切线的直线必经过圆心。

运用切线的性质进行计算或证明时,常常作的辅助线是连接圆心和切点,通过构造直角三角形或相似三角形解决问题。

9. 切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线。

在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”。

圆的认识2圆的对称性垂径定理及其推论+练习课件+ 2023—2024学年华东师大版数学九年级下册


桥,桥下水面宽度AB为12 m,拱高CD为4 m.
(1)求拱桥所在圆的半径;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
解:(1)设拱桥所在圆的圆心为O,连结OB,OD,则易知
OD⊥AB,点C在OD的延长线上.∵OC⊥AB,∴D为AB

的中点.∵AB=12 m,∴BD= AB=6 m.

设OB=OC=r m,∵CD=4 m,∴OD=(r-4)m.
垂足分别是点D、E,连结DE.
(1)求线段DE的长;
解:(1)∵OD经过圆心O,OD⊥AC,
∴AD=DC.同理得CE=EB.
∴DE是△ABC的中位线.

∴DE= AB.∵AB=8,∴DE=4.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
(2)若点O到AB的距离为3,求☉O的半径.
解:(2)过点O作OH⊥AB于点H,连结OA,
(r-15)
含 r 的 代 数 式 表 示 OD , 则 OD =
cm. 在
Rt△OAD中,由勾股定理可列出关于r的方程:r2= 452+
(r-15)2 ,解得r=75.通过单位换算,得到车轮直径约
为六尺六寸,可验证此车轮为兵车之轮.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
9.已知☉O的半径为7,AB是☉O的弦,点P在弦AB上.若PA=

24.1圆的相关性质和垂径定理练习题

圆的有关性质知识点1 圆的有关性质1.下列条件中,能确定一个圆的是( )A.以点O为圆心B.以2 cm长为半径C.以点O为圆心,以5 cm长为半径D.经过点A2.下列命题中正确的有( )①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.个个个个3.如图所示,图中弦的条数为( ))条条条条知识点2 圆中的半径相等4.如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为( )°°°°5.已知AB,CD是⊙O的两条直径,∠ABC=30°,那么∠BAD=( )°°°°6.如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.¥7.下面3个命题:①半径相等的两个圆是等圆;②长度相等的弧是等弧;③一条弦把圆分成两条弧,这两条弧不可能是等弧.其中真命题的个数为( )8.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为( )°°°°9.点P到圆上各点的最大距离为10 cm,最小距离为8 cm,则此圆的半径为( )cm cm cm或1 cm D.无法确定10.已知A,B是半径为6 cm的圆上的两个不同的点,则弦长AB的取值范围是_____.>11.已知,如图,OA,OB为⊙O的半径,C,D分别为OA,OB的中点.求证:AD=BC.12.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E点,已知AB=2DE,∠E=18°,求∠AOC的度数.(垂直于弦的直径知识点1 认识垂径定理1.(佛山中考)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是( )C. D.2.(黔东南中考)如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=°,若CD=6cm,则AB的长为( )cm cm cm cm3.(湘西中考)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5 cm,CD=6 cm,则OE=________.:57236知识点2 垂径定理的推论 4.下列说法正确的是( )A.垂直于弦的直线平分弦所对的两条弧B.平分弦的直径垂直于弦C.垂直于直径的弦平分这条直径D.弦的垂直平分线经过圆心 5.如图,⊙O 的弦AB=8,M 是AB 的中点,且OM=3,则⊙O 的半径等于( )6.(黄冈中考)如图,M 是CD 的中点,EM ⊥CD ,若CD=4,EM=8,则弧CED 所在圆的半径为________. 知识点3 垂径定理的应用 :7.(兰州中考)如图是一圆柱形输水管的横截面,阴影部分为有水部分,若水面AB 宽为8 cm ,水的最大深度为2 cm ,则该输水管的半径为( )cm cm cm cm8.(潍坊中考)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP ∶AP=1∶5,则CD 的长为( )9.如图,已知⊙O 的半径为4,OC垂直弦AB于点C,∠AOB=120°,则弦AB 的长为________|10.如图,在⊙O 中,AB 、AC 是互相垂直的两条弦,OD ⊥AB 于点D ,OE ⊥AC 于点E ,且AB=8 cm ,AC=6 cm ,那么⊙O 的半径OA 长为________11.如图,以点P 为圆心的圆弧与x 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为________12.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为________|13.(佛山中考)如图,⊙O 的直径为10 cm ,弦AB=8 cm ,P 是弦AB 上的一个动点,求OP 的长度范围.14.(湖州中考)已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C,D(如图所示). (1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O 到直线AB 的距离为6,求AC 的长.2255。

垂径定理及其推论练习题课件


推论的意义和价值
意义
垂径定理的推论是圆中弦长与圆心到直线的距离和半径之间关系的深刻揭示,对 于解决实际问题中涉及圆和直线的问题具有重要的指点意义。
价值
推论的应用范围广泛,不仅在几何、代数等领域有广泛应用,而且在工程、建筑 、天文等领域也有实际应用价值。例如,在桥梁设计和建造过程中,垂径定理的 推论可用于计算桥梁主跨的长度和拱高,以确保桥梁的安全性和稳定性。
证明的思路和方法
思路
通过构造辅助线,将垂径定理的证明 转化为直角三角形的问题,利用勾股 定理进行证明。
方法
作直径端点与圆心的连线,构造两个 直角三角形,利用勾股定理证明垂径 定理。
证明过程
步骤1
作直径端点与圆心的连线。
步骤2
根据勾股定理,证明垂径定理成立。
步骤3
总结垂径定理的内容和适用范围。
证明中的注意事项
PART 04
垂径定理的练习题
垂径定理的练习题
• 请输入您的内容
PART 05
练习题的解答和分析
解答过程
题目1
解答
题目2
解答
已知圆O的半径为5,弦AB的 长度为8,求弦AB的中垂线与 半径OA之间的夹角。
第一,利用垂径定理计算出圆 心O到弦AB的垂线段OC的长 度为$sqrt{5^2 - 4^2} = 3$ 。然后,利用直角三角形的性 质,可以求出角COB的大小为 $60^circ$。
垂径定理的重要性
基础几何知识
垂径定理是几何学中的基 础知识点,是进一步学习 其他几何知识的前提。
解决实际问题
垂径定理在实际问题中有 着广泛的应用,掌握它能 够更好地解决实际问题。
培养逻辑思维
学习垂径定理需要严谨的 逻辑思维和推理能力,有 助于培养学生的数学素养 和解决问题的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的垂径定理及其推论知识点与练习
(1)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧。

若直径AB ⊥弦CD 于点E ,则CE=DE ,⌒
AC =⌒ AD ;⌒ BC =⌒ BD (2)推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

若CE=DE ,AB
是直径,则⌒ AC =⌒ AD ;⌒ BC =⌒ BD
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

若AB ⊥CD ,CE=DE ,则CD 是直径,⌒ AC =⌒ AD ;⌒ BC =⌒ BD
③平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

若⌒ AC =⌒
AD ,AB 是直径,则AB ⊥CD ,CE=DE ,⌒ BC =⌒ BD
④圆的两条平行弦所夹的弧相等。

若CD ∥FG ,CD 、FG 为弦,则⌒ FC =⌒ GD
特别提示:①垂径定理及其推论可概括为:
过圆心
垂直于弦
直径 平分弦 知二推三
平分弦所对的优弧
平分弦所对的劣弧
②垂径定理可改写为:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧.其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧.它的三个推论可看作“如果四个条件中有两个成立,那么另外两个也成立”.
(3)垂径定理及推论的应用:
它是证明圆内线段相等、角相等、垂直关系及利用勾股定理计算有关线段的长度提供了依据,也为圆中的计算、证明和作图提供了依据、思路和方法。

①垂径定理中的垂径可以是直径、半径或过圆心的直线、线段,其本质是“过圆心”;
②在圆的有关计算中常用圆心到弦垂线段、弦的一半、半径构造出垂径定理的条件和直角三角形,从而应用勾股定理解决问题;
例:如图,在⊙O 中,弦AB 所对的劣弧为圆的31,
圆的半径为2cm ,求AB 的长。

解:如图,连接OB ,过点O 作OD ⊥AB 交AB 于点C ,由
题意得,∵⌒ AB = 3
1×360º=120º ∴∠AOB=120º,∴∠AOC=60º,在Rt △AOC 中,∵∠AOC=60º,OA=2,∴OC =
2
1OA=1,∴AB=2AC=222OC AO =23 故AB 的长为23 练习
一、选择题
1、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是( )
A 、CM=DM
B 、∠ACB=∠ADB
C 、AD=2B
D D 、∠BCD=∠BDC
G
A A
(1题图) (2题图) (3题)
2、圆弧形蔬菜大棚的剖面如图所示,AB=8m ,∠CAD=30°,则大棚高度CD 约为( )
A 、2.0m
B 、2.3m
C 、4.6m
D 、6.9m
3、如图,在⊙O 中,AB 、AC 是互相垂直的两条弦,OD ⊥AB 于D ,OE ⊥AC 于E ,且AB=8cm ,AC=6cm ,那么⊙O 的半径OA 长为(
) A 、4cm B 、5cm C 、6cm D 、8cm
4、半径为2cm 的圆中,有一条长为2cm 的弦,则圆心到这条弦的距离为( )
A 、1cm
B 、 cm
C 、 cm
D 、2cm
5、如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不一定成立的是( )
A 、∠COE=∠DOE
B 、CE=DE
C 、OE=BE
D 、⌒ BC =⌒
BD
(题5) (题6)
6、如图所示,在⊙O 中,OD ⊥AB 于P ,AP=4cm ,PD=2cm ,则OP 的长等于( )
A 、9cm
B 、6cm
C 、3cm
D 、1cm 二、填空题
有 条相等的弧。

(题2) (题
3) 1、如图1中有 对全等的直角三角形;有 个等腰三角形;2、如图所示,AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD=10cm ,AP :PB=1:5,则⊙O 的半径为 cm .
3、如图所示,⊙O 中,弦CD 交直径AB 于点P ,AB=12cm ,PA :PB=1:5,且∠BPD=30°,则CD= cm .
4、在⊙O 中,P 为其内一点,过点P 的最长的弦为8cm ,最短的弦长为4cm ,则OP =____ _。

5、已知圆的半径5cm ,一弦长为8cm ,则该弦的中点到弦所对的弧的中点的距离为__ _____。

6、已知圆心到圆的两条平行弦的距离分别是2和3,则两条平行弦之间的距离为 ____。

题1 C D
A
O
B E
7、在半径为5cm的圆内有两条互相平行的弦,一条弦长为8cm,另一条弦长为6cm,则这两条弦之间的距离为_____ _。

8、在弓形ABC中,弦AB=24,高CD=6,则弓形所在圆的半径等于。

9、⊙O的直径为20,弦AB=8,P是弦AB上的一个动点,则OP的取值范围是。

10、在弓形ABC中,弦AB=24,高CD=6,则弓形所在圆的半径等于。

三、解答题
1、如图所示,在Rt△ABC中,∠C=900,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E,求AB和AD的长。

2、如图所示,P为弦AB上一点,CP⊥OP交⊙O于点C,AB=8,AP:PB=1:3,求PC的长。

3、如图所示,在Rt△ABC中,∠C=900,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E,求AB和AD的长。

题3
题1
题2。

相关文档
最新文档