1.1 认识三角形 第2课时

合集下载

(浙教版)八年级数学上册课件:1.1 认识三角形 第2课时

(浙教版)八年级数学上册课件:1.1 认识三角形 第2课时
A
8.如果一个三角形的三条高的交点恰是三角形的一个顶点, 那么这个三角形是( )
C
A.锐角三角形 C.直角三角形
B.钝角三角形 D.不能确定
9.如图所示.
(1)在△ABC中,BC边上的高是______;
(2)在△AEC中,AE边上的高是______; AB
(3)若AB=CD=3 cm,AE=5 cm,则△AEC的面积S=
1 解:(1)∠DAE=20°.(2)∠DAE=2(β -α ).(3)∠EFG =20°.(4)∠EFG 的大小不发生改变.理由:∵AD⊥BC,
1 FG⊥BC,∴∠GFE=∠EAD.∵∠EAD=2(β -α ),∴∠EFG 的大小不发生改变.
5.如图,AD是△ABC的中线2 ,且AB=6 cm,AC=4 cm,则△ABD 与△ACD的周长之差是_______cm.
第5题图
第6题图
6.如图,点 D 是 BC 的中点,点 E 是 AC 的中点.若 S△ADE=1, 则 S△ABC=_____4___.
知识点3:三角形的高线 7.(义乌市期中)过△ABC的顶点A,作BC边上的高,以下作法 正确的是( )
18.(浦江县月考)(例2变式)已知:在△ABC中,∠C>∠B,AE平 分∠BAC. (1)如图①,AD⊥BC于点D,若∠C=70°,∠B=30°,请你用量 角器直接量出∠DAE的度数; (2)若△ABC中,∠B=α,∠C=β(α<β),根据(1)中的结果大胆猜 想∠DAE与α,β间的等量关系,不必说明理由;
(3)如图②所示,在△ABC中,AD⊥BC,AE平分∠BAC,点 F是AE上的任意一点,过点F作FG⊥BC于点G,且∠B= 40°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;

《认识三角形》第二课时参考教案

《认识三角形》第二课时参考教案

1.1 认识三角形教学目标1.理解三角形的中线、角平分线、高线的概念.2.会画三角形的中线、角平分线、高线.3.能通过画图发现三角形的中线、角平分线、高线的特殊位置关系.课堂研讨一、复习引入(1)什么叫三角形呢?一个三角形有个顶点,条边,个内角,个外角,和三角形一个内角相邻的外角有个,它们是角,若一个顶点只取一个外角,那么只有个外角.(2)三角形按角分类可分为哪几类?(3)三角形按边来分可分为哪几类?二、探索新知1、三角形的中线:如图:取ΔABC的边BC的中点D,连结AD。

线段AD就ΔABC的中线。

你能用一句话描述三角形的中线的定义吗?连结三角形的一个顶点与该顶点的对边中点的线段叫三角形的中线。

一个三角形有3条中线。

试一试,在上图中画一画。

这些中线有什么特殊的位置关系吗?试一试:画出下列各图的中线。

AB CD2、三角形的角平分线:如图:画ΔABC的角∠BAC的角平分线AD。

线段AD就ΔABC的角平分线。

你能用一句话描述三角形的角平分线的定义吗?在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段就叫三角形的角平分线。

一个三角形有3条角平分线。

试一试,在上图中画一画。

这些角平分线有什么特殊的位置关系吗?试一试:画出下列各图的角平分线。

3、三角形的高线:如图:从ΔABC的一个顶点向它的对边画垂线AD。

线段AD就ΔABC的高线。

你能用一句话描述三角形的高线的定义吗?从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫三角形的高线。

一个三角形有3条高线。

试一试,在上图中画一画。

这些高线有什么特殊的位置关系吗?试一试:画出下列各图的高线。

4、你发现了什么样的特殊位置关系?(交于一点)三、新知应用例2 如图,在△ABC中,AD是△ABC的高线,AE是△ABC的角平分线。

已知∠B=60°,∠C=40°。

求∠DAE的大小。

四、课堂小结1、三角形有几条角平分线?有几条中线?有几条高线?2、通过画图你发现了什么?3、直角三角形和钝角三角形的中线和高线及角平分线有何特殊的位置关系?教后反思:。

人教版数学四年级下册第五单元《三角形的认识》(第2课时)教案

人教版数学四年级下册第五单元《三角形的认识》(第2课时)教案

人教版数学四年级下册第五单元《三角形的认识》(第2课
时)教案
一、教学目标
1.能够认识、描述和绘制不同位置的三角形。

2.能够用图形工具绘制和标出三角形的各边、角。

二、教学重点
1.认识和描述不同位置的三角形。

2.绘制三角形图形并标出各边、角。

三、教学难点
1.区分和描述三角形的不同位置与属性。

2.熟练使用图形工具绘制三角形。

四、教学准备
1.课件:三角形的图片和示例
2.黑板、彩色粉笔
3.学生课桌上的绘图工具
4.学生练习册
五、教学过程
1. 导入新知识
教师在黑板上绘制一个三角形,并引导学生观察,并让学生讨论三角形的特点。

2. 学习新知识
1.介绍不同位置的三角形:等边三角形、等腰三角形等。

2.演示如何绘制不同位置的三角形,并标出各边、角。

3.让学生在练习册上尝试绘制和描述各种三角形。

3. 练习与巩固
让学生进行练习,绘制几个不同位置的三角形,并交流彼此的画法,并纠正错误。

4. 拓展知识
学生可以尝试在其他几何图形中找出三角形,并描述其特点。

5. 课堂小结
教师对本节课所学内容进行小结,并让学生总结三角形的特点和绘制方法。

六、作业布置
布置作业:完成练习册上的练习题,绘制指定的不同位置的三角形。

七、教学反思与改进
教师可以根据学生的表现和理解情况,适时调整教学方法和内容,使学生更好地掌握三角形的基本知识。

以上为本节课的教学内容,希望同学们能够认真学习,掌握相关知识。

1.1 认识三角形(第2课时).1 认识三角形教案(2)

1.1 认识三角形(第2课时).1 认识三角形教案(2)

- 1 - 1.1 认识三角形(第2课时)【教学目标】知识目标:1、使学生知道三角形的角平分线、中线与高线的定义,并能熟练地画出这两种线段2、能应用三角形的角平分线、中线与高线的性质解决简单的数学问题能力目标:培养学生形成观察辨别、全面分析、归纳概括等数学方法,培养学生的思维方法和良好的思维品质。

情感目标:通过提问、讨论等多种教学活动,树立自信、自强、自主感,激发学习数学的兴趣,增强学好数学的信心。

【教学重点、难点】教学重点、难点:三角形的角平分线、中线的定义及画图是本节课的重点,利用三角形的角平分线和中线的性质解决有关的计算问题是本节难点。

【教学过程】一、创设情景,引入新课引出概念:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

(二、合作交流,探讨结论请同学回答下面的问题在一个三角形中有几条角平分线?请每位同学在不同类型的三角形中画一画,与同伴交流你发现了什么?在此过程中,教师可以用几何画板制作的动画演示,在锐角三角形、钝角三角形、直角三角形中三条角平分线的特点。

(三条线都在三角形的内部,三条线相交于一点) 任意画一个∆ABC ,用刻度尺画BC 的中点D ,连结A D引出概念:在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线。

(让学的中线的形状也是线段生理解三角形)三角形的角平分线、中线、高线用几何语言表达方式:如图 在∆ABC 中,∠BAD =∠CAD ,AD 是∆ABC 的角平分线;在∆ABC 中,D 是BCAD是∆ABC中BC边上的中线。

三、应用概念,解决问题范例1 如图AE是∆ABC的角平分线,已知∠B=450∠C=600求下列角的大小∠BAE ; ∠AEB首先让学生仔细观察图形,分析已知条件,教师作好引导四、巩固练习请学生课内练习1、2教师分析总结五、作业布置课后请同学做好书本中的作业。

- 2 -。

初中数学八年级上册 1.1 认识三角形 (2) 课件

初中数学八年级上册 1.1  认识三角形 (2) 课件

F
当问题直接解决有困难时,
可以考虑从反面着手
B
D
E C
回味 无穷
小结
我的收获是 … … 我感受到了… … 我的问题存在于… …
课外延伸
如图,在ΔABC中,∠A= α60,°∠ ABC,∠ ACB的平分线
交于点O,则∠ B0C的度数为
整体思想
己所不欲,勿施于人。——《论语·颜渊》 君子赠人以言,庶人赠人以财。——荀况 那些尝试去做某事却失败的人,比那些什么也不尝试做却成功的人不知要好上多少。 是非和得失,要到最后的结果,才能评定。 关心自己的灵魂,从来不早,也不会晚。 连一个好朋友都没有的人,根本不值得活着。 只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。你要的比别人多,就必须付出得比别人多。 现代的婚姻并不是情感的产物,更多的是竞争的结晶,选配偶其实就是变相的竞争上岗,而小三就是原配最大的竞争对手。 竞争,其实就是一种变相的友谊,在对手的帮助下提高你自己,害怕竞争的人已经输给了对手,注定难取得大的成就。 人们不相信聪明人会做蠢事:人的权利竟是丧失到了如此地步。 所有的胜利,与征服自己的胜利比起来,都是微不足道。所有的失败,与失去自己的失败比起来,更是微不足道。 在茫茫沙漠,唯有前时进的脚步才是希望的象征。
身体健康,
学习进步!
D
B
C
E
AB边上的高是 CE ;
BC边上的高是 AD ;
如图,在△ABC中,AD是△ABC的 高,已知∠BAC=80°,∠C=40°
A
B
D
C
例 如图,在△ABC中,AD是△ABC的高线,
AE是△ABC的角平分线.已知∠BAC=80°,∠C =40°,求∠DAE的大小。

《认识三角形第2课时》课件-优质公开课-华东师大7下精品

《认识三角形第2课时》课件-优质公开课-华东师大7下精品

B
D
E
F
C
随堂演练
1.如果一个三角形的三条高的交点恰是三角形的一个顶 点,那么这个三角形是( B )
A.锐角三角形 C.钝角三角形
B.直角三角形 D.锐角三角形
2. 在下图中,如果 AE=ED=DC ,则 BE、 BD分别 是 △ABD 、△BCE 的中线,
图中有没有面积相等的三角形?
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
A
∴线段AD是△ABC的中线 ___
∵∠BAD=∠CAD,
BБайду номын сангаас
D
C
A
∴线段AD是△ABC的角平分线 _____
B D
A
C
∵∠ADC=90°, 高 ∴线段AD是△ABC的___
B D C
例2、如图,AD、AM、AH分别是△ABC的角平分线、 中线、高。 (1)∵AD是△ABC的角平分线, 1 A ∴∠ BAD =∠ DAC = ∠ BAC 。
5
2 3 0 1
4
4
3
5
2
6 7
1
8
0
9
D
C
0
1
2
3
4
5
10
锐角三角形的三条高
F
A
E O C
∵AD是△ABC的高
B ∴AD⊥BC, ∠ADC=∠ADB=90°(高的定义)
D
锐角三角形的三条高是 在三角形的内部还是外部?
锐角三角形的三条高相交于同一点.
锐角三角形的三条高都在三角形的内部。
直角三角形的三条高 直角三角形的三条高 交于直角顶点.

A E O

1.1 认识三角形(2课时) 教案

1.1 认识三角形(2课时) 教案

1.1 认识三角形(1)【教学目标】1、通过实践活动,理解三角形三个内角的和等于180o2、理解三角形的一个外角等于和它不相邻的两个内角的和3、合适用三角形的内角和外角的性质简单的几何问题4、了解三角形的分类【教学重点、难点】1.本节教学的重点是三角形三个内角和等于180o的性质是本节重点。

2.例3是立体图形,涉及的角之间的关系不易辨认,是本节难点。

【教学过程】1,合作学习:①请每个学生利用手中的三角形(已备),把三角形的三个角撕(或剪)下来,然后把这三个角拼起来,然后观察这三个角拼成了一个什么角?②请学生归纳这一结论,教师板书:三角形的三个内角的和等于180O2、三角形内角和性质的应用①口答:△ABC中,∠A=45O,∠B=60O,求∠C②△ABC中,∠A=57O18,,∠B=46O49,。

求∠C③△ABC中,∠A=∠B,∠C=110O,求∠A,∠B④△ABC中,∠A:∠B:∠C=1:2:3,求这个三角形的三个内角。

3、由上题得出图中三角形的形状①②得出的三角形的三个角都是锐角,这样的三角形称之为锐角三角形③得出的三角形有一个角是钝角,这样的三角形称之为钝角三角形④得出的三角形有一个角是直角,这样的三角形称之为直角的三角形若一个三角形为Rt△,那么它的其余两个锐角互余。

4、三角形的外角:①定义:三角形的一边和另一边相邻边组成的角,叫做三角形的外角。

由图得:∠BCE+∠ACB=180O而∠A+∠B+∠ACB=180O∴∠BCE=∠A+∠B从而得到定理:三角形的一个外角等于和它不相邻的两个内角的和②外角也并不一定绝对,要会看一个角之是内角还是外角。

5、练习:1)△ABC中,∠ACD=120O∠A=50O ,求∠B、∠ACD2)如书本例题3),已知,在△ABC 中, ∠C=Rt ∠,D 是BC 上一点,已知∠1=∠2,∠B=25O ,求∠BAD 数。

6:小结:角形的内角和性质②认识三角形的外角的概念,并能准确寻找外角和内角 7,布置作业1.1 认识三角形(2)【教学目标】1、使学生知道三角形的角平分线和中线的定义,并能熟练地画出这两种线段 2、能应用三角形的角平分线和中线的性质解决简单的数学问题 【教学重点、难点】教学重点、难点:三角形的角平分线、中线的定义及画图是本节课的重点,利用三角形的角平分线和中线的性质解决有关的计算问题是本节难点。

2019版七年级数学上册第一章三角形1.1认识三角形第2课时导学案鲁教版五四制

2019版七年级数学上册第一章三角形1.1认识三角形第2课时导学案鲁教版五四制

2019版七年级数学上册第一章三角形1.1认识三角形第2课时导学案鲁教版五四制学习目标:1.了解等腰三角形和等边三角形的概念2.掌握并能运用三角形三边的关系的性质.学习方法:自主探究与小组合作交流相结合.学习重难点:三角形三边关系的理解及运用学习过程:模块一预习反馈一、学习准备1.按三角形内角的大小把三角形分为:三个角都是锐角的是三角形有一个角是直角的是三角形有一个角是钝角的事三角形。

2.图3-11中有几个三角形?将找到的三角形按角来分类。

解:锐角三角形:直角三角形:钝角三角形:二、教材精读1.观察图3-11中的三角形,你能发现他们各自的边上之间有什么关系?解:三角形的三边有的各不相等,有的两边相等,有的三边相等。

有相等的三角形叫等腰三角形有三边都相等的三角形式三角形,也叫正三角形总结:三角形按边分2.(1)任意画一个三角形,量出它的三边长度,并填空:a=______;b=_______;c=______(2)计算并比较:a+b____c; b+c____a; c+a____ba-b____c; b-c____a; c-a____b(3)通过以上的计算你认为三角形的三边存在怎样的关系?解:三角形两边之和第三边,::⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三边都不相等的三角形三角形普通等腰三角形等腰三角形有两条边相等的三角形等边三角形三角形两边之差 第三边, 3.(1)元宵节的晚上,房梁上亮起了彩灯,装有黄色彩灯的电线与装有红色彩灯的电线哪根长呢?说明你的理由。

利用你发现的规律填空 AB+AC BC AB+BC ACAC+BC AB(2)任意两边之和大于第三边。

你知道为什么吗?归纳: 两边之和大于第三边。

两边之差小于第三边。

第三边大于两边之 ,小于两边之 。

模块二 合作探究1.有两根长度分别为4cm 和9cm 的木棒,用长度为3cm 的木棒与它们首尾相连能摆成三角形吗?为什么?用长度为13cm 的木棒呢?如要找根木棒与与已知的两根木棒首尾相连成一个三角形,那么那根木棒的长度范围是多少?解:取长度为3cm 的木棒时,由于 + =7<9,出现了两边之和 第三边的情况,所以它们不能摆成三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的外角性质:
由三角形内角和性质,我们有以下 两个结论: 1、三角形的一个外角等于和它不相 邻的两个内角的和.
∠1=∠A+∠B.
2、三角形的一个外角大于任何一个 和它不相邻的内角.
∠1﹥∠A , ∠1﹥∠B.
例3

一张小凳子的结构如图,∠1=∠2, ∠3=100°.求∠1的度数.
. .
1 2 B
×
4、在△ABC中, (1)∠C=70°,∠A=50°,则∠B= 60 度;
(2)∠B=100°,∠A=∠C,则∠C= 40 度.
5、如左下图,在直角三角形CDE中, ∠C和
∠E的关系是 互余 ,其中∠C=55°,则
E C
∠E= 35 度.
A
D
B
C
6、如右上图,在直角三角形ABC中,∠A=2∠B,
三角形
四边形 五边形 …
n 边形
180°( n-2 )
随堂练习:
1、在△ABC中∠A∶∠B∶∠C=1∶2∶3, 则 △ABC是( ). B
A、锐角三角形 B、直角三角形
C、钝角三角形
D、不能确定
2、已知△ABC中,∠A∶∠B∶∠C=1∶3∶5,求 ∠A,∠B和∠C的度数,它是什么三角形?
3、判断: (1)一个三角形的三个内角可以都小于60°; ( ) (2)一个三角形最多只能有一个内角是钝角 或直角; ( √ )
A、 2cm
三角形任何两边的和大于第三边,三角形任何 两边的差小于第三边.
应用性质:判断三条线段能否构成一个三角形.
思考:三角形的三个内角有什么关系

合作学习
1、剪一个△ABC; 2、分别取AC、BC的中点D、E,连结DE; 3、过D作DF⊥AB于点F,过E作EH⊥AB于点H; 4、依次把△CDE,△ADF,△BEH 沿DE,DF,EH折 叠,得长方形DFHE.
如图:
∠1 (1)△BCD的外角是_____;
D
2 1
A
△ADC (2)∠2是______的外角,
△ADE 也是______的外角; B ∠AED (3)△ AEC的外角是 ______ .
E C
共同探究
我们知道,三角形的三个内角的和是180°,那么四 边形四个内角的和为多少度?五边形呢?...... 填写下表, 你能找到什么规律? 多边形 内角和 180° 360° 540° …
思考:一个三角形有多少个外角?
观 察
A 2 B 1 C 2 B 5 4 A 1 6 3 C 3
与三角形的每个内角相邻的外角分别有 两 个,
他们的大小 相等 .
1、如图,∠1,∠2,∠3 是不是△ABC的外角?
B
2 1 3
A
C
2、如图: ∠1 (1)△BCD的外角是_____.
D
2 1
A
△BCD (2)∠2既是______的内角,
则∠A=
60
度,∠B= 30
度.
7.在△ ABC中,
(1)若∠A=54°,∠B=27°,则∠C=
99°
.
(2)若∠B=∠C=30°,则∠A=__, 120°
△ABC为___三角形. 钝角
思考:
如图,计算:∠A+∠B+∠C+∠D+∠E+∠F= 360 度. A
B
C H D G F M E
1、三角形的内角和等于180°; 2、三角形的外角及其性质; 3、三角形按角的大小分类.
(第2课时)
由不在同一条直线上的三条线段首尾顺次相接 所组成的图形叫做三角形. 2、小明有两根长度分别为6cm,9cm的木条,他想钉一 个三角形的木框,现在有长度分别为2cm,3cm,8cm , 15cm的木条供他选择,那么他所选的木条长度应为 (
C
). B、 3cm C、 8cm D、 15cm
在三角形的三个内角中找出一个角是直角或是钝角,就 能判定它是直角三角形或者是பைடு நூலகம்角三角形,但如果判定它是锐 角三角形,就必须知道三个角都是锐角才行.
请问:你发现了什么?
三角形的内角和定理:
三角形三个内角的和等于180 . 几何表示:
在△ABC中,∠A+∠B+∠C=180°.

例2 如图,在△ABC中,∠A=45°,∠B=30°,
求∠C的度数.

C
∵ ∠A+∠B+∠C=180°
(三角形三个内角的和等于180°),
∴∠C= 180°-∠A-∠B
A B
= 180°-45 °-30 ° =105 °.
练一练:
1、在△ ABC中,∠A=45°,∠B= 2∠C,求
∠B,∠C的度数.
2、在△ ABC中,∠A=∠B= 2∠C,求∠B,∠C
的度数. 3、在△ABC中, ∠ A ,∠ B, ∠ C的度数之 比是2:3:4,求∠ A ,∠ B,∠ C的度数. 4、在△ABC中,已知∠ A =∠ B,∠C=40°,
△ADC 又是______的外角.
B
C
想一想:
外角与相邻内角有什么特殊关系?
B
不相邻 内角
1 2 3
∠3+∠4=180°
A
相邻内角
. C
4
外角
D
外角与不相邻内角有什么关系?
观 察:
B
不相邻 内角
(1)∠4=∠1+∠2,
(2)∠4﹥∠1 ,∠4﹥∠2.
1
2 3
A
相邻内角
. C
4
外角
数学说理:
∵∠3+∠4=180°, D ∠1+∠2+∠3=180°, ∴ ∠4=∠1+∠2 .
则∠ A=
70 .

(1)下图中小明所拿三角形被遮住的两个内 角是什么角?小颖的呢?试着说明理由.
(2)下图中三角形被遮住的两个内角可能是什 么角?将所得结果与(1)的结果进行比较.
按三角形内角的大小把三角形分为三类: 三 角 形 的 分 类
锐角三角形 钝角三角形 三个内角都是锐角 有一个内角是钝角 有一个内角是直角
∵∠3是△ABC的外角,
∴∠3=∠1+∠2 (三角形的一个外角等于和 它不相邻的两个内角的和).
A
3
. C
∵∠1=∠2, ∴∠3=2∠1,
1 1 ∴∠1= ∠3= ×100°=50°. 2 2
试一试
如图,
A
(1)若∠1=80°,∠2= °,则∠3= 125 45 ;
D
1
3 C
2
B
E
(2)若∠3= 100°,∠1=∠2,求∠1的度数.
直角三角形
请问:一个三角形最多有几个钝角?几个直 角?几个锐角?
认一认:将下面的这些三角形进行分类.







锐角三角形
直角三角形
钝角三角形
③⑤
① ④ ⑥
②⑦
让我们再来认识一下与三角形的内角相 关的另外一种角:三角形的外角. B
外角
A
. C
1
D
由三角形一条边的延长线和另一条相邻的边组 成的角,叫做该三角形的外角.
相关文档
最新文档