11认识三角形(第2课时)
(浙教版)八年级数学上册课件:1.1 认识三角形 第2课时

8.如果一个三角形的三条高的交点恰是三角形的一个顶点, 那么这个三角形是( )
C
A.锐角三角形 C.直角三角形
B.钝角三角形 D.不能确定
9.如图所示.
(1)在△ABC中,BC边上的高是______;
(2)在△AEC中,AE边上的高是______; AB
(3)若AB=CD=3 cm,AE=5 cm,则△AEC的面积S=
1 解:(1)∠DAE=20°.(2)∠DAE=2(β -α ).(3)∠EFG =20°.(4)∠EFG 的大小不发生改变.理由:∵AD⊥BC,
1 FG⊥BC,∴∠GFE=∠EAD.∵∠EAD=2(β -α ),∴∠EFG 的大小不发生改变.
5.如图,AD是△ABC的中线2 ,且AB=6 cm,AC=4 cm,则△ABD 与△ACD的周长之差是_______cm.
第5题图
第6题图
6.如图,点 D 是 BC 的中点,点 E 是 AC 的中点.若 S△ADE=1, 则 S△ABC=_____4___.
知识点3:三角形的高线 7.(义乌市期中)过△ABC的顶点A,作BC边上的高,以下作法 正确的是( )
18.(浦江县月考)(例2变式)已知:在△ABC中,∠C>∠B,AE平 分∠BAC. (1)如图①,AD⊥BC于点D,若∠C=70°,∠B=30°,请你用量 角器直接量出∠DAE的度数; (2)若△ABC中,∠B=α,∠C=β(α<β),根据(1)中的结果大胆猜 想∠DAE与α,β间的等量关系,不必说明理由;
(3)如图②所示,在△ABC中,AD⊥BC,AE平分∠BAC,点 F是AE上的任意一点,过点F作FG⊥BC于点G,且∠B= 40°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;
9.1.2认识三角形(第2课时)

∴ ∠ADB=∠ADC=90 °
锐角三角形的三条高
B
A
F E
O
C
D
锐角三角形的三条高交于同一点.
锐角三角形的三条高都在三角形的内部。
直角三角形的三条高
A
直角三角形的三条高交于直角顶点.
D
直角边BC边上的高是 AB ;
●
B
C
直角边AB边上的高是 CB ;
斜边AC边上的高是 BD ;
议一议
A
钝角三角形的三条高
如果∠ C=20 °, ∠ B=60 °,
A
求 ∠ DAE的度数。
B
ED
C
变式训练:
如图,在ΔABC中, AD是高线, AE是中线。如果 ∠1=30 °, ∠2=20 °,求 ∠B, ∠C的度数。
A 12
B
ED
C
知识小结
今天我们学了什么呀? 1.三角形的高、中线、角平分线等有关概念 及它们的画法。 2. .三角形的高、中线、角平分线 几何表达及简单应用。
9.1.2认识三角形
----三角形的高线、中线与角平分线
三角形的高
从三角形的一个顶点 向它的对边 所在直线作垂线,
顶点 和 垂足 之间的线段
叫做三角形这边的高, 简称三角形的高。
A
0
1
01 23 4 5
2
3
4
5
6
7
8
9
01 23 4 5
10
B
D
C
如图, 线段AD是BC边上的高.
三角形高线的理解
∵AD是△ ABC的高线
角平分线的理解
A ●
∵AD是 △ ABC的角平分线
︶1 2
11.2.1三角形的内角(第2课时)

∵∠A+∠B +∠C=180°,
(三角形内角和定理)
而∠C= 90°. ∴ ∠A+∠B= 90°.
∴ 直角三角形的两个锐角互余.
知识拓展
1
直角三角形中的直角为90°,而
三角形的内角和为180°,故另
外两个锐角的和为90°.
在求直角三角形中锐角的度数
2
时,就可以直接利用直角三角
形的这个性质进行解答,而不
检测反馈
1.一个三角形三个内角之比为1:1:2,则三角形 的形状是 等腰直角三角形 .
解析:设三角形三个内角度数分别为x,x, 2x,则x+x+2x=180°,解得x=45°,所以三 角形三个内角分别为45°,45°,90°,故此 三角形为等腰直角三角形.
2.直角三角形两锐角的平分线所成的夹角的度数
为_1__3_5__°_或__4__5__°.
解析:因为直角三角形的两个锐角互 余,所以角平分线分得两个锐角之和 为45°,则平分线相交成钝角为135°, 锐角为45°.
3.如图所示,在△ABC中,∠B=∠ACB=2∠A, CD⊥AB于D,求∠ACD和∠BCD的度数.
点拨:设∠A为x,则5x=180,解得x=36,所以 ∠A=36°,∠B=∠ACB=72°,因为CD⊥AB,所以 ∠ACD=90°-36°=54°,∠BCD=90°-72°=18°.
推理过程
如图,在△ABC中, ∠A+∠B+∠C= 180° A
(三角形内角和定理),
∵ ∠A+∠B=90°(已知),C
B
∴ ∠C=90°,
∴ △ABC是直角三角形 .
(直角三角形定义).
(补充例题)如图,在△ABC中, 若 ∠ACD=∠B,CD⊥AB于D,△ABC中为 直角三角形吗?为什么? 解题策略 C
_新教材高中数学第11章解三角形1第2课时余弦定理2课件苏教版必修第二册

C. 6
D.32 3
【解题指南】利用余弦定理统一成边之后判断出三角形的形状,然后求其面积.
【解析】选 B.因为 a-b=c cos B-c cos A,
a2+c2-b2
b2+c2-a2
所以 a-b=c· 2ac -c· 2bc ,去分母得 2a2b-2b2a=a2b+c2b-b3-(b2a
+c2a-a3),整理得 ab(a-b)=(a-b)(a2+ab+b2-c2),
6.△ ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 a2-b2=4c2,cos A=-41 ,
则bc =______.
【解析】由已知得 a2-b2=4c2,由余弦定理可得-14
b2+c2-a2 =cos A= 2bc
,
c2-4c2 所以 2bc
=-14
,所以23bc
=14
,所以bc
4.如果等腰三角形的周长是底边长的 5 倍,那么它的顶角的余弦值为( )
A.158
B.34
C.
3 2
D.78
【解析】选 D.设顶角为 C,因为周长 l=5c,
所以 a=b=2c,
a2+b2-c2 由余弦定理得 cos C= 2ab
4c2+4c2-c2 = 2×2c×2c
=78
.
5.如果将直角三角形的三边增加同样的长度,则新三角形的形状( ) A.是锐角三角形 B.是直角三角形 C.是钝角三角形 D.由增加的长度确定
(2)在△ ABC 中,AB=18,AC=42,BC=30,
182+422-302 所以 cos ∠BAC= 2×18×42
=1114
,所以 sin ∠BAC=
1-(11 14
)2
人教版数学四年级下册第五单元《三角形的认识》(第2课时)教案

人教版数学四年级下册第五单元《三角形的认识》(第2课
时)教案
一、教学目标
1.能够认识、描述和绘制不同位置的三角形。
2.能够用图形工具绘制和标出三角形的各边、角。
二、教学重点
1.认识和描述不同位置的三角形。
2.绘制三角形图形并标出各边、角。
三、教学难点
1.区分和描述三角形的不同位置与属性。
2.熟练使用图形工具绘制三角形。
四、教学准备
1.课件:三角形的图片和示例
2.黑板、彩色粉笔
3.学生课桌上的绘图工具
4.学生练习册
五、教学过程
1. 导入新知识
教师在黑板上绘制一个三角形,并引导学生观察,并让学生讨论三角形的特点。
2. 学习新知识
1.介绍不同位置的三角形:等边三角形、等腰三角形等。
2.演示如何绘制不同位置的三角形,并标出各边、角。
3.让学生在练习册上尝试绘制和描述各种三角形。
3. 练习与巩固
让学生进行练习,绘制几个不同位置的三角形,并交流彼此的画法,并纠正错误。
4. 拓展知识
学生可以尝试在其他几何图形中找出三角形,并描述其特点。
5. 课堂小结
教师对本节课所学内容进行小结,并让学生总结三角形的特点和绘制方法。
六、作业布置
布置作业:完成练习册上的练习题,绘制指定的不同位置的三角形。
七、教学反思与改进
教师可以根据学生的表现和理解情况,适时调整教学方法和内容,使学生更好地掌握三角形的基本知识。
以上为本节课的教学内容,希望同学们能够认真学习,掌握相关知识。
1 认识三角形 第2课时

第2课时
情境导入
下图中三角形被遮住了,请你猜一下会是怎 样形状的一个三角形呢?
学习目标
1.掌握锐角三角形、直角三角形、钝角三角形的概念,并会按角将三角形分成 三类。
2.能发现“直角三角形的两个锐角互余”并能解决实际问题。
课堂探究一
(1)下图中小明所拿三角形被遮住的两个内角是什 么角?小颖的呢?试着说明理由。
A 21
C B
D
练习二
1.如下左图,在Rt△CDE,∠C和∠E的关系是,其中
∠C=55°,则∠E= 度。
E
A
C
D
B
C
2.如上右图,在Rt△ABC中,∠A=2∠B,则∠A=
度,∠B= 度。
3.一个三角形两个内角的度数分别如下,这个三角 形是什么三角形?
(1)30°和60°;(2)40°和70°;(3)50°和20°。
表示,直角三角形ABC记作
“Rt△ABC”。把直角所对的边称
为直角三角形的斜边,夹直角的
斜边
两条边称为直角边。
直角三角形有许多性质,你能发现它的两个锐角之 间有什么关系吗?
直角三角形的两个锐角互余。
例2.如图,在△ABC中,D为BC上一点,∠ADB=90°, ∠1=∠B,若按角分类,△ABC是什么形状的三角形? 为什么?
由上面我们可以得到:如果一个三角形有两个角互余, 那么这个三角形是______三角形。
4.如图,在△ABC中,∠C=90°,CD⊥AB,垂足是D,
(1)图中有_____个直角三角形;
(2)在图中和∠B相等的角有_____,在图中和∠A相等的 角有_____。
课堂小结
1.知识方面:______________________________。
《认识三角形》第2课时教学设计

《认识三角形》第2课时教学设计4、总结归纳,定义:(1)三条边各不相等的三角形叫作不等边三角形(2)有两条边相等的三角形叫作等腰三角形(3)三条边都相等的三角形叫作等边三角形等边三角形和等腰三角形之间有什么关系?(等边三角形是特殊的等腰三角形)5、我们可以把三角形按照三边情况进行分类(不等边三角形三角形按边分类]笠殛—缶等腰三角形I等腰二角形I等边三角形(二)三角形的三边关系。
1、探究活动1:如下图,点A为小明家,点B为学校,点C为邮局,小明想:我要到学校怎么走呀?哪一条路最近呀?为什么?学生讨论后个别回答,然后师生共同小结。
路线1:从A到C再到B的路线走;路线2:沿线段AB走请问:路线1、路线2哪条路程较短,你能说出根据吗?解:路线2较短;两点之间线段最短。
≡由此可以得到:4- BOAB ÷BO AC ÷ AR > RO2、议一议:(1)在同一个三角形中,任意两边之和与第三边有什么大小关系?(2)在同一个三角形中,任意两边之差与第三边有什么大小关系?(3)三角形三边有怎样的不等关系?通过动手实验(数学课本第85页“做一做”)同学们可以得到哪些结论? 理由是什么?3、探究活动2:做一做分别量出下面三个三角形的三边长度,并填入空格内。
Z∖ N 2(1) (2) (3)⑴a=,b=, C=。
(2) a=,b=,C=O⑶a=,b=,C=O根据你的测量结果,计算三角形的任意两边之差,并与第三边比较,完成填空:(1) a- b c,c- b a,c- a b⑵b—a c, c-a b,b—c a。
⑶a- c b,a— b c,b—c a。
你能得到什么结论?再画一些三角形试一试。
得出结论:三角形任意两边之差小于第三边。
4、归纳总结三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
(三)典例分析1、例I有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13Cm的木棒呢?解:取长度为2cm的木棒时,由于2+5=7<8,出现了两边之和小于第三边的情况,所以它们不能摆成三角形.取长度为13cm的木棒时,由于5+8=13, 出现了两边之和等于第三边的情况,所以它们也不能摆成三角形。
1.1 认识三角形 第2课时

三角形的外角性质:
由三角形内角和性质,我们有以下 两个结论: 1、三角形的一个外角等于和它不相 邻的两个内角的和.
∠1=∠A+∠B.
2、三角形的一个外角大于任何一个 和它不相邻的内角.
∠1﹥∠A , ∠1﹥∠B.
例3
解
一张小凳子的结构如图,∠1=∠2, ∠3=100°.求∠1的度数.
. .
1 2 B
×
4、在△ABC中, (1)∠C=70°,∠A=50°,则∠B= 60 度;
(2)∠B=100°,∠A=∠C,则∠C= 40 度.
5、如左下图,在直角三角形CDE中, ∠C和
∠E的关系是 互余 ,其中∠C=55°,则
E C
∠E= 35 度.
A
D
B
C
6、如右上图,在直角三角形ABC中,∠A=2∠B,
三角形
四边形 五边形 …
n 边形
180°( n-2 )
随堂练习:
1、在△ABC中∠A∶∠B∶∠C=1∶2∶3, 则 △ABC是( ). B
A、锐角三角形 B、直角三角形
C、钝角三角形
D、不能确定
2、已知△ABC中,∠A∶∠B∶∠C=1∶3∶5,求 ∠A,∠B和∠C的度数,它是什么三角形?
3、判断: (1)一个三角形的三个内角可以都小于60°; ( ) (2)一个三角形最多只能有一个内角是钝角 或直角; ( √ )
A、 2cm
三角形任何两边的和大于第三边,三角形任何 两边的差小于第三边.
应用性质:判断三条线段能否构成一个三角形.
思考:三角形的三个内角有什么关系
?
合作学习
1、剪一个△ABC; 2、分别取AC、BC的中点D、E,连结DE; 3、过D作DF⊥AB于点F,过E作EH⊥AB于点H; 4、依次把△CDE,△ADF,△BEH 沿DE,DF,EH折 叠,得长方形DFHE.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1认识三角形(第2课时)
【教学目标】
知识目标:1、使学生知道三角形的角平分线、中线与高线的定义,并能熟练地画出这两种线段
2、能应用三角形的角平分线、中线与高线的性质解决简单的数学问题
能力目标:培养学生形成观察辨别、全面分析、归纳概括等数学方法,培养学生的思维方法和良好的思维品质。
情感目标:通过提问、讨论等多种教学活动,树立自信、自强、自主感,激发学习数学的兴趣,增强学好数学的信心。
【教学重点、难点】
教学重点、难点:三角形的角平分线、中线的定义及画图是本节课的重点,利用三角形的角平分线和中线的性质解决有关的计算问题是本节难点。
【教学过程】
一、创设情景,引入新课
引出概念:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间
的线段叫做三角形的角平分线。
(
二、合作交流,探讨结论
请同学回答下面的问题
在一个三角形中有几条角平分线?请每位同学在不同类型的三角形中画一画,与同伴交流你发现了什么?
在此过程中,教师可以用几何画板制作的动画演示,在锐角三角形、钝角三角形、直
角三角形中三条角平分线的特点。
(三条线都在三角形的内部,三条线相交于一点)
任意画一个∆ABC,用刻度尺画BC的中点D,连结A D
引出概念:在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线。
(让学的中线的形状也是线段生理解三角形)
三角形的角平分线、中线、高线用几何语言表达方式:如图在∆ABC中,∠BAD=∠
CAD,AD是∆ABC的角平分线;在∆ABC中,D是BC
∆ABC中BC边上的中线。
三、应用概念,解决问题
范例1 如图AE是∆ABC的角平分线,已知∠B=450∠C=600
求下列角的大小∠BAE ; ∠AEB
首先让学生仔细观察图形,分析已知条件,教师作好引导
四、巩固练习
请学生课内练习1、2教师分析总结
五、作业布置
课后请同学做好书本中的作业。