平面向量的基本定理及坐标表示(教学设计)

合集下载

平面向量基本定理及坐标表示的教学设计

平面向量基本定理及坐标表示的教学设计

人民教育出版社数学必修42.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示石家庄市第十五中学王真线的向量,体会平面向量基本定理形成的现实意义问题1:给定两个向量21e e 、,试用21e e 、分别作图表示下列向量。

教师巡视发现问题,引导学生:利用向量的平行四边形法则和向量共线定理对向量进行分解探究的设置为突破每位学生任作向量a 的单一性,更好的理解“任意性”,体会不同向量的作图分解1e 2e学生先独立思考,然后小组讨论,选代表上台前展示,并叙述自己的理由.教师巡视,针对出现问题及时引导.讨论辨析结束后,教师归纳总结,体会由特殊到一般的思维方法探究2:若平面内的任一向量a 都可以用形如2211e e λλ+的向量来表示,则对于每个a ,21,λλ是否唯一?并说明理由。

针对学生的回答,辅以几何画板的演示,帮助学生更深刻的理解“唯一性”由探究形成定理,由学生发现定理合作交流,得出结论(学生总结定理内容)平面向量基本定理 如果21e e 、是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数21,λλ,使2211e e a λλ+=。

我们把不共线向量21e e 、叫做表示这一平面内所有向量的一组基底基底无数组,关键不唯一通过合作探究,学生总结归纳对定理的说明:(1) 基底不唯一,关键是不共线;(2) 由定理可将任一向量在给出基底的条件下进行分解;(3) 基底给定时,分解形式唯一. 是被 ,唯一确定的数量进一步完善定理关键内容几何画板演示促使学生再次体会定理的几个关键点(二)向量的坐标表示且只有一对实数从知识与方法两方面谈谈本节课有哪些收获?作业:课本P100 练习 P102 3、4;学生自由发言,教师总结.(教师一要注重知识的整合,二要注意站在思想高度给学生引导,让学生由学会变成会学)反思学习过程,对研究平面向量基本定理的方法进行概括,深化认识,并形成研究问题的思想和获取知识的方法.七、板书设计 2.3平面向量的基本定理及坐标表示1.平面向量基本定理2.向量的夹角 注(1)同一平面内(2)21e e 、是不共线向量 3.平面向量的坐标表示 (3)任一向量a(4)有且只有一对实数21,λλ,使2211e e aλλ+=。

教学设计1:5.2 平面向量的基本定理及向量的坐标表示

教学设计1:5.2 平面向量的基本定理及向量的坐标表示

5.2平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模:设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1),|AB |=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.1.若a 、b 为非零向量,当a ∥b 时,a ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错;2.要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.3.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,应表示为x 1y 2-x 2y 1=0. [试一试]1.(2014·南京、盐城一模)若向量a =(2,3),b =(x ,-6),且a ∥b ,则实数x =________. 解析:由a ∥b 得2×(-6)=3x ,解得x =-4. 答案:-42.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值是________. 解析:∵u =(1+2x,4),v =(2-x,3),u ∥v ,∴8-4x =3+6x ,∴x =12.答案:12用基向量表示所求向量时,注意方程思想的运用. [练一练]设e 1、e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b . 解析:由题意,设e 1+e 2=m a +n b .因为a =e 1+2e 2,b =-e 1+e 2, 所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )e 2.由平面向量基本定理,得⎩⎪⎨⎪⎧m -n =1,2m +n =1,所以⎩⎨⎧m =23,n =-13.答案:23 -13考点一平面向量的坐标运算1.(2014·苏中三市、宿迁调研(一))在平面直角坐标系中,已知向量AB =(2,1),AC =(3,5),则向量BC 的坐标为________. 解析:BC =AC -AB =(1,4). 答案:(1,4)2.(2013·北京高考)向量a ,b ,c 在正方形网格中的位置如下图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解析:设i ,j 分别为水平方向和竖直方向上的正向单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),根据平面向量基本定理得λ=-2,μ=-12,所以λμ=4.答案:43.已知A (-2,4),B (3,-1),C (-3,-4).设AB =a ,BC =b ,CA =c . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .解:由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.[备课札记] [类题通法]1.向量的坐标运算实现了向量运算代数化,将数与形结合起来,从而可使几何问题转化为数量运算.2.两个向量相等当且仅当它们的坐标对应相同.此时注意方程(组)思想的应用.平面向量基本定理及其应用[典例] 如下图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA =a ,BC =b ,试用a ,b 为基底表示向量EF ,DF ,CD .[解析] EF =EA +AB +BF =-16b -a +12b =13b -a ,DF =DE +EF =-16b +⎝⎛⎭⎫13b -a =16b -a , CD =CF +FD =-12b -⎝⎛⎭⎫16b -a =a -23b . [备课札记] [类题通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理. [针对训练](2014·济南调研)如下图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =m AB +211AC ,则实数m 的值为________.解析:因为AP =AB +BP =AB +k BN =AB +k (AN -AB )=AB +k (14AC -AB )=(1-k ) AB +k4AC ,且AP =m AB +211AC ,所以1-k =m ,k 4=211,解得k =811,m =311. 答案:311考点三平面向量共线的坐标表示[典例] 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k ;[解] (1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,得⎩⎨⎧m =59,n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0.∴k =-1613.[备课札记]在本例条件下,若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 解:设d =(x ,y ),d -c =(x -4,y -1),a +b =(2,4),由题意得⎩⎪⎨⎪⎧ 4x -4-2y -1=0,x -42+y -12=5,得⎩⎪⎨⎪⎧ x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d =(3,-1)或(5,3). [类题通法]1.向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②. 2.两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值. [针对训练]已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC =2AB ,求点C 的坐标.解:(1)由已知得AB =(2,-2),AC =(a -1,b -1),∵A ,B ,C 三点共线,∴AB ∥AC .∴2(b -1)+2(a -1)=0,即a +b =2. (2)∵AC=2AB ,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).[课堂练通考点]1.(2013·南京二模)若平面向量a ,b 满足|a +b |=1,a +b 平行于y 轴,a =(2,-1),则b =________.解析:设b =(x ,y ),则a +b =(2+x ,y -1),由条件知2+x =0,|y -1|=1,解得x =-2,y =0或x =-2,y =2,故b =(-2,0)或(-2,2). 答案:(-2,2)或(-2,0)2.已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则mn 等于________.解析:由题意得m a +n b =(2m -n,3m +2n )a -2b =(4,-1),由于(m a +n b )∥(a -2b ),可得-(2m -n )-4(3m +2n )=0,可得m n =-12.答案:-123.(2014·苏北四市质检)已知向量a =(sin θ,cos θ),b =(3,-4),若a ∥b ,则tan 2θ=________.解析:由题意,得-4sin θ-3cos θ=0,所以tan θ=-34,所以tan 2θ=2×⎝⎛⎭⎫-341-⎝⎛⎭⎫-342=-247.答案:-2474.已知点A (2,1),B (0,2),C (-2,1),O (0,0),给出下面的结论: ①直线OC 与直线BA 平行;②AB +BC =CA ; ③OA +OC =OB ;④AC =OB -2OA . 其中正确结论的个数是________.解析:∵由题意得k OC =1-2=-12,k BA =2-10-2=-12,∴OC ∥BA ,①正确;∵AB +BC =AC ,∴②错误; ∵OA +OC =(0,2)=OB ,∴③正确;∵OB -2OA =(-4,0),AC =(-4,0),∴④正确. 答案:35.已知两点A (1,0),B (1,1),O 为坐标原点,点C 在第二象限,且∠AOC =135°,设OC =-OA +λOB (λ∈R ),则λ的值为________.解析:由∠AOC =135°知,点C 在射线y =-x (x <0)上,设点C 的坐标为(a ,-a ),a <0,则有(a ,-a )=(-1+λ,λ),得a =-1+λ,-a =λ,消掉a 得λ=12.答案:126.在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN =λAB +μAC ,则λ+μ的值为________.解析:∵M 为边BC 上任意一点,∴可设AM =x AB +y AC (x +y =1). ∵N 为AM 中点,∴AN =12AM =12x AB +12y AC =λAB +μAC .∴λ+μ=12(x +y )=12.答案:12。

平面向量基本定理教学设计

平面向量基本定理教学设计

平面向量基本定理教学设计一、教学分析1)教材地位分析平面向量基本定理是平面向量这个章中的重要环节,有着承上启下的特殊地位,定理是在学习了向量加法、减法和数乘向量这三种运算的基础上,此定理为平面向量正交分解和坐标表示奠定了理论基础。

准确理解平面向量基本定理,能够为后面的向量坐标知识学习,起到事半功倍的作用。

进一步,它为研究几何问题提供了又一个工具。

另外,该定理也具有广泛的现实意义,如物理中的矢量分析,因而该定理兼有理论与现实的指导作用2)学生现实分析该节内容是学生学习了向量的基本概念,向量的加法,及向量的减法,数乘向量的基础上展开的。

对于向量加法的平行四边形法则已定掌握,能够实行向量的加减运算,学生已具有相关的向量知识,学生对向量的物理背景有一定的了解。

二、教学目标确定通过对教学任务的分析,本节课的教学目标可定为:(1)知识与技能理解平面向量基本定理及其意义(平面向量揭示向量加法逆向运算,知道和向量去求分向量的一种现象)。

掌握平面里的任何一个向量都能够用两个不共线的向量来表示,基底确定,即分解方向确定,只有一组分向量,基底不确定即分解方向不确定,能够有无数组分向量。

理解这是应用向量解决实际问题的重要思想方法,揭示了一种现象,是后面学习向量坐标的关键;能够在具体问题中适当地选择基底,使其他向量能够用基底来表示。

(2)过程与方法经历如何把已知和向量分解成两个分向量的过程,再抽象出数学中的平面向量基本定理,利用几何画板,通过学生自己动手,使学生亲历知识的建构过程,体验定理的内容和意义。

(3)情感态度价值观通过师生互动,生生互动,提升学习数学的兴趣,培养学生的合作意识。

让学生体验到数学的乐趣。

三、教学重点难点由以上分析可知,重点是:(1)了解定理的形成过程及内容;理解定理说明一种向量分解成分向量的现象实质。

(2)会用此定理解决一些简单的问题。

平面基本定理体现数学的化归思想。

难点有两个:(1)定理中向量关于基底的线性表示的唯一性和对“任一向量”定理的结论都成立的理解。

高中数学_平面向量基本定理及其坐标表示教学设计学情分析教材分析课后反思

高中数学_平面向量基本定理及其坐标表示教学设计学情分析教材分析课后反思

2.3 平面向量基本定理及坐标表示一、复习巩固1.数乘的定义一般地,实数λ与向量a 的积是一个向量,记作:λa它的长度和方向规定如下:(1)|λa|=;(2)当λ>0时,λa的方向与a的方向;(3)当λ<0时,λa的方向与a的方向;(4)当λ=0时,λa= ;2.数乘的运算律(1)λ(μ a)= ;(2)(λ+μ) a= ;(3)λ( a+b)= .3.向量共线定理向量b与非零向量a共线,有且只有一个实数λ,使得 .二、探究与思考1.给定平面内任意两个向量e1,e2,如何求作向量3e1+2e2和e1-2e2?2.如图,设OA,OB,OC为三条共点射线,P为OC上一点,能否在OA、OB上分别找一点M、N,使四边形OMPN为平行四边形?3.向量e1,e2是同一平面内不共线的两,向量a是这一平面内的任一向量,向量a能用向量e1,e2表示吗?二、引入新知1.平面向量基本定理如果向量e 1,e 2是同一平面内的两个 向量,那么对于这一平面内的 向量a,有 且 实数λ1,λ2,使a =λ1 e 1+ λ2 e 2 .基底:不共线的向量e 1,e 2作为平面内所有向量的一组基底注意:(1) ;(2) ;(3) .2.巩固练习(1)若e 1,e 2是表示平面内所有向量的一组基底,则下面四组向量中,不能作为基底的( ) A. e 1+ e 2和e 1﹣e 2 B. 3e 1﹣2e 2和﹣6e 1+4e 2C. e 1+3e 2和e 1+3e 2D. e 2和e 1+ e 2(2)如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________.(填对应说法的序号)①λe 1+μ e 2(λ 、μ∈R )可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μ e 2的实数对(λ,μ)有无穷多个; ③若向量λ1 e 1+μ1 e 2与λ2 e 1+μ2 e 2共线,则有且只有一个实数λ ,使得λ1 e 1+μ1 e 2= λ(λ2 e 1+μ2 e 2);④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0.(3)如图,梯形ABCD 中,AB ∥CD , 且AB =2CD ,M 、N 分别是DC 和AB 的中点,若AB→=a ,AD →=b ,试用a 、b 表示DC →、BC →、MN →.3.向量的夹角与垂直向量夹角的范围:θb4.向量的正交分解把一个向量分解为两个的向量,叫做把向量正交分解.5.向量的坐标表示在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,对于平面内的一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得a=x i+y j.我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y).其中x做a在y轴上的坐标,上式叫做向量的坐标表示.思考:相等向量的坐标必然相等,作向量OA=a,则OA=(x,y),此时点A是坐标是什么?三、课堂小结本节课我们主要学习了哪些内容?四、作业布置1.完成本课时作业本;2.小组思考并讨论向量的运算如何转化为坐标运算?坐标运算可以给我们带来哪些便利?本节课各小组代表发言总结。

平面向量的基本定理及坐标表示(教学设计)

平面向量的基本定理及坐标表示(教学设计)

2.3 平面向量的基本定理及坐标表示(1)(教学设计)2.3.1平面向量基本定理;2.3.2平面向量的正交分解及坐标表示[教学目标]一、知识与能力:1. 了解平面向量基本定理。

2.掌握平面向量基本定理,理解平面向量的正交分解及坐标表示;3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.二、过程与方法:体会数形结合的数学思想方法;培养学生转化问题的能力.三、情感、态度与价值观:培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题.教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算教学难点:平面向量基本定理.一、复习回顾:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =02.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .二、师生互动,新课讲解:思考:给定平面内任意两个向量e 1,e 2,请作出向量3e 1+2e 2、e 1-2e 2,平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?.在平面内任取一点O ,作OA =e 1,OB =e 2,OC =a ,过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N . 由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2. 由于OC OM ON =+,所以a =λ1e 1+λ2e 2,也就是说任一向量a 都可以表示成λ1e 1+λ2e 2的形式.1. 平面向量基本定理 (1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.把不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.(2)向量的夹角已知两个非零向量a 和b ,作OA =a ,OB =b ,则∠AOB=θ(0︒≤θ≤180︒)叫做向量a 与b 的夹角,当θ=0︒时,a 与b 同向;当θ=180︒时,a 与b 反向.如果a 与b 的夹角是90︒,则称a 与b 垂直,记作a ⊥b .例1 (课本P94例1)已知向量e 1、e 2,求作向量-2.5e 1+3e 2。

平面向量基本定理及坐标表示教案

平面向量基本定理及坐标表示教案

2.3.4 平面向量共线的坐标表示教学目的:(1)理解平面向量共线的坐标表示;(2)掌握平面上两点间的中点坐标公式及定点坐标公式;(3)会根据向量的坐标,判断向量是否共线. 教学重点:平面向量公线的坐标表示及定点坐标公式,教学难点:向量的坐标表示的理解及运算的准确性教学过程:一、复习引入:1.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2是被,,唯一确定的数量2.平面向量的坐标表示分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得yj xi a +=把),(y x 叫做向量的(直角)坐标,记作),(y x a =其中叫做在轴上的坐标,叫做在轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算(1)若),(11y x a =,),(22y x b =,则),(2121y y x x ++=,),(2121y y x x --=,),(y x a λλλ=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。

(2)若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.向量的坐标与以原点为始点、点P 为终点的向量的坐标是相同的。

3.练习:1.若M(3, -2) N(-5, -1) 且 21=MP , 求P 点的坐标2.若A(0, 1), B(1, 2), C(3, 4) , 则-2= .3.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) , 如何求证:四边形ABCD 是梯形.? 二、讲解新课:1.思考:(1)两个向量共线的条件是什么? (2)如何用坐标表示两个共线向量?设=(x 1, y 1) ,=(x 2, y 2) 其中≠.由=λ得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0∥ (≠)的充要条件是x 1y 2-x 2y 1=0探究:(1)消去λ时能不能两式相除?(不能 ∵y 1, y 2有可能为0, ∵≠ ∴x 2, y 2中至少有一个不为0)(2)能不能写成2211x y x y = ? (不能。

平面向量的基本定理及坐标表示(教案)

平面向量的基本定理及坐标表示(教案)

2.3 平面向量的基本定理及坐标表示教案 A第1课时教学目标一、知识与技能1.通过探究活动,理解平面向量基本定理.2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.3.了解向量的夹角与垂直的概念,并能应用于平面向量的正交分解中,会把向量的正交分解用于坐标表示,会用坐标表示向量.二、过程与方法1.首先通过“思考”,让学生思考对于平面内给定的任意两个向量进行加减的线性运算时所表示的新向量有什么特点,反过来,对平面内的任意向量是否都可以用形如λ1e1+λ2e2的向量表示.2.通过教师提出问题,多让学生自己动手作图来发现规律,通过解题来总结方法,引导学生理解“化归”思想对解题的帮助,也要让学生善于用“数形结合”的思想来解决这部分的题.3.如果条件允许,借助多媒体进行教学会有意想不到的效果.整节课的教学主线应以学生练习为主,教师给予引导和提示.充分让学生经历分析、探究并解决实际问题的过程,这也是学习数学,领悟思想方法的最好载体.学生经历的这种实践活动越多,解决实际问题的方法就越恰当而简捷.三、情感、态度与价值观1.在探究过程中,让学生自己动手作图来发现规律,通过解题来总结方法,培养学生对“化归”、“数形结合”等数学思想的应用.2.在让学生经历分析、探究并解决实际问题的过程中,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.教学重点、难点教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面向量的坐标表示.教学难点:平面向量基本定理的理解与应用.教学关键:平面向量基本定理的理解.教学突破方法:通过问题设置,让学生充分练习,发现规律方法,体现学生的主体地位.教法与学法导航教学方法:启发诱导.学习方法:在老师问题的引导下,学生要充分作图,与小组成员合作探究,发现规律.教学准备.教师准备:多媒体、尺规.学生准备:练习本、尺规.教学过程一、创设情境,导入新课在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?二、主题探究,合作交流提出问题①给定平面内任意两个不共线的非零向量e1、e2,请你作出向量3e1+2e2、e1-2e2.平面内的任一向量是否都可以用形如λ1e1+λ2e2的向量表示呢?②如上左图,设e1、e2是同一平面内两个不共线的向量,a是这一平面内的任一向量,我们通过作图研究a与e1、e2之间的关系.师生互动:如上右图,在平面内任取一点O,作=e1,=e2,=a.过点C 作平行于直线OB的直线,与直线OA交于点M;过点C作平行于直线OA的直线,与直线OB交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得OM=λ1e1,ON=λ2e2.由于OM+=,所以a=λ1e1+λ2e2.也就是说,任一向量a都可以表示成λ1e1+λ2e2的形式.由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e1、e2表示出来.当e1、e2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.由此可得:平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.定理说明:(1)我们把不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式唯一.提出问题:①平面内的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?②对平面内的任意一个向量能否用两个互相垂直的向量来表示?师生互动:引导学生结合向量的定义和性质,思考平面内的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:已知两个非零向量a和b(如图),作OA=a,OB=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.显然,当θ=0°时,a与b同向;当θ=180°时,a与b反向.因此,两非零向量的夹角在区间[0°,180°]内.如果a与b的夹角是90°,我们说a与b垂直,记作a⊥b.由平面向量的基本定理,对平面上的任意向量a,均可以分解为不共线的两个向量λ1a1和λ2a2,使a=λ1a1+λ2a2.在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如上,重力G沿互相垂直的两个方向分解就是正交分解,正交分解是向量分解中常见的一种情形.在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.提出问题①我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢?②在平面直角坐标系中,一个向量和坐标是否是一一对应的?师生互动:如图,在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x 、y ,使得a =x i +y j ①这样,平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ) ②其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,②式叫做向量的坐标表示.显然,i =(1,0),j =(0,1),0=(0,0).教师应引导学生特别注意以下几点:(1)向量a 与有序实数对(x ,y )一一对应.(2)向量a 的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,11B A 是表示a 的有向线段,A 1、B 1的坐标分别为(x 1,y 1)、(x 2,y 2),则向量a 的坐标为x =x 2-x 1,y =y 2-y 1,即a 的坐标为(x 2-x 1,y 2-y 1).(3)为简化处理问题的过程,把坐标原点作为表示向量a 的有向线段的起点,这时向量a 的坐标就由表示向量a 的有向线段的终点唯一确定了,即点A 的坐标就是向量a 的坐标,流程表示如下:三、拓展创新,应用提高例1 已知向量e 1、e 2(如右图),求作向量-2.5e 1+3e 2.作法:(1)如图,任取一点O ,作OA =-2.5e 1,OB =3e 2.(2)作OAC B .故OC 就是求作的向量.例2 如下图,分别用基底i、j 表示向量a 、b 、c 、d ,并求出它们的坐标. 活动:本例要求用基底i 、j 表示a 、b 、c 、d ,其关键是把a 、b 、c 、d 表示为基底i 、j 的线性组合.一种方法是把a 正交分解,看a 在x 轴、y 轴上的分向量的大小.把向量a 用i 、j 表示出来,进而得到向量a 的坐标.另一种方法是把向量a 移到坐标原点,则向量a 终点的坐标就是向量a 的坐标.同样的方法,可以得到向量b 、c 、d的坐标.另外,本例还可以通过四个向量之间位置的几何关系:a 与b 关于y 轴对称,a 与c 关于坐标原点中心对称,a 与d 关于x 轴对称等.由一个向量的坐标推导出其他三个向量的坐标.解:由图可知,a =1AA +2AA =2i +3j ,∴a =(2,3).同理,b =-2i +3j =(-2,3);c =-2i -3j =(-2,-3);d =2i -3j =(2,-3).点评:本例还可以得到启示,要充分运用图形之间的几何关系,求向量的坐标.四、小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,平面向量的正交分解,平面向量的坐标表示.2.教师与学生一起总结本节学习的数学方法,如待定系数法、定义法、归纳与类比、数形结合.五、课堂作业1.如图所示,已知AP =34AB ,AQ =31AB ,用OA 、OB 表示OP ,则OP 等于( ) A .31OA +34OB B .31-OA +34OB C .31-OA -34OB D .31OA -34OB 2.已知e 1,e 2是两非零向量,且|e 1|=m ,|e 2|=n ,若c =λ1e 1+λ2e 2(λ1,λ2∈R ),则|c |的最大值为( )A .λ1m +λ2nB .λ1n +λ2mC .|λ1|m +|λ2|nD .|λ1|n +|λ2|m3.已知G 1、G 2分别为△A 1B 1C 1与△A 2B 2C 2的重心,且12A A =e 1,12B B =e 2,12C C =e 3,则12G G 等于( )A .21(e 1+e 2+e 3) B .31(e 1+e 2+e 3) C .32(e 1+e 2+e 3) D .31-(e 1+e 2+e 3) 4.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP =OA +λ)||||(AC AC AB AB +,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心 D .垂心5.已知向量a 、b 且AB =a +2b ,BC =-5a +6b ,CD =7a -2b ,则一定共线的三点是( )A .A 、B 、D B .A 、B 、C C .C 、B 、D D .A 、C 、D6.如右图,平面内有三个向量OA 、OB 、OC ,其中与OA 与OB 的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为________.参考答案:1.B 2.C 3.B 4.B 5.A 6.6第2课时教学目标一、知识与技能1.理解平面向量的坐标的概念;2.掌握平面向量的坐标运算;3.会根据向量的坐标,判断向量是否共线.二、过程与方法教师在引导学生探究时,始终抓住向量具有几何与代数的双重属性这一特征和向量具有数与形紧密结合的特点.让学生在了解向量知识网络结构基础上,进一步熟悉向量的坐标表示以及运算法则、运算律,能熟练向量代数化的重要作用和实际生活中的应用,并加强数学应用意识,提高分析问题、解决问题的能力.三、情感、态度与价值观在解决问题过程中使学生形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识.教学重点、难点教学重点:平面向量的坐标运算.教学难点:对平面向量共线的坐标表示的理解.教学关键:平面向量坐标运算的探究.教学突破方法:结合向量坐标表示的定义及运算律,引导学生探究发现,最终得到结论.教法与学法导航教学方法:问题式教学,启发诱导学习方法:在熟悉向量的坐标表示以及运算法则、运算律的基础上,在老师的引导下,通过与同学合作探究,得到结论.教学准备教师准备:多媒体、尺规.学生准备:练习本、尺规.教学过程一、创设情境,导入新课前一节课我们学习了向量的坐标表示,引入向量的坐标表示后,可使向量运算完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,那么向量的平行、垂直,是否也能通过坐标来研究呢?二、主题探究,合作交流提出问题:①我们研究了平面向量的坐标表示,现在已知a =(x 1,y 1),b =(x 2,y 2),你能得出a +b ,a -b ,λa 的坐标表示吗?②如图,已知A (x 1,y 1),B (x 2,y 2),怎样表示AB 的坐标?你能在图中标出坐标为(x 2-x 1,y 2-y 1)的P 点吗?标出点P 后,你能总结出什么结论?师生互动:教师让学生通过向量的坐标表示来进行两个向量的加、减运算,教师可以让学生到黑板去板书步骤.可得:a +b =(x 1i +y 1j )+(x 2i +y 2j )=(x 1+x 2)i +(y 1+y 2)j ,即a +b =(x 1+x 2,y 1+y 2).同理a -b =(x 1-x 2,y 1-y 2).又 λa =λ(x 1i +y 1j )=λx 1i +λy 1j .∴ λa =(λx 1,λy 1).教师和学生一起总结,把上述结论用文字叙述分别为:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.教师再引导学生找出点与向量的关系:将向量平移,使得点A 与坐标原点O 重合,则平移后的B 点位置就是P 点.向量的坐标与以原点为始点,点P 为终点的向量坐标是相同的,这样就建立了向量的坐标与点的坐标之间的联系. 学生通过平移也可以发现:向量的模与向量的模是相等的.由此,我们可以得出平面内两点间的距离公式:|AB |=||=221221)()(y y x x -+-.教师对总结完全的同学进行表扬,并鼓励学生,只要善于开动脑筋,勇于创新,展开思维的翅膀,就一定能获得意想不到的收获.讨论结果:①能. ②=-=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1).结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标. 提出问题①如何用坐标表示两个共线向量?②若a =(x 1,y 1),b =(x 2,y 2),那么2211x y x y =是向量a 、b 共线的什么条件? 师生互动:教师引导学生类比直线平行的特点来推导向量共线时的关系.此处教师要对探究困难的学生给以必要的点拨:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.我们知道,a 、b 共线,当且仅当存在实数λ,使a =λb .如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),即⎪⎩⎪⎨⎧==.,2121y y x x λλ消去λ后得x 1y 2-x 2y 1=0. 这就是说,当且仅当x 1y 2-x 2y 1=0时向量a 、b (b ≠0)共线.我们知道x 1y 2-x 2y 1=0与x 1y 2=x 2y 1是等价的,但这与2211x y x y =是不等价的.因为当x 1=x 2=0时,x 1y 2-x 2y 1=0成立,但2211x y x y =均无意义.因此2211x y x y =是向量a 、b 共线的充分不必要条件.由此也看出向量的应用更具一般性,更简捷、实用,让学生仔细体会这点.讨论结果:①x 1y 2-x 2y 1=0时,向量a 、b (b ≠0)共线.②充分不必要条件.提出问题:a 与非零向量b 为共线向量的充要条件是有且只有一个实数λ使得a =λb ,那么这个充要条件如何用坐标来表示呢?师生互动:教师引导推证:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠a ,由a =λb ,(x 1,y 1)=λ(x 2,y 2)⎪⎩⎪⎨⎧==⇒.,2121y y x x λλ消去λ,得x 1y 2-x 2y 1=0. 讨论结果:a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0.教师应向学生特别提醒感悟:1. 消去λ时不能两式相除,∵y 1、y 2有可能为0,而b ≠0,∴x 2、y 2中至少有一个不为0.2. 充要条件不能写成2211x y x y =(∵x 1、x 2有可能为0).3. 从而向量共线的充要条件有两种形式:a ∥b (b ≠0){1221.a λb x y x y =⇔= 三、拓展创新,应用提高例1 已知a =(2,1),b =(-3,4),求a +b ,a -b ,3a +4b 的坐标.活动:本例是向量代数运算的简单应用,让学生根据向量的线性运算进行向量的和、差及数乘的坐标运算,再根据向量的线性运算律和向量的坐标概念得出结论.若已知表示向量的有向线段的始点和终点坐标,那么终点的坐标减去始点的坐标就是此向量的坐标,从而使得向量的坐标与点的坐标可以相互转化.可由学生自己完成.解:a +b =(2,1)+(-3,4)=(-1,5);a -b =(2,1)-(-3,4)=(5,-3);3a +4b =3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:本例是平面向量坐标运算的常规题,目的是熟悉平面向量的坐标运算公式. 例2 如图.已知ABC D 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4),试求顶点D 的坐标.活动:本例的目的仍然是让学生熟悉平面向量的坐标运算.这里给出了两种解法:解法一利用“两个向量相等,则它们的坐标相等”,解题过程中应用了方程思想;解法二利用向量加法的平行四边形法则求得向量的坐标,进而得到点D 的坐标.解题过程中,关键是充分利用图形中各线段的位置关系(主要是平行关系),数形结合地思考,将顶点D 的坐标表示为已知点的坐标.解:方法一:如上图,设顶点D 的坐标为(x ,y ).∵=(-1-(-2),3-1)=(1,2),=(3-x ,4-y ).由=,得(1,2)=(3-x ,4-y ).∴⎩⎨⎧-=-=.42,31x x ,⎩⎨⎧==.2,2y x ∴顶点D 的坐标为(2,2).方法二:如上图,由向量加法的平行四边形法则,可知BC BA AD BA BD +=+= =(-2-(-1),1-3)+(3-(-1),4-3)=(3,-1),而OD =OB +BD =(-1,3)+(3,-1)=(2,2),∴顶点D 的坐标为(2,2).点评:本例的目的仍然是让学生熟悉平面向量的坐标运算.例3 已知a =(4,2),b =(6,y ),且a ∥b ,求y .解:∵a ∥b ,∴4y -2×6=0.∴y =3.例4 已知A (-1,-1),B (1,3),C (2,5),试判断A 、B 、C 三点之间的位置关系.活动:教师引导学生利用向量的共线来判断.首先要探究三个点组合成两个向量,然后根据两个向量共线的充要条件来判断这两个向量是否共线从而来判断这三点是否共线.教师引导学生进一步理解并熟练地运用向量共线的坐标形式来判断向量之间的关系.让学生通过观察图象领悟先猜后证的思维方式.解:在平面直角坐标系中作出A 、B 、C 三点,观察图形,我们猜想A 、B 、C 三点共线.下面给出证明.∵AB =(1-(-1),3-(-1))=(2,4),AC =(2-(-1),5-(-1))=(3,6),又2×6-3×4=0,∴AB ∥AC ,且直线AB 、直线AC 有公共点A ,∴A 、B 、C 三点共线.点评:本例的解答给出了判断三点共线的一种常用方法,其实质是从同一点出发的两个向量共线,则这两个向量的三个顶点共线.这是从平面几何中判断三点共线的方法移植过来的.例5 设点P 是线段P 1P 2上的一点,P 1、P 2的坐标分别是(x 1,y 1)、(x 2,y 2).(1)当点P 是线段P 1P 2的中点时,求点P 的坐标;(2)当点P 是线段P 1P 2的一个三等分点时,求点P 的坐标.活动:教师充分让学生思考,并提出这一结论可以推广吗?即当21PP P P =λ时,点P 的坐标是什么?师生共同讨论,一起探究,可按照求中点坐标的解题思路类比推广,有学生可能提出如下推理方法:由P P 1=λ2PP ,知(x -x 1,y -y 1)=λ(x 2-x ,y 2-y ),即⎪⎪⎩⎪⎪⎨⎧++=++=⇒⎪⎩⎪⎨⎧-=--=-.1,1)()(21212121λλλλλλy y y x x x y y y y x x x x 这就是线段的定比分点公式,教师要给予充分肯定,鼓励学生的这种积极探索,这是学习数学的重要品质.时间允许的话,可以探索λ的取值符号对P 点位置的影响,也可鼓励学生课后探索.解:(1)如图,由向量的线性运算可知OP =21 (OP 1+OP 2)=(.2,22121y y x x ++). 所以点P 的坐标是(.2,22121y y x x ++) (2)如图(1)、(2),当点P 是线段P 1P 2的一个三等分点时,有两种情况,即21PP P P =21或21PP P P =2. 如果21PP P P =21,如图(1),那么 OP =1OP +P P 1=1OP +3121P P =1OP +31(2OP -1OP )=321OP +312OP =(32,322121y y x x ++). 即点P 的坐标是(32,322121y y x x ++).同理,如果21PP P P =2图(2),那么点P 的坐标是121222(,).33x x y y ++ 点评:本例实际上给出了线段的中点坐标公式和线段的三等分点坐标公式.四、小结1.先由学生回顾本节都学习了哪些数学知识:平面向量的和、差、数乘的坐标运算,两个向量共线的坐标表示.2.教师与学生一起总结本节学习的数学方法,定义法、归纳、整理、概括的思想,强调在今后的学习中,要善于培养自己不断探索、善于发现、勇于创新的科学态度和求实开拓的精神,为将来的发展打下良好基础.五、课堂作业1.已知a =(3,-1),b =(-1,2),则-3a -2b 等于( )A .(7,1)B .(-7,-1)C .(-7,1)D .(7,-1)2.已知A (1,1),B (-1,0),C (0,1),D (x ,y ),若AB 和是相反向量,则D 点的坐标是( )A .(-2,0)B .(2,2)C .(2,0)D .(-2,-2)3.若点A (-1,-1),B (1,3),C (x ,5)共线,则使=λ的实数λ的值为( )A .1B .-2C .0D .24.设a =(23,sin α),b =(cos α,31),且a ∥b ,则α的值是( ) A .α=2k π+π4(k ∈Z ) B .α=2k π-π4(k ∈Z ) C .α=k π+π4(k ∈Z ) D .α=k π-π4(k ∈Z ) 5.向量=(k ,12),=(4,5),=(10,k ),当k 为何值时,A 、B 、C 三点共线?参考答案:1.B 2.B 3.D 4.C5.∵=(k ,12), =(4,5),=(10,k ), ∴=-=(4-k ,-7), =-=(6,k -5). ∵∥,∴(4-k )(k -5)+7×6=0.∴k 2-9k -22=0.解得k =11或k =-2.教案 B第1课时教学目标一、知识与技能1.理解平面向量基本定理,明确任何一个平面向量都可以用两个不共线的向量来表示,在具体问题中能够适当选取基底.2.了解向量的夹角与垂直的概念,以及向量正交分解的含义,理解用坐标表示向量的理论依据,知道向量的坐标的几何意义.二、过程与方法领会数形结合的数学思想,感受探索与创造的学习过程,培养逻辑推理能力,优化理性思维.三、情感、态度与价值观通过类比物理学中的相关问题,培养学生善于思考、勇于探索的科研精神,以及坚忍不拔的意志.教学重点平面向量基本定理和向量的坐标表示.教学难点平面向量的合成与分解.教学设想一、情境设置1.向量加法与减法有哪几种几何运算法则?2.怎样理解向量的数乘运算λa?(1)|λa|=|λ||a|;(2)λ>0时,λa与a方向相同;λ<0时,λa与a方向相反;λ=0时,λa=0.3.平面向量共线定理是什么?非零向量a与向量b 共线存在唯一实数λ,使b=λa.4.如图,光滑斜面上一个木块受到的重力为G,下滑力为F1,木块对斜面的压力为F2,这三个力的方向分别如何?三者有何相互关系?5.在物理中,力是一个向量,力的合成就是向量的加法运算.力也可以分解,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,就会形成一个新的数学理论.二、新知探究探究(一)平面向量基本定理 思考1.给定平面内任意两个向量e 1,e 2,如何求作向量3e 1+2e 2和e 1-2e 2?2.如图,设OA 、OB 、OC 为三条共点射线,P 为OC 上一点,能否在OA 、OB 上分别找一点M 、N ,使四边形OMP N 为平行四边形?3.在下列两图中,向量OA 、OB 、OC 不共线,能否在直线OA 、OB 上分别找一点M 、N ,使OM +ON =?4.在上图中,设OA =e 1,OB = e 2,OC = a ,则向量OM 、ON 分别与e 1、e 2的关系如何?从而向量a 与e 1、e 2的关系如何?OM =λ1e 1,ON =λ2e 2,a =λ1e 1+λ2e 2.5. 若上述向量e 1、e 2、a 都为定向量,且e 1、e 2不共线,则实数λ1、λ2是否存在?是否唯一?6.若向量a 与e 1或e 2共线,a 还能用λ1e 1+λ2e 2表示吗?7.根据上述分析,平面内任一向量a 都可以由这个平面内两个不共线的向量e 1、e 2表示出来,从而可形成一个定理.你能完整地描述这个定理的内容吗?如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.8.上述定理称为平面向量基本定理,不共线向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 那么同一平面内可以作基底的向量有多少组?不同基底对应向量a e 1 e 2OB CC的表示式是否相同?9. 两个向量和与差的坐标等于两个向量坐标的和与差;数乘向量的坐标等于该数与向量相应坐标的乘积.即:如果 a =(x 1,y 1),b =(x 2,y 2),那么a ±b =(x 1±x 2,y 1±y 2),λa =(λx 1,λy 1) a ∥b 的充要条件是x 1y 2=x 2y 1(需要证明)10. 任意给定平面中两个不平行的向量e 1、e 2,那么平面中所有向量a 都可以用这两个向量表示.即a =x e 1+y e 2.这里x 、y 是唯一确定的一对有序实数.{e 1,e 2}叫做这一平面内所有向量的一组基底;x e 1+y e 2叫做a 关于基底{e 1,e 2}的分解式.探究(二)平面向量的正交分解及坐标表示思考1.不共线的向量有不同的方向,对于两个非零向量a 和b ,作=a ,= b ,如图.为了反映这两个向量的位置关系,称∠AOB 为向量a 与b 的夹角.你认为向量的夹角的取值范围应如何约定为宜?[0°,180°]2.如果向量a 与b 的夹角是90°,则称向量a 与b 垂直,记作a ⊥b . 互相垂直的两个向量能否作为平面内所有向量的一组基底? 3. 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如图,向量i 、j 是两个互相垂直的单位向量,向量a 与i 的夹角是30°,且|a |=4,以向量i 、j 为基底,向量a 如何表示?a=+2j 4.在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于平面内的一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得a =x i +y j .我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ).其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,上式叫做向量的坐标表示.那么x 、y 的几何意义如何? 5.相等向量的坐标必然相等,作向量=a ,则= (x ,y ),此时点A 的坐标baAP是什么?三、例题解析例1 已知直角坐标平面内的两个向量a =(1,3),b =(m ,2m -3),使平面内的任意一个向量c 都可以唯一的表示成c =λa +μb ,则m 的取值范围是________.解:∵c 可唯一表示成c =λa +μb ,∴a 与b 不共线,即2m -3≠3m ,∴m ≠-3.例2 如图,M 是△ABC 内一点,且满足条件=++CM BM AM 320,延长CM 交AB 于N,令CM =a ,试用a 表示CN . 解:∵,,NM BN BM NM AN AM +=+=∴由CM BM AM 32++=0,得=++++CM NM BN NM AN 3)(2)(0.∴CM BN NM AN 323+++=0.又∵A 、N 、B 三点共线,C 、M 、N 三点共线,由平行向量基本定理,设,,NM CM BN AN μλ==∴=+++NM BN NM BN μλ3230.∴(λ+2)BN +(3+3μ)NM = 0.由于BN 和NM 不共线,∴⎩⎨⎧=+=+,033,02μλ∴{2,1.λμ=-=- ∴.MN NM CM =-=∴CM MN CM CN 2=+==2a .例 3 设e 1与e 2是两个不共线向量,a =3e 1+4e 2,b =-2e 1+5e 2,若实数λ、μ满足λa +μb =5e 1-e 2,求λ、μ的值.解:由题设λa +μb =(3λe 1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e 1+(4λ+5μ)e 2. 又λa +μb =5e 1-e 2.由平面向量基本定理,知 325,45 1.u u λλ-=⎧⎨+=-⎩解之,得λ=1,μ=-1.四、小结1.平面向量基本定理是建立在向量加法和数乘运算基础上的向量分解原理,同时又是向量坐标表示的理论依据,是一个承前起后的重要知识点.2.向量的夹角是反映两个向量相对位置关系的一个几何量,平行向量的夹角是0°或180°,垂直向量的夹角是90°.3.向量的坐标表示是一种向量与坐标的对应关系,它使得向量具有代数意义.将向量的起点平移到坐标原点,则平移后向量的终点坐标就是向量的坐标.第2课时教学目标一、知识与技能1.掌握平面向量的和、差和数乘向量的坐标运算,以及向量共线的坐标表示,会根据这些原理求向量的坐标.2.深化对向量概念的理解,提高对向量运算的认识,优化数形结合的思想意识,培养逻辑思维能力和思维素养.二、过程与方法1.通过体验直角坐标系中平面向量的坐标表示的实现过程,激发学生的探索精神,增强学生知识的应用意识;2.通过具体问题的分析解决,渗透数形结合的数学思想,提高学生的化归能力.三、情感与价值在数学中体会知识的形成过程,感受数与形的和谐统一.教学重点平面向量的坐标运算和向量共线的坐标表示.教学难点向量的坐标运算原理的构建.教学设想:一、情境设置1.平面向量的基本定理是什么?如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.2.用坐标表示向量的基本原理是什么?设i、j是与x轴、y轴同向的两个单位向量,若a=x i+y j,则a=(x,y).3.用坐标表示向量,使得向量具有代数特征,并且可以将向量的几何运算转化为坐标运算,为向量的运算拓展一条新的途径.我们需要研究的问题是,向量的和、差、数乘运算,如何转化为坐标运算,对于共线向量如何通过坐标来反映等.二、新知探究。

平面向量基本定理(教学设计)

平面向量基本定理(教学设计)

《平面向量基本定理(第一课时)》教学设计一、教材分析:本节内容是人教A版普通高中课程标准实验教科书必修4第二章第3节“平面向量基本定理及坐标表示”的第一课时内容,本节共2个课时。

平面向量基本定理是本节的重点也是本节的难点。

平面向量基本定理告诉我们同一平面内任一向量都可以表示为两个不共线向量的线性组合,由于高中数学设计的向量是自由向量,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任何一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点和两个不共线的向量得到表示,这是引进平面向量基本定理一个原因(学生可以不讲)。

实际上,本节课在本章中起到一个“承上启下”的作用,一方面要在平面向量线性运算的基础上归纳定理,另一方面,作为平面向量基本定理的特殊情况,研究平面向量的正交分解及坐标表示,是建立向量坐标的一个逻辑基础,它揭示了平面向量的基本关系和基本结构,是学生后续学习向量坐标表示的基础。

二、学情分析:知识方面:学生学习了第一节“平面向量的实际背景及基本概念”和第二节“平面向量的线性运算”,已经有了一定的平面向量基础知识,学力和能力方面:授课对象为省级示范学校高一学生,有比较扎实的数学基本知识,其数学基本素养和学习能力应该在普通高中学生中处于中上水平。

三、教师教学的出发点:根据课程标准的要求备课,备学生,把课程标准的要求溶解在课堂中,让学生在潜移默化中提高数学素养。

本节课的教学设计主要是针对学习情况为中等的学生(占大多数),第一、注重知识的生成,通过创设问题情境,引导学生自主学习,主动探究发现新知(平面向量基本定理);第二、注重数学思维的培养,通过问题的两个方面,即平面向量合成和分解,培养学生的观察能力,启发学生的逆向思考能力,抽象概括能力,引导学生进行适当的合情推理(定理的证明);第三、注重对知识的理解、消化、应用,主要通过典型的问题,掌握对新知的应用,可进行适当的拓展,发散思维;第四:激发学生的学习兴趣,在3个方向:新知识的维度拓展的兴趣激发,解决几何问题的兴趣激发,后续学习的兴趣激发。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 平面向量的基本定理及坐标表示(1)(教学设计)
2.3.1平面向量基本定理;2.3.2平面向量的正交分解及坐标表示
[教学目标]
一、知识与能力:
1. 了解平面向量基本定理。

2.掌握平面向量基本定理,理解平面向量的正交分解及坐标表示;
3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
二、过程与方法:
体会数形结合的数学思想方法;培养学生转化问题的能力.
三、情感、态度与价值观:
培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题.
教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算
教学难点:平面向量基本定理.
一、复习回顾:
1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa
(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =0
2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb
3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .
二、师生互动,新课讲解:
思考:给定平面内任意两个向量e 1,e 2,请作出向量3e 1+2e 2、e 1-2e 2,平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?.
在平面内任取一点O ,作OA =e 1,OB =e 2,OC =a ,过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N . 由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2. 由于OC OM ON =+,所以a =λ1e 1+λ2e 2,也就是说任一向量a 都可以表示成λ1e 1+λ2e 2的形式.
1. 平面向量基本定理 (1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使得
a=λ1e 1+λ2e 2.
把不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.
(2)向量的夹角
已知两个非零向量a 和b ,作OA =a ,OB =b ,则∠AOB=θ(0︒≤θ≤180︒)叫做向量a 与b 的夹角,
当θ=0︒时,a 与b 同向;当θ=180︒时,a 与b 反向.
如果a 与b 的夹角是90︒,则称a 与b 垂直,记作a ⊥b .
例1 (课本P94例1)已知向量e 1、e 2,求作向量-2.5e 1+3e 2。

解:
变式训练1: 如图在基底e 1、e 2下分解下列向量:
解:1222AB =-+e e ,
1233CD +=e e ,
1232EF =-+e e ,
1263GH -=e e
2. 平面向量的正交分解及坐标表示
(1)正交分解
把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.
(2)向量的坐标表示
思考:我们知道,在平面直角坐标系中,每一个点都可以用一对有序实数(即它的坐标)表示,对平面直角坐标系内的每一个向量,如何表示呢?
在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,则对于平面内的一个向量a ,有且只有一对实数x 、y 使得
a=xi+yj ,
把有序数对(x,y )叫做向量a 的坐标,记作
a=(x,y ),
其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,
显然,
i=(1,0),j=(0,1),0=(0,0).
(3)向量与坐标的关系
思考:与a 相等的向量坐标是什么?
向量与向量坐标间建立的对应关系是什么对应?(多对一的对应,因为相等向量对应的坐标相同) 当向量起点被限制在原点时,作OA =a ,这时向量OA 的坐标就是点A 的坐标,点A 的坐标也就是向量OA 的坐标,二者之间建立的一一对应关系.
例2(课本P96例2) 如图,分别用基底i 、j 表示向量a 、b 、c 、d ,并求出它们的坐标. 解:a=2i +3j=(2,3),
b=-2i +3j =(-2,3)
c=-2i -3j =(-2,-3)
d=2i -3j =(2,-3).
变式训练2: 在直角坐标系xOy 中,向量a 、b 、c 的方向和长度如图所示,分别求他们的坐标. 解:设a=(a 1,a 2),b=(b 1,b 2),c=(c 1,c 2),则
a 1=|a|cos45︒=2222⨯=,a 2=|a|sin45︒=2222
⨯=; b 1=|b|cos120︒=13322⎛⎫⨯-=- ⎪⎝⎭
,b 2=|b|sin120︒333322=⨯=; c 1=|c|cos(-30︒)=34232⨯=,c 2=|c|sin(-30︒)=1422⎛⎫⨯-=- ⎪⎝⎭
, 因此()()
3332,2,,,23,222⎛⎫==-=- ⎪⎝⎭a b c . 例3:已知O 是坐标原点,点A 在第一象限,||43OA =,60xOA ∠=︒,求向量OA 的坐标. 解:设点(),A x y ,则43cos6023,43sin 606x y =︒==︒=
即()23,6A ,所以()
23,6OA =.
变式训练3:如图,e1、e2为正交基底,分别写出图中向量a、b、c、d的分解式,并分别求出它们的直角坐标.
解:a=2e1+3e2=(2,3),b=-2e1+3e2=(-2,3),
c=-2e1-3e2=(-2,-3),d=2e1-3e2=(2,-3).
三、课堂小结,巩固反思:
1.平面向量基本定理;
2.平面向量的正交分解;
3.平面向量的坐标表示.
四、课时必记:
1、平面向量的基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使得功a=λ1e1+λ2e2.把不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
2、当向量起点被限制在原点时,作OA=a,这时向量OA的坐标就是点A的坐标,点A的坐标也就是向量OA的坐标,二者之间建立的一一对应关系.
五、分层作业:
A组:
1、设e1、e2是同一平面内的两个向量,则有( )
A.e1、e2一定平行
B.e1、e2的模相等
C.同一平面内的任一向量a都有a =λe1+μe2(λ、μ∈R)
D.若e1、e2不共线,则同一平面内的任一向量a都有a =λe1+u e2(λ、u∈R)
2、已知矢量a = e1-2e2,b =2e1+e2,其中e1、e2不共线,则a+b与c =6e1-2e2的关系
A.不共线
B.共线
C.相等
D.无法确定
3、已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于( )
A.3
B.-3
C.0
D.2
4、已知a、b不共线,且c =λ1a+λ2b(λ1,λ2∈R),若c与b共线,则λ1= .
5、已知λ1>0,λ2>0,e1、e2是一组基底,且a =λ1e1+λ2e2,则a与e1_____,a与e2_________(填共线或不共线).
B组:
C组:。

相关文档
最新文档