太阳能与空气源热泵结合在浙江应用案例分析

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能与空气源热泵在浙江应用案例分析

杭州普桑能源科技有限公司/袁新毓徐平

北京四季沐歌太阳能技术集团有限公司/宋利波李帅

一、引言

由于我国太阳能资源十分丰富,年日照时间为2500小时的地区占国土面积的2/3以上,有的地区高达3000小时,开发利用太阳能潜力巨大,在能源危机和环境污染双重压力下,太阳能逐渐成为可再生能源中最引人注目、研究开发最多、应用最为广泛的清洁能源,在太阳能技术的研究利用中,太阳能热水系统是太阳能利用中最成熟、最具经济性的利用方式,也是目前经济上最具有竞争力的绿色能源技术。随着能源紧缺日益扩大,人们的节能意识逐渐增强。近几年国家和地方政府纷纷出台相应的政策法规,鼓励或规定在建筑中优先使用太阳能热水系统。而空气源热泵技术也是一种很好的节能型供热技术,是利用少量高品位的电能作为驱动能源,从低温热源空气中高效吸取低品位热能,并将其传输给高温热源,以达到加热的目的。随着人们对获取生活用热水的要求日趋提高,具有间断性特点的太阳能难以满足全天候供热。要解决这一问题,热泵技术与太阳能利用相结合无疑是一种好的选择方法。

二、空气源热泵技术

所谓热泵,就是靠电能驱动,迫使热量从低位热源流向高位热源的装置。也就是说,热泵可以把不能直接利用的低品位热能(空气、土壤、井水、河水、太阳能、工业废水等)转换为可以利用的高位能,从而达到节约部分高位能(煤、石油、燃气、电能等)的目的。在矿物能源逐渐短缺、环境问题日益严重的当今世界,利用低位能的热泵技术已引起人们的关注和重视。

空气源热泵的历史以压缩式空气源热泵最悠久。它可追溯到18世纪初叶,可以说1824年卡诺循环的发表即奠定了热泵研究的基础。空气源热泵热水机组的制造、推广和使用在我国只是最近十几年的事情,但由于其相对传统制取热水设备的高效节能、环保、安全、智能化控制、不占用永久性建筑空间等优点而引起了市场日益广泛的关注。热泵热水机组以清洁再生原料(空气+电)为能源,既不使用也不产生对人体有害的气体,同时也减少了温室效应和大气污染。目前,在我国电力资源短缺的前提下,采用热泵热水机组制取热水,既能以最小的电力

投入获得最大的供热效益。

热泵技术是基于逆卡诺循环原理实现的,热泵热水机组工作时,蒸发器吸收环境热能,压缩机吸入常温低压介质气体,经过压缩机压缩成为高温高压气体并输送进入冷凝器,高温高压的气体在冷凝器中释放热量来制取热水,并冷凝成低温高压的液体。后经膨胀阀节流变成低温低压液体进入蒸发器内进行蒸发,低温低压液体在蒸发器中从外界环境吸收热量后蒸发,变成低温低压的气体。蒸发产生的气体再次被吸入压缩机,开始又一轮同样的工作过程。这样的循环过程连续不断,周而复始,从而达到不断制热的目的。

空气源热泵工作原理图

三、太阳能与空气源热泵结合技术

3.1太阳能热泵技术

太阳能热泵一般是指利用太阳能作为蒸发器热源的热泵系统,它把热泵技术和太阳能热利用技术有机的结合起来,可同时提高太阳能集热器效率和热泵系统性能。

太阳能热泵技术是原有的热泵技术与太阳能光热,光伏技术的有机融合。能通过热泵的形式,提高能效的利用,而且通过太阳能作为辅助热源可以有效地避免空气源热泵等在室外空气温度过低时引起的供热能力和性能系数降低的问题,提高了热泵对使用环境的适应性。

3.2太阳能与空气源热泵互补热利用技术

常规太阳能热水系统易受气候的影响,在阴雨天或春秋季,太阳辐射能热量较少,较难满足热水量的需求,不能全天候使用,也影响了太阳能热水系统的推广应用。空气源热泵作为节能设备具有独特优势,它可以节省高品位电能,降低

化石类能源的消耗,减少环境污染。空气源热泵是以空气为热源,通过输入少量的高品位能源(电能)来实现低品位热能向高品位热能转移的热泵系统,空气源热泵仅消耗少量的电能可以将数倍低温热能通过压缩机的压缩变为高温热能。因此将热泵技术与太阳能热水系统有机地结合起来可弥补阴雨天太阳能的不足。太阳能热水系统与热泵互补系统结合了太阳能的清洁性、可再生性和空气源热泵的节能性,是一种节能、无污染的高效能源利用系统。

太阳能与热泵的结合有两种工作模式:一是以太阳能加热为主,以空气能热泵加热为辅,但是前提是建筑允许放置太阳能集热板,有足够的安装面积;二是以空气能热泵加热为主,太阳能加热为辅,此种模式是为了使空气能热泵在低温环境下还能高效、稳定、可靠运行,用太阳能作为其辅助热源或直接加热热水箱内的水或提供预热。

四、应用案例分析

4.1项目概况

4.1.1工程名称:浙江大学附属中学

4.1.2工程所在地:杭州市江干区丁桥镇临丁路

4.1.3建筑性质与形式:五层学生公寓,2栋;两层食堂,1栋。该学校主要建筑包括教学及教学辅助用房、办公用房和生活服务用房、地下停车库与地下用房、体育活动场所等。总建筑面积84505平方米,其中地上建筑面积55005平方米,地下建筑面积29500平方米,总投资4.985亿元。

4.1.4用热水量:男女宿舍楼55度热水各20吨,食堂55度热水20吨。

4.1.5热水用途:每个宿舍内设有淋浴间,供淋浴及洗手、洗脸用,磁卡表计量。食堂内设有职工淋浴间,供淋浴及食堂刷碗、洗菜用,磁卡表计量。

4.1.6当地的太阳辐射量:1163~1393kWh/m2·a。

4.1.7当地的气候条件:年日照时数为1400~2200H,月平均气温见表1-1

月份月平均气温月份月平均气温月份月平均气温1月 6.45月22.79月25.6 2月 5.96月26.310月21.1 3月12.37月30.511月14.2 4月17.68月29.512月10.4

表1-1

4.1.8建设单位:杭州市教育资产营运管理中心

4.1.9设计单位:杭州普桑能源科技有限公司

4.1.10施工单位:杭州普桑能源科技有限公司

4.2系统介绍

4.2.1系统原理简述

本工程男女宿舍楼各设置一个独立的集中生活热水供应系统,食堂设置一个独立的集中生活热水供应系统,采用太阳能辅助空气源热泵24小时集中供应热水。制取热水的水源为市政自来水(水压为0.3MPA),太阳能集热系统采用温差循环式加热方式,冷水经过太阳能集热器预加热后贮存于20立方的集热循环水箱(A水箱,闭式水箱),当使用热水时,通过自来水的压力将A水箱的热水输送到生活储热水箱(B水箱,闭式水箱),控制系统随时感应生活储热水箱温度,当达不到设定温度时,空气源热泵加热生活储热水箱,使生活储热水箱始终恒温在55度(可调),保证24小时热水需求。自来水的补水设置于A水箱内,采用自来水的压力将太阳能预热水输送到B水箱中。热水管道末端设置温度感应点,温度低于设定温度时,回水泵工作,保证打开用水阀门,即开即热。控制系统采用杭州普桑能源科技有限公司设计开发的可编程PLC电脑控制系统,实现太阳能与热泵互补系统智能、全自动运行。

太阳能与热泵互补系统流程图

4.2.2辅助热源形式

辅助热源采用四季沐歌高效节能低温型空气源热泵,男女宿舍及食堂各采用

相关文档
最新文档