基因工程的基本原理和技术

合集下载

基因工程(基因工程的主要技术与原理分子杂交技术)

基因工程(基因工程的主要技术与原理分子杂交技术)
通过放射自显影或生化检测, 就可判断滤膜上是否存在与探针 同源的DNA分子及其分子量。
Southern杂交主要用来判断某 一生物样品中是否存在某一基因, 以及该基因所在的限制性酶切片 段的大小。(DNA水平)
Southern杂交也可检测目的基 因的拷贝数。
CK 1 2 3 4 5
Southern bloting
这种检测方法与其它免疫学方法的不同是,一方面 可以避免非特异性的免疫反应,而且更关键的是可以 检测出目标蛋白质的分子量,从而直观的在滤膜上显 示出目标蛋白。
五、Dot blot hybridization
1、原理:
在Southern杂交的基础上发展起来的用于 快速检测特异核酸分子的杂交技术。将核酸 样品直接转移到适当的滤膜上,然后进行杂 交检测。
凝胶
3)转移并固定到滤膜上
通过毛细管渗吸或电转移或真空转移的方式,将凝 胶上的DNA转移到硝酸纤维素滤膜或尼龙膜上。最后 通过80℃处理或紫外线照射将DNA固定在滤膜上。
Southern blotting 装置示意图
4)探针的制备及杂交
预杂交:将结合了DNA分子的滤膜先与特定的预 杂液进行预杂交,也就是将滤膜的空白处用鱼精 DNA或牛奶蛋白封闭起来,防止在杂交过程中滤膜 本身对探针的吸附。
当用一个标记的核酸分子与核酸样品杂交, 便可查明该样品中是否存在与该标记核酸分 子具有同源性的核酸分子。这个标记的核酸 分子称为探针(probe),可以是DNA,也可以 是RNA,或合成的寡核苷酸。
二、基本过程
1、核酸印迹(Nucleic acid blotting): 将核酸样品(DNA、RNA或蛋白质)在凝胶
在1975年,由英国的E. Southern首先设计发明的, 因此又称为Southern杂交(Southern blotting)。

基因工程的原理和技术

基因工程的原理和技术

基因工程的原理和技术
基因工程是指通过改变生物体的基因组来产生特定的生物体或改进生
物体的性状的一种技术。

对于基因工程的原理和技术,浙科版的教材中介
绍了以下几个方面:
1. 基因定位和克隆技术:基因定位和克隆是基因工程中非常关键的
技术。

它主要通过将目标基因定位到其中一特定位点,并将其克隆出来以
便进一步研究和改造。

其中,基因定位技术包括Southern杂交,杂交阳
性克隆以及反向遗传学方法等;而基因克隆技术主要是利用重组DNA技术,包括PCR、限制性内切酶切割、DNA连接以及基因载体构建等。

3.基因传递技术:基因传递技术是将外源基因导入到目标生物体中的
一种方法。

常用的基因传递技术包括质粒转化、基因枪、农杆菌介导转化等。

在这些方法中,质粒转化是一种最为常用的技术,它通过将外源基因
插入原核生物的质粒中,然后将质粒导入到宿主细胞中,使外源基因表达
出来。

4.基因表达调控技术:基因表达调控技术是指通过改变生物体的基因
表达水平来影响其性状的一种方法。

其中,转基因技术是最为常见的基因
表达调控技术之一、它通过将目标基因导入到宿主细胞中,并使其在宿主
细胞中得到表达,从而改变宿主细胞的性状。

此外,还有RNA干扰技术、
基因靶向技术等也是常用的基因表达调控技术。

基因工程的原理和技术

基因工程的原理和技术
基因工程的原理和技术
基因工程的基本原理:
让人们感兴趣的基因(即目的基因)在宿主细 胞中稳定和高效的表达。根据不同的实验目的,目 的基因可以有很多种,如抗虫基因、抗病基因、抗 除草剂基因、人胰岛素基因和人干扰素基因等。因 此表达的产物各不相同。通过基因工程的基本操作 ,就能实现目标。
二、基因操作的基本步骤
第三步:将目的基因导入受体细胞
选择的关键是分析基因工程的最终目的,按转基因的目的来选择:
基因工程的 最终目的
得到大量特 殊蛋白质
得到转基因动物 得到转基因植物
常用的受 体细胞
大肠杆菌 等微生物
受精卵 植物体细胞
导入的方法
Ca2+处理法 显微注射法 农杆菌转化法
将目的基因导入微生物细胞
常选细菌 作受体细胞的原因:它 们繁殖力极强,生长速 度很快,短期内就会产 生大量后代,所以把目 的基因转入这些细菌, 就能在短时间内得到大 量的目的基因产物。
细菌的检测:
将每个受体细胞单独培养形成菌落,检测菌落中 是否有目的基因的表达产物。淘汰无表达产物的 菌落,保留有表达产物的进一步培养、研究。
无表达产物
无表达产物
有表达产物
无表达产物
多细胞生物的检测: 将每个受体细胞单独培养并诱导发育成完整个体, 检测这些个体是否表现出相应的性状。
例:抗虫棉检测
用棉铃饲喂棉铃虫,如虫吃后不 出现中毒症状,说明未摄入目的基 因或摄入目的基因未表达。
例:下列有关基因表达载体的构建说法正确的是( C ) A.限制性核酸内切酶的功能是切割各种DNA分子 B.基因工程中经常用到的酶只有DNA连接酶和限制性 核酸内切酶 C.将目的基因与载体结合的过程,实际上就是不同来 源的DNA重新组合的过程 D.具有粘性末端的目的基因片段插入质粒的切口处, 先形成磷酸二酯键,再形成氢键

基因工程的原理和技术有哪些

基因工程的原理和技术有哪些

基因工程的原理和技术有哪些1. 引言基因工程是一门以改变生物体的遗传信息为核心的生物技术领域。

通过改变生物体的基因组,基因工程使得我们能够实现对生物体的精准编辑和控制,以达到特定的目的。

本文将介绍基因工程的原理和常见的技术,包括基因克隆、DNA测序、PCR扩增、CRISPR-Cas9系统等。

2. 基因工程的原理基因工程的原理基于对生物体遗传信息的理解和改变。

生物体的遗传信息储存在DNA分子中,通过改变DNA序列,我们可以影响生物体的表型和功能。

基因工程通常包括以下几个步骤:•DNA提取:从目标生物体中提取DNA,可以通过化学方法或者机械方法进行。

•DNA切割:利用限制性内切酶将目标DNA分子剪切成特定的片段。

•DNA连接:将所需的DNA片段连接到载体DNA上,生成重组DNA。

•DNA转化:将重组DNA导入到宿主细胞中,宿主细胞根据重组DNA的指令表达特定蛋白质。

3. 基因工程的常见技术3.1 基因克隆基因克隆是一种常见的基因工程技术,它通过将目标基因从源生物体中提取并插入到宿主细胞中,实现对基因的复制和繁殖。

基因克隆通常包括以下步骤:1.DNA提取:从源生物体中提取目标基因的DNA。

2.DNA切割:使用限制性内切酶将目标基因的DNA切割成特定片段。

3.载体DNA准备:将一种称为“载体”的DNA分子准备好,它可以将目标基因插入其中。

4.DNA连接:将目标基因的DNA片段与载体DNA连接,生成重组DNA。

5.DNA转化:将重组DNA导入到宿主细胞中,宿主细胞会按照重组DNA的指令表达特定蛋白质。

3.2 DNA测序DNA测序是一种确定DNA序列的技术,它是基因工程领域中非常重要的一项技术。

DNA测序可以帮助我们了解生物体的遗传信息,从而对基因进行研究和编辑。

常见的DNA测序技术包括Sanger测序和新一代测序技术。

这些技术基于不同的原理和方法,可以高效准确地确定DNA序列。

3.3 PCR扩增PCR(聚合酶链式反应)是一种能够从极少量的DNA模板扩增大量DNA的技术,也是基因工程中常用的技术之一。

基因工程的基本原理和技术专家讲座

基因工程的基本原理和技术专家讲座

会产生相同黏性(平)末端, 然后让二者黏 性(平)末端黏合起来, 就似乎能够合成重组 DNA分子了。
基因工程的基本原理和技术专家讲座
第32页
生物A基因片段
生物B基因片段
……GAATTC…… ……GAATTC…………GAATTC…… ……CTTAAG…… ……CTTAAG…………CTTAAG……
同一个 EcoRⅠ 酶切
传密码, 基因工程的基本原理和技术专家讲座 1966年霍拉纳用试验加以证实。
第16页
基础理论和技术发展催生了基因工程
• DNA是遗传物质证实 • DNA双螺旋结构和中心法则确实立 • 遗传密码破译(遗传密码通用性) • 基因运载体发觉 • 工具酶创造 • DNA合成和测序技术创造 • DNA体外重组实现 • 重组DNA表示试验成功 • 第一例转基因动物问世 • PCR技术创造
关键步骤三:抗虫基因进入棉花细胞 “分子运输车”—— 基因进入受体细胞载体
基因工程的基本原理和技术专家讲座
第20页
DNA重组技术基本工具
• 限制性核酸内切酶——“分子手术刀” • DNA连接酶——“分子缝纫针” • 基因进入受体细胞载体——“分子运输
车”
基因工程的基本原理和技术专家讲座
第21页
一、限制性核酸内切酶——“分子手术刀”
1、主要起源:
主要从微生物中分离 纯化
2、特点(:不一样识限别制双酶链能D识N别A分不子一某样种特特点定核核苷苷酸酸序序列列),
而且以不一样方式在两个特殊碱基之间切断DNA 双链。
使每条链中特定部位两个核苷酸
3.作用: 基因工程的基本原理和技术专家讲座
之间磷酸二酯键断开 第22页
磷酸二酯键
H
5

基因工程及其应用

基因工程及其应用
基因工程在农业领域中被用 于提高农作物产量、改善抗 虫性和抗病性,以及提高农 作物的质量。
环境保护
基因工程可用于生物修复、 环境监测和生态系统保护, 有助于解决环境问题和提高 可持续发展。
基因工程在医学领域的应用
ห้องสมุดไป่ตู้
1
基因治疗
通过基因工程技术修复或替换患者的缺陷
药物研发
2
基因,为治疗遗传性疾病提供新的方法。
基因工程用于制备重组蛋白和抗体,加速
药物开发和生产过程。
3
疾病诊断
基因工程技术使得疾病的早期诊断更加准 确和可靠,为个性化医学提供了新的途径。
基因工程在农业领域的应用
转基因作物
基因工程可用于在作物中导入外 源基因,以提高作物的抗虫性、 耐旱性和营养价值。
植物组织培养
基因工程技术可用于培育不孕植 株、繁殖珍稀植物和提高植物生 长速度。
农业生物技术
基因工程在农业领域还可用于动 物遗传改良、育种和疫苗研发, 提高农业生产效率。
基因工程在环境领域的应用
生物修复
基因工程可以用于修复受污染土壤和水体中的有害物质,加速环境恢复过程。
环境监测
通过基因工程技术,可以开发植物和微生物传感器来监测环境中的有害物质。
生态系统保护
基因工程可用于保护濒危物种、恢复破坏的生态系统,维持生物多样性。
基因工程使用了许多工具 和技术,如限制性酶、 DNA合成和蛋白质表达系 统等,以便研究和操作基 因。
基因编辑技术如CRISPRCas9已经革命性地改变了 基因工程领域,使得基因 编辑更加精确和高效。
基因工程的应用领域
生物医学
基因工程在生物医学研究中 有广泛应用,如基因治疗、 药物研发和疾病诊断。

基因工程基本原理及技术

基因工程基本原理及技术

【知识点】高中生物:基因工程核心知识汇总基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。

一、基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。

基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。

二、基因工程的原理及技术● 原理:基因重组技术● 基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。

(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。

(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。

2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E•coliDNA连接酶和T4DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。

②区别:E•coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。

(2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。

DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。

3.“分子运输车”——载体(1)载体具备的条件:①能在受体细胞中复制并稳定保存。

②具有一至多个限制酶切点,供外源DNA片段插入。

③具有标记基因,供重组DNA的鉴定和选择。

(2)最常用的载体是质粒:它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。

(3)其它载体:噬菌体的衍生物、动植物病毒● 基因工程的基本操作程序第一步:目的基因的获取1.目的基因是指:编码蛋白质的结构基因。

基因工程的原理与应用

基因工程的原理与应用

基因工程的原理与应用简介:基因工程是生物技术领域中的一项重要技术,通过能够改变生物体基因组的技术手段,对生物体的基因进行定向修改、调控和构建,从而改变生物体的性状和功能。

本文将介绍基因工程的原理与应用。

一、基因工程的原理基因工程的原理是通过一系列技术手段对DNA进行操作,包括基因的定向克隆、DNA序列的合成、基因组的编辑和调控等。

1. 基因的定向克隆基因的定向克隆是指将感兴趣的基因从一个生物体中剪切出来,并将其插入到另一个生物体的染色体上。

这一过程主要包括DNA的剪切、连接和转化等步骤。

通过定向克隆,可以将某些有益的基因导入到其他生物体中,实现基因的传递和表达。

2. DNA序列的合成DNA序列的合成是将DNA中的碱基按照特定的顺序进行合成,以构建具有特定功能的DNA序列。

合成的DNA序列可以是某个基因的修改版,也可以是完全人工合成的新DNA序列。

DNA序列的合成为基因工程提供了强大的工具,使得研究者可以对基因进行精确的修改和调控。

3. 基因组的编辑和调控基因组的编辑和调控是利用特定的酶类或蛋白质来调整生物体的基因组结构和功能。

常用的编辑工具包括CRISPR-Cas9系统和锌指核酸酶,它们能够精确地切割、修复和替换DNA序列。

通过基因组的编辑和调控,可以实现对生物体基因组的精确操控,以达到特定的目的。

二、基因工程的应用基因工程技术的广泛应用,为许多领域带来了巨大的变革和进步。

以下是基因工程在医学、农业和环境中的应用示例。

1. 医学应用基因工程在医学领域中的应用非常广泛,其中包括基因治疗、生物药物生产、疫苗研发等。

通过基因治疗,可以将正常的基因导入患者体内,治疗一些遗传性疾病。

生物药物的生产利用基因工程技术可以实现大规模的高效合成,例如利用转基因细菌表达人类胰岛素。

此外,基因工程还为疫苗的研发提供了新的思路和方法。

2. 农业应用基因工程在农业领域的应用主要集中在作物的遗传改良、疾病抗性和提高产量等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T4 DNA连接酶还可把平末端之间的缝隙“缝合” 起来,但效率较低
T4DNA连接酶
③类型:
类型 来源 功能 相同点 差别
E· coliDNA连接酶 大肠杆菌 恢复 只能连接黏性末端 磷酸 能连接黏性末端和 二酯键 T4DNA连接酶 T4噬菌体 平末端(效率较低)
寻根问底
• DNA连接酶与DNA聚合酶是一回事吗?为什么?
(一)基因工程的概念
• 什么叫基因工程?
基因工程又叫DNA重组技术。该技术 是在生物体外,通过对DNA分子进行人工 “剪切”和“拼接”,对生物的基因进行 改造和重新组合,然后导入受体细胞内进 行无性繁殖,使重组基因在受体细胞内表 达,产生出人类所需要的基因产物。
基因工程的概念
基因工程的别名 操作环境
生物B基因片段 生物A基因片段 ……GAATTC…… ……GAATTC…………GAATTC…… ……CTTAAG…… ……CTTAAG…………CTTAAG…… 同一种 EcoRⅠ 酶切 ……G AATTC…… ……G AATTC …… …… G AATTC… ……CTTAA G…… ……CTTAA …… G…… CTTAA G…… 不同来源的DNA片段混合 ……GAATTC…… ……GAATTC…… ……CTTAAG…… ……CTTAAG…… 将不同种来源的DNA片段连接起来
使每条链中特定部位的两个核苷 • 3、作用:
磷酸二酯键
A
1
H
5 4
H
5 4
A
1
O
H
H
3HO
2
H2O +
3
2
H
5 4 3
T
1 2
H
5 4 3
T
1 2
H
H
O
• 4、限制酶识别序列
大多数限制酶的识别序列由6个核苷酸 组成 少数的识别序列由4、5或8个核苷酸组 成
Go on
• 限制酶的识别序列:
Go back
• • • • • • • • • • DNA是遗传物质的证明 基础理论 DNA双螺旋结构和中心法则的确立 遗传密码的破译(遗传密码的通用性) 基因运载体的发现 工具酶的发明 DNA合成和测序技术的发明 技术发明 DNA体外重组的实现 重组DNA表达实验的成功 第一例转基因动物问世 PCR技术的发明
DNA重组技术
生物体外
操作对象
操作水平 基本过程
基因
DNA分子水平 剪切 → 拼接 → 导入→ 表达
按照预先设计的蓝图,定向改变 生物遗传特性,创造出新型生物
结果(目的)
科技探索之路
基因工程研究的理论基础
早 期 基 础 理 论
达尔文提出生物进化论
科技探索之路
早 期 基 础 理 论
孟德尔提出基因的分离定律和自由组合定律
课堂练习 2.不属于质粒被选为基因运载体的理由是 A、能复制 ( D)
B、有多个限制酶切点
C、具有标记基因 D、它是环状DNA
课堂练习
3.以下说法正确的是
( C)
A、所有的限制酶只能识别一种特定的核苷 酸序列 B、质粒是基因工程中唯一的运载体 C、运载体必须具备的条件之一是:具有多 个限制酶切点,以便与外源基因连接 D、基因基因)怎样才能导入受体细 胞(如棉花细胞)?
导入过程需要运输工具——运载体。
• 三、基因进入受体细胞的运载体——” 分子运输车”
• 运载体的作用有哪些?
作用一:作为运载工具,将外源基因(抗虫 基因)转移到受体细胞(棉花细胞)中去。
作用二:利用运载体在受体细胞(棉花细胞) 内,对外源基因(抗虫基因)进行大量复制。
2)噬菌体或某些动植物病毒
• 常用的载体:质粒
有标记基因的 存在,可用含 氨苄青霉素的 培养基鉴别
有切割位点 能复制并带着 插入的目的基 因一起复制
课堂练习
1.在基因工程中,切割运载体和含 有目的基因的DNA片段,需使用 ( A) A. 同种限制酶 B. 两种限制酶 C. 同种连接酶 D. 两种连接酶
治疗糖尿病特效药—— 胰岛素 每100kg 猪或牛的胰腺中仅可提取4~5g。 1979年,美国将人的胰岛素基因重组到大肠杆菌 内,实现了细菌生产胰岛素,大大降低了生产成本。
基因工程产品
抗虫害的玉米
转鱼抗寒基 因的番茄
转基因 鲑鱼
基因工程的产物
乳汁中含有人生长激 素的转基因牛(阿根廷)
转黄瓜抗青枯病基因的甜椒
科技探索之路
早 期 基 础 理 论
摩尔根证明基因在染色体上,并提出基 因的连锁互换定律。
科技探索之路
后 期 基 础 理 论
艾弗里证明DNA是遗传物质,DNA可从 一种生物个体转移到另一种生物个体。
科技探索之路
后 期 基 础 理 论
沃森、克里克提出DNA的双螺旋结构模型。
科技探索之路 基础理论和技术发展催生了基因工程
DNA聚合酶 DNA连接酶
区别1
1)只能将单个核苷酸连 1)在两个DNA片段之 接到已有的核酸片段上, 间形成磷酸二酯键 形成磷酸二酯键
2)以一条DNA链为模板,2)将DNA双链上的两 区别2 将单个核苷酸通过磷酸 个缺口同时连接起来, 二酯键连接成一条互补 不需要模板 的DNA链 相同点 形成磷酸二酯键
⒉种类与命名:
现在已经从约300种微生物中分离出了约4000 种限制性内切酶(限制酶)。 粘质沙雷氏杆菌 SmaⅠ (Serratia marcesens)
大肠杆菌 EcoRⅠ (Escherichia coli R) 练习:流感嗜血杆菌的d菌株 ( Haemophilus influenzae d )中先后分离到3种限制酶, 则分别命名为: HindⅠ、HindⅡ和HindⅢ
教学目标
• 知识与能力 • 1.简述DNA重组技术所需三种基本工具的作用。 • 2.认同基因工程的诞生和发展离不开理论研究和 技术创新。 • 二、 教学重点和难点 • 1.教学重点: • DNA重组技术所需的三种基本工具的作用。 • 2.教学难点: • 基因工程载体需要具备的条件。
基因工程
据调查: 2005年全世界约有糖尿病患者1.8亿人,我 国约6000万。
EcoRⅠ
黏性末端
黏性末端
Go back
黏性末端
EcoRⅠ
黏性末端
Go back
重复演示
• 什么叫黏性末端? 被限制酶切开的DNA两条单链的切口, 带有几个伸出的核苷酸,它们之间正好互 补配对,这样的切口叫黏性末端。
SmaⅠ
平末端
平末端
限制性内切酶与DNA解旋酶的区别
限制酶
区别
DNA解旋酶
E· coli DNA连接酶
或T4DNA连接酶
可把黏性末端之间的缝隙“缝合”起来, 即恢复被限制酶切开的两个核苷酸之间的磷酸 二酯键
二、“分子缝合针” —— DNA连接酶
①作用:
恢复被限制酶切开的两个核苷酸之间的 磷酸二酯键
②作用原理: 催化磷酸二酯键形成
DNA连接酶——“分子缝纫针”
• 连接酶有两种:一种是从大肠杆菌中分离得到的, 称之为E· coli连接酶。另一种是从T4噬菌体中分 离得到,称为T4连接酶。 • 这两种连接酶催化反应基本相同,都是连接双链 DNA的缺口,而不能连接单链DNA。 • E· coli连接酶只能连接黏性末端; T4连接酶既可 “缝合”黏性末端,又可“缝合”平末端。
Go back
切割特定的核苷酸序列 将DNA两条链的氢键 的磷酸二酯键 打开形成两条单链
限制性内切酶与DNA水解酶的区别 限制酶
区别
DNA水解酶
切割特定的核苷酸序列 切割磷酸二酯键,形成 的磷酸二酯键,形成片 单个的脱氧核苷酸。 段的DNA.
Go back
思考?
• 要想获得某个特定性状的基因必须要用限制 酶切几个切口?可产生几个黏性(平)末端? 要切两个切口,产生四个黏性(平)末端。 • 如果把两种来源不同的DNA用同一种限制酶 来切割,会怎样呢? 会产生相同的黏性(平)末端,然后让两 者的黏性(平)末端黏合起来,就似乎可以合 成重组的DNA分子了。
• 解决培育抗虫棉的关键步骤需要哪些工具? 关键步骤一:抗虫基因从苏云金芽孢杆菌 细胞内提取出来 “分子手术刀”—— 限制性核酸内切酶 关键步骤二:抗虫基因与棉花DNA“缝合”
“分子缝纫针”—— DNA连接酶
关键步骤三:抗虫基因进入棉花细胞 “分子运输车”—— 基因进入受体细胞的载体
DNA重组技术的基本工具
后 期 基 础 理 论
梅塞尔松、斯塔尔证明DNA的半保留复制
科技探索之路
后 期 基 础 理 论
克里克等提出中心法则
复制
转录
翻译
DNA
逆转录
RNA
蛋白质
科技探索之路
后 期 基 础 理 论
1963年尼伦伯格和马太破译编码氨基酸的 遗传密码,1966年霍拉纳用实验加以证明。
基础理论和技术的发展催生了基因工程
• 限制性核酸内切酶——“分子手术刀” • DNA连接酶——“分子缝纫针” • 基因进入受体细胞的载体——“分子运 输车”
一、限制性核酸内切酶——“分子手术刀” • 1、主要来源:
主要从微生物中分离 纯化
• 2、特点:
识别双链DNA分子的某种特定 核苷酸序列(不同的限制酶能识别不 同特点的核苷酸序列),并且以不同 的方式在两个特殊碱基之间切断DNA 双链。 酸之间的磷酸二酯键断开
三、基因进入受体细胞的载体——“分子运输车” 如果载体对受体细胞有害将怎样? 假如目的基因导入受体细胞后不能复制将怎样? 作为载体没有切割位点将怎样? 目的基因是否进入受体细胞,你如何察觉?
高二·2010年上学期
作为运载体必须具备哪些条件?
1)能够在宿主细胞中复制并稳定地保存。
相关文档
最新文档