化学反应速率的定义(精)

合集下载

化工基础知识

化工基础知识
精品PPT
• 甲醇合成所选用的空速的大小,既涉及合成反应 的醇净值、合成塔的生产强度、循环气量的大小 和系统压力降的大小,又涉及到反应热的综合利 用。
• 当甲醇合成反应采用较低的空速时,气体接触催 化剂的时间长,反应接近平衡,反应物的单程转 化率高。由于单位时间通过的气量小,总的产量 仍然是低的。由于反应物的转化率高,单位甲醇 合成所需要的循环量较少,所以气体循环的动力 消耗小。
精品PPT
• 甲醇合成是放热反应,依靠反应热来维持 床层温度,那么若空速增大,单位体积气 体产生的反应热随醇净值的下降而减少; 空速过大,催化剂温度就难以维持,合成 塔不能维持自热则可能在不启用加热炉的 情况下使床层温度跨掉。
精品PPT
4)入塔气体组成
• 氢碳比的控制对甲醇合成的影响:甲醇由CO、CO2与H2反应 生成,反应如下:
精品PPT
什么是沸点?
• 沸点:1个大气压下,液体沸腾时的温度。 • 如在1个大气压下水的沸点为100℃,甲醇
的沸点64.7 ℃. • 1个大气压下,液氧的沸点约90K(-183
℃ ),液氮沸点约77K (-196 ℃).
精品PPT
7、甲醇合成主要的化学反应?试分析影
响甲醇合成的工艺因素及工艺条件的选择。
• 甲醇合成反应是多项铜基催化剂上进行的 复杂的、可逆的化学反应。
• 主反应有:

CO+2H2
CH3OH+102.5kJ/mol

CO2+3H2
CH3OH+H2O+59.6kJ/mol

CO+H2O
CO2+H2+41.19
kJ/mol
精品PPT
• 甲醇合成反应为放热、体积缩小的可逆反 应,温度、压力及气体组成对反应进行的 程度及速度有一定的影响。下面围绕温度、 压力、气体的组成及空间速度对甲醇合成 反应的影响来讨论工艺条件的选择。

化学反应速率,方向和限度

化学反应速率,方向和限度

1
t2
t3
t
课堂练习
根据盐酸与大理石(足量)反应, 8. 根据盐酸与大理石(足量)反应, V(CO2)-t 关系图曲线, 关系图曲线,以下判断正确的是 ( AD ) 若温度相同, 反应的盐酸浓度大于③反应, A、若温度相同,①反应的盐酸浓度大于③反应, 物质的量相等。 但H+物质的量相等。 反应时H B、②反应时H+的物质的量浓度最大 C、②与①的反应速率相等 反应速率由大到小顺序为①②③④ D、反应速率由大到小顺序为①②③④
课堂练习
6.足量的铁粉与一定量的盐酸反应,反应速率太快,为了 6.足量的铁粉与一定量的盐酸反应,反应速率太快, 足量的铁粉与一定量的盐酸反应 减慢反应速率,但又不影响产生氢气的总量, 减慢反应速率,但又不影响产生氢气的总量,应加入下列 。 物质中 ACDH A.水 B.NaCl(固 A.水 B.NaCl(固) C.NaCl溶液 C.NaCl溶液 D.Na2SO4溶液 H.NaAc溶液 H.NaAc溶液 E.NaNO3溶液 F.NaOH溶液 F.NaOH溶液 G.Na2CO3溶液 I.CuSO4溶液
化学反应速率, 化学反应速率,方向和限度
第一课时
一、化学反应速率
1.定义:衡量化学反应进行的快慢程度的物理量。 1.定义:衡量化学反应进行的快慢程度的物理量。 定义 2.表示方法: 2.表示方法:通常用单位时间内反应物浓度的减少 表示方法 或生成物浓度的增加来表示。 或生成物浓度的增加来表示。 v = △c 3.数学表达式: 3.数学表达式: 数学表达式 t mol· 单位: 4. 单位: mol/(L·s) 或 mol·(L·min) 或 mol·L-1·h-1
课堂练习
5.如下图所示,相同体积的a 5.如下图所示,相同体积的a、b、c三密闭容器,其中c容 如下图所示 三密闭容器,其中c 器有一活塞, 两容器为定容容器, 器有一活塞,a、b两容器为定容容器,起始向三容器中都 加入相同量的SO 使三容器压强相等, 加入相同量的SO2和O2使三容器压强相等,一定条件下发 的反应。 生2SO2+O2 ⇌ 2SO3的反应。问: 起始a 两容器的反应速率大小关系为V = ① 起始a、c两容器的反应速率大小关系为Va ___Vc; 反应一段时间后a 中速率大小关系为V < ② 反应一段时间后a、c中速率大小关系为Va ___Vc ; 如起始在a 两容器中通入同量的N ③ 如起始在a、c两容器中通入同量的N2,则此时三容器起 = 始压强为P > 始压强为Pa ___Pb ___Pc; 起始反应速率关系为V = 起始反应速率关系为Va ___Vb ___Vc >

【人教版】高中化学选修4知识点总结:第二章化学反应速率和化学平衡

【人教版】高中化学选修4知识点总结:第二章化学反应速率和化学平衡

第二章化学反应速率和化学平衡一、化学反应速率课标要求1、掌握化学反应速率的含义及其计算2、了解测定化学反应速率的实验方法要点精讲1、化学反应速率(1)化学反应速率的概念化学反应速率是用来衡量化学反应进行的快慢程度的物理量。

(2)化学反应速率的表示方法对于反应体系体积不变的化学反应,通常用单位时间内反应物或生成物的物质的量浓度的变化值表示。

某一物质A的化学反应速率的表达式为:式中——某物质A的浓度变化,常用单位为mol·L-1。

——某段时间间隔,常用单位为s,min,h。

υ——物质A的反应速率,常用单位是mol·L-1·s-1,mol·L-1·s-1等。

(3)化学反应速率的计算规律①同一反应中不同物质的化学反应速率间的关系同一时间内,用不同的物质表示的同一反应的反应速率数值之比等于化学方程式中各物质的化学计量数之比。

②化学反应速率的计算规律同一化学反应,用不同物质的浓度变化表示的化学反应速率之比等于反应方程式中相应的物质的化学计量数之比,这是有关化学反应速率的计算或换算的依据。

(4)化学反应速率的特点①反应速率不取负值,用任何一种物质的变化来表示反应速率都不取负值。

②同一化学反应选用不同物质表示反应速率时,可能有不同的速率数值,但速率之比等于化学方程式中各物质的化学计量数之比。

③化学反应速率是指时间内的“平均”反应速率。

小贴士:①化学反应速率通常指的是某物质在某一段时间内化学反应的平均速率,而不是在某一时刻的瞬时速率。

②由于在反应中纯固体和纯液体的浓度是恒定不变的,因此对于有纯液体或纯固体参加的反应一般不用纯液体或纯固体来表示化学反应速率。

其化学反应速率与其表面积大小有关,而与其物质的量的多少无关。

通常是通过增大该物质的表面积(如粉碎成细小颗粒、充分搅拌、振荡等)来加快反应速率。

③对于同一化学反应,在相同的反应时间内,用不同的物质来表示其反应速率,其数值可能不同,但这些不同的数值表示的都是同一个反应的速率。

化学反应速率

化学反应速率

4.非基元反应: 反应物分子需经几步反应才能转化为生成物的反 非基元反应: 应。 例如: 例如:H2+I2 (1) I2
→ →
2HI 2I 2HI
分二步进行 (快反应) (快反应) 快反应 (慢反应) (慢反应) 慢反应
(2)2I+H2

速率方程V= 速率方程V= k [ I ] 2 [ H 2 ] 对于非基元反应,其反应的速率方程只有通过实验来确定。 对于非基元反应,其反应的速率方程只有通过实验来确定。
在T1、T2时, ①
Ea lg k1 = − + lg A 2.303RT1
Ea lg k 2 = − + lg A 2.303RT2
lg k 2 − lg k1 = Ea 1 1 ( − ) 2.303R T1 T2
② ②-①得:

k2 T 2 − T1 Ea lg ( ) = k 1 2 .303 R T1T2
例如: 例如:2N2O5=4NO2+O2
[ N 2 O 5 ]1 − [ N 2 O 5 ] 2 ∆ [ N 2O 5 ] V ( N 2O 5 ) = = t 2 − t1 ∆t
V ( NO2 ) =
V (O2 ) =
∆[ NO2 ] ∆t
∆[O2 ] ∆t
从表7 数据可知,不同时间间隔里, 从表7-1数据可知,不同时间间隔里,反应的
速率常数k 6. 速率常数k的单位与反应级数的关系 反应级数 1 2 N 0 速率方程 V= k(A) V= k(A)2 V= k(A)N V= k
k的单位
s- 1 dm3 mol-1 s (dm3 mol-1)N-1 s-2 mol dm-3 s-1
因此, 的单位,可判断出反应的级数. 因此,由k的单位,可判断出反应的级数.

化学反应的速率和限度

化学反应的速率和限度

N2 + 3 H2 开始阶段有什么特征?
2NH3
高温 催化剂
(1)开始时c(N2) 、c(H2)大, c(NH3) =0
N2 + H2
NH3
只有正反应,v(逆)=0
瞬间过后有什么特征?
(2)瞬间后c(N2) 、c(H2 )变小 , c(NH3)≠0
N2 (逆) ≠0,v(正)> v(逆)
外因因素: 实验2-6
加入MnO2
现象 气泡冒出速率增大
加入FeCl3
气泡冒出速率增大
不加其他试剂
有气泡冒出,较慢
结论
MnO2能加快 反应速率
FeCl3能加快 反应速率
无催化剂 反应较慢
(2)催化剂对化学反应速率的影响
规律:催化剂能改变化学反应的速率。 有的催化剂能加快化学反应的速率,叫正催化剂;有的催化剂能减慢化学反应速率,叫负催化剂。在实
(4)固体反应物的表面积对化学反应速率的影响 规律:当其它条件不变时,增大固体反应物的表面积,化学 反应速率增大。减小固体反应物的表面积, 化学反应速率减慢。
(5)压强对化学反应速率的影响
对于有气体参加的反应来说,增大压强,就是增加单位体积里反应物的浓度,即增大反应物的压强, 可以增大化学反应速率。
例3:在2L的密闭容器中充入2mol的氮气和8mol氢气, 器内生成的氨气 的浓度为1mol/L
一定条件下发生反应。5min后,测得容
问题1:分别用H2 、N2、 NH3 的浓度变化表示的反应速率
问题2:以上三种的数值是否相等?是否矛盾? 数值大小何有关系?
各物质反应速率比 == 计量系数比
例4、已知反应A + 3B = 2C + D (1)在某段时间内以A的浓度变化表示的化学反应速率 为1mol/(L·min),则此段时间内以C的

化学反应的速率和速率常数

化学反应的速率和速率常数

化学反应的速率和速率常数一、化学反应速率1.定义:化学反应速率是指在单位时间内反应物浓度的减少或生成物浓度的增加。

2.表示方法:通常用反应物浓度的减少量或生成物浓度的增加量除以时间来表示,单位为mol·L-1·s-1或mol·L-1·min-1。

3.影响因素:a)反应物浓度:反应物浓度越大,反应速率越快。

b)温度:温度越高,反应速率越快。

c)催化剂:催化剂能降低反应的活化能,从而加快反应速率。

d)固体表面积:固体表面积越大,反应速率越快。

e)压力:对于有气体参与的反应,压力越大,反应速率越快。

二、速率常数1.定义:速率常数是衡量反应速率快慢的常数,用k表示。

2.表达式:速率常数k等于反应物浓度的幂次方乘积与生成物浓度的幂次方乘积的比值的指数部分。

3.影响因素:a)温度:速率常数随温度的升高而增大。

b)反应物浓度:速率常数与反应物浓度的幂次方有关,具体关系取决于反应级数。

c)催化剂:催化剂能改变速率常数,但不改变反应的平衡位置。

三、反应速率与速率常数的关系1.零级反应:反应速率与反应物浓度无关,速率常数k为常数。

2.一级反应:反应速率与反应物浓度成正比,速率常数k与反应物的浓度有关。

3.二级反应:反应速率与反应物浓度的平方成正比,速率常数k与反应物的浓度的平方有关。

4.更高级反应:反应速率与反应物浓度的幂次方成正比,速率常数k与反应物的浓度的幂次方有关。

四、速率常数的计算1.阿伦尼乌斯方程:k = A * e^(-Ea/RT),其中A为前因子,Ea为活化能,R为气体常数,T为温度。

2.幂次方定律:对于一级反应,k = k0 * exp(-α * t),其中k0为初始速率常数,α为反应速率常数的比例常数,t为时间。

化学反应的速率和速率常数是描述化学反应快慢的重要参数。

了解反应速率和速率常数的影响因素,能够帮助我们更好地控制和优化化学反应过程。

掌握不同级数反应的速率方程和速率常数的计算方法,对于研究和应用化学反应具有重要意义。

化学中的化学反应速率(化学知识点)

化学中的化学反应速率(化学知识点)

化学中的化学反应速率(化学知识点)化学反应速率是指单位时间内反应物消失或产物生成的速率。

反应速率的快慢对于化学反应的研究和应用具有重要的意义。

本文将介绍化学反应速率的定义、影响因素以及如何测定反应速率。

一、化学反应速率的定义化学反应速率是指在一定条件下,反应物消失或产物生成的速率。

一般情况下,反应速率可以通过反应物消失的速率来描述,以此来衡量反应进行的快慢。

化学反应速率可以用如下公式来表示:速率= ΔC/Δt其中,ΔC表示反应物浓度的变化量,Δt表示时间的变化量。

速率的单位可以是摩尔/升·秒(mol/L·s)、分子/升·秒(molecules/L·s)等。

二、影响化学反应速率的因素化学反应速率受到多种因素的影响,主要包括以下几个方面。

1.反应物浓度:当反应物浓度增加时,反应物之间的碰撞频率增加,从而增加了反应的可能性,使得反应速率加快。

2.温度:提高温度会增加反应物的动能,使反应物之间的碰撞更加频繁且具有更高的能量。

因此,温度升高会加快反应速率。

3.催化剂:催化剂可以降低反应的活化能,使反应物更容易发生反应。

催化剂的存在可以提高反应速率,而不参与反应本身。

4.表面积:反应物的表面积越大,反应物颗粒之间的碰撞频率就越高,反应速率也会增加。

5.反应物的物理状态:气相反应相较于固相反应和液相反应具有更高的反应速率,因为气态分子之间的自由运动能带来更频繁的碰撞。

三、测定反应速率的方法测定反应速率是研究反应动力学的重要手段,常用的方法有以下几种。

1.逐点法:在反应过程中,定时取样,通过测定不同时间点上反应物消失或产物生成的量来计算反应速率。

2.连续监测法:利用分光光度计、电导计等仪器对反应过程进行实时监测,获得反应物浓度的变化曲线,从而计算反应速率。

3.消失溶液平行测定法:将相同溶液分装到多个容器中,分别对不同容器中的反应液进行逐点法测定并计算平均速率,以提高测定结果的准确性。

第四章化学反应速率

第四章化学反应速率

(二) Arrhenius方程的应用: *测定反应的活化能 lgk = -Ea/2.303RT + lgA 1.作图法:测定不同温度下的反应速率常 数,以lgk对1/T作图,得到一条直线,直线斜率 = -Ea/2.303R 故Ea=-2.303R×(斜率)
2.计算法求Ea 因为 lgk1 = -Ea/2.303RT1 + lgA (1) lgk2 =-Ea/2.303RT2 + lgA (2) 故(2) – (1)得: lg(k2 / k1) = Ea(T2-T1) /2.303RT2T1 *求速率常数或温度 1.若已知Ea、T1、T2和k1,可求得T2温度下 的速率常数k2; 2.若已知Ea、k1、k2和T1 ,可求得另一温度 T2。
一、范托夫规则:温度每升高10K,化学反应速
率约增加到原来的2~4倍。
二、Arrhenius方程
活化能 速率系数 热力学温度
Hale Waihona Puke k = A e -Ea / RT
摩尔气体常数
指数前参量
Arrhenius方程的对数形式: lnk = -Ea / RT + lnA lgk = -Ea / 2.303RT + lgA
反应级数的确定: *首先写出该反应的速率方程式,反应级数待定; *然后固定其他反应物的浓度,只改变某一反应物 的浓度,以确定该反应物的反应级数。 序 号 1 2 3 4 起始浓度(mol⋅L-1) ⋅ 起始浓度 A 1.0×10-2 × 1.0×10-2 × 1.0×10-2 × 2.0×10-2 × B 0.5×10-3 × 1.0×10-3 × 1.5×10-3 × 0.5×10-3 × 反应速率v 反应速率 mol⋅L-1⋅min-1 ⋅ 2.5×10-7 × 5.0×10-7 × 7.5×10-7 × 1.0×10-6 ×
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 d 1 dn 1 dc V dt V dt dt
单位体积反应 体系中ξ 随时 间的变化率。
ν为反应式中物质的计量系数,对反应物取负值,对生成物取正值
反应速率又分为平均速率和瞬时速率
平均? 上页 下页
4.的变化量
cB t
4.2.1 碰撞理论
2HI(g) H2 (g) I 2 (g)
反应物浓度:10-3mol· dm-3,973K,每秒每dm-3体积内碰撞总 次数为:3.5×1028, 计 5.8 104 mol dm 3 s 1 相差甚远, 原因何在? 要点 实 51.2 108 mol dm 3 s 1
第四章
化学反应的速率
及其 表示方法
§4.1 化学反应速率的定义 §4.2 反应速率理论简介
§4.3 影响化学反应速率的因素
1
本章要求
1、了解反应速率的概念及速率的实验测定。 2、了解基元反应、复杂反应和反应分子数概 念。 3、掌握浓度、温度和催化剂对反应速率的影 响。理解速率方程(质量作用定律)和阿仑 尼乌斯方程; 4、理解碰撞理论和过渡态理论;初步理解反 应机理(反应历程)的概念; 5、了解催化反应。
速率定义?
3
§4.1 化学反应的速率的定义 及其表示方法
4.1.1 定义
化学反应速率:指在一定条件下反应物转变为生成物的速率。 表示方法:单位时间内反应物浓度的减少或生成物浓度的增加。
(对密闭容器中进行的反应)
单位:mol· dm-3· s-1(或min-1、h-1 、a-1) 定义式: 符号:

Lian 上页 下页
Question 1
反应 2W+X → Y+Z 哪种速率表达式是正确的?
a. b. c. d.
10
dc ( X ) dt dc ( X ) dt dc ( Z ) dt dc ( Z ) dt

dc ( Y ) dt dc (W ) dt

dc ( Y ) dt dc (W ) dt
[ N 2 O5 ] d[ N 2 O5 ] ( N 2 O5 ) lim ( ) t 0 t dt
c1
A
c2
B
t1
c- t 曲线
t2
c B dc B lim t 0 t dt
dc B 为导数,它的几何意义是 dt c-t 曲线上某点的斜率
例如 上页 下页
dc ( N 2 ) 1 dc ( H 2 ) 1 dc ( NH 3 ) 1 dc 1 d dt 3 dt 2 dt dt V dt
1 1 1 1 (A) (B) (G) (H) a b g h
定义式?
1 d 1 dn 1 dc V dt V dt dt
对反应
a A+b B
g G+h H
瞬时
上页 下页
1 1 1 1 (A) (B) (G) (H) a b g h
反应速率之比等于化学计量系数之比。
4.1.3 瞬时速率 (υ)
——某一时刻的反应速率,以υ表示 对于反应 2N2O5 4NO2+ O2
[ N 2O5] ( N 2 O 5 ) t 当△t →0时, (N2O5)→ υ(N2O5)

上页 下页
CCl4中N2O5的分解速率 2N2O5(CCl4) 4NO2(CCl4)+ O2(g)
END
t/s
0 100 300 700 1000 1700 2100 2800
△t / s [N2O5] mol· dm-3 0 2.10 100 1.95 200 1.70 400 1.31 300 1.08 700 0.76 400 0.56 700 0.37
例:2N2O5(CCl4)
t1= 0 s t2=100 s
4NO2(CCl4) + O2(g)
[N2O5]1 = 2.10 mol· L-1 [N2O5]2= 1.95 mol· L-1

[ N 2O5]2 [ N 2O5]1 1.95 2.10 t 100 1.5 103 (mol dm 3 s 1)
-△[N2O5] mol· dm-3 mol· dm-3· s-1 0.15 0.25 0.39 0.23 0.32 0.14 0.19 1.5×10-3 1.3×10-3 0.99×10-3 0.77×10-3 0.45×10-3 0.35×10-3 0.27×10-3
上页 下页
可见,反应速率随时间而变化。也可这样表示:
[ NO 2] ( NO 2) t
由反应式可知
[O2] t 2N2O5 4NO2+ O2 (O2)
同一时间内,△ [N2O5] ≠△[NO2] ≠ △[O2] 故
(NO2)≠ ( (N2O5)≠ O2)
1 1 ( N 2 O5 ) ( NO 2 ) (O 2 ) 2 4
2
导言
自发过程是否一定进行得很快?
1 1 H 2 ( g ) O 2 ( g ) H 2 O ( l) r G 237 . 19 kJ mol m 2
1 2NO2 (g) N2O4 (g) r G 4 . 78 kJ mol m
化学热力学——化学反应的可能性 化学动力学——化学反应的现实性 化学动力学:物理化学的分支,研究化学反应速率和反应机理 进行较快的反应:酸碱中和、爆炸、感光反应等 进行较慢的反应:金属腐蚀、石油的形成、橡胶塑料的老化
[例]合成氨反应在一恒容容器中进行。试分别以N2、 H2和NH3的浓度随时间的变化率表示反应速率;并 写出三种表示式与用ξ表示的υ之间的关系。
N2 (g) 3H2 (g) 2NH3 (g)
N2 dc ( N 2 ) dt
H 2
dc (H 2 ) dt
NH 3
dc ( NH 3 ) dt
速率理论
§4.2 反应速率理论简介
理论研究意义?
消除汽车尾气的污染, 可采用如下的反应:
CO(g) NO (g) CO 2 (g) 1 1 N 2 (g ) r G 334 kJ mol m 2
反应速率不够快,希望寻找催化剂,加快反应 对橡胶的老化,金属的腐蚀,人们又希望慢一些. 所以研究速率理论是完全必要的。
相关文档
最新文档