实验一 MATLAB基础知识及符号运算

合集下载

(完整版)MATLAB)课后实验[1]

(完整版)MATLAB)课后实验[1]

实验一 MATLAB 运算基础1. 先求以下表达式的值,尔后显示 MATLAB 工作空间的使用情况并保存全部变量。

(1)2sin 85 z1 21 e(2) 12z ln( x 1 x ) ,其中22 x2 1 2i5(3)ae e az sin( a 0.3) ln , a 3.0, 2.9, L , 2.9, 32 22t 0 t 1(4) 2z t 1 1 t 242t 2t 1 2 t 3,其中解:M 文件:z1=2*sin(85*pi/180)/(1+exp(2))x=[2 1+2*i;-.45 5];z2=1/2*log(x+sqrt(1+x^2))a=-3.0:0.1:3.0;z3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2)t=0:0.5:2.5;z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3) .*(t.^2-2*t+1)4. 完成以下操作:(1) 求[100,999] 之间能被 21 整除的数的个数。

(2) 建立一个字符串向量,删除其中的大写字母。

解:(1) 结果:m=100:999;n=find(mod(m,21)==0);length(n)ans =43(2). 建立一个字符串向量比方:ch='ABC123d4e56Fg9'; 那么要求结果是:ch='ABC123d4e56Fg9';k=find(ch>='A'&ch<='Z');ch(k)=[]ch =123d4e56g9实验二 MATLAB矩阵解析与办理1. 设有分块矩阵 A E R3 3 3 2O S2 3 2 2,其中 E、R、O、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试经过数值计算考据 2A E R RS2O S。

高等数学:MATLAB实验

高等数学:MATLAB实验
以上两种格式中的x、y都可以是表达式.plot是绘制二维 曲线的基本函数,但在使用 此函数之前,需先定义曲线上每一 点的x及y的坐标.
MATLAB实验
2.fplot绘图命令 fplot绘图命令专门用于绘制一元函数曲线,格式为:
fplot('fun',[a,b]) 用于绘制区间[a,b]上的函数y=fun的图像.
MATLAB实验 【实验内容】
MATLAB实验
由此可知,函数在点x=3处的二阶导数为6,所以f(3)=3为 极小值;函数在点x= 1处的二阶导数为-6,所以f(1)=7为极大值.
MATLAB实验
例12-10 假设某种商品的需求量q 是单价p(单位:元)的函 数q=12000-80p,商 品的总成本C 是需求量q 的函数 C=25000+50q.每单位商品需要纳税2元,试求使销售 利润达 到最大的商品单价和最大利润额.
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验 实验九 用 MATLAB求解二重积分
【实验目的】 熟悉LAB中的int命令,会用int命令求解简单的二重积分.
MATLAB实验
【实验M步A骤T】 由于二重积分可以化成二次积分来进行计算,因此只要
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
实验七 应用 MATLAB绘制三维曲线图
【实验目的】 (1)熟悉 MATLAB软件的绘图功能; (2)熟悉常见空间曲线的作图方法.
【实验要求】 (1)掌握 MATLAB中绘图命令plot3和 mesh的使用; (2)会用plot3和 mesh函数绘制出某区间的三维曲线,线型

实验一 MATLAB运算基础

实验一 MATLAB运算基础

实验一MATLAB运算基础一、实验目的1.熟悉启动和退出MATLAB的方法。

2.熟悉MATLAB命令窗口的组成。

3.掌握建立矩阵的方法。

4.掌握MATLAB各种表达式的书写规则以及常用函数的使用。

二、实验内容1.先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。

(1)z1=2sin85°1+e2(2)z2=12ln(x+1+x2),其中x=21+2i−0.455(3)z3=e0.3a−e−0.3a2sin(a+0.3)+ln0.3+a2,a=−3.0,−2.9,…,,2.9,3.0(4)z4=t2,t2-1,t2-2t+1,0≤t<11≤t<22≤t<3,其中t=0:0.5:2.5解:(1)z1=2*sin(85*pi/180)/(1+exp(1)*exp(1));(2)x=[2,1+2i;-0.45,5];z2=0.5*log(x+sqrt(1+x*x));(3)a=-3.0:0.1:3.0;z3=(exp(0.3*a)-exp(-0.3*a))/2.*sin(a+0.3)+log((0.3+a)/2); (4)t=0:0.5:2.5;z4=t.^2-(1-2.*t).*(t<3&t>=2)-(t<2&t>=1);运行结果:z1 =0.2375z2 =0.7114 - 0.0253i 0.8968 + 0.3658i0.2139 + 0.9343i 1.1541 - 0.0044iz3=Columns 1 through 270.7388 + 3.1416i 0.7696 + 3.1416i 0.7871 + 3.1416i0.7913 + 3.1416i 0.7822 + 3.1416i 0.7602 + 3.1416i0.7254 + 3.1416i 0.6784 + 3.1416i 0.6196 + 3.1416i0.5496 + 3.1416i 0.4688 + 3.1416i 0.3780 + 3.1416i0.2775 + 3.1416i 0.1680 + 3.1416i 0.0497 + 3.1416i-0.0771 + 3.1416i-0.2124 + 3.1416i -0.3566 + 3.1416i-0.5104 + 3.1416i -0.6752 + 3.1416i -0.8536 + 3.1416i-1.0497 + 3.1416i -1.2701 + 3.1416i -1.5271 + 3.1416i-1.8436 + 3.1416i -2.2727 + 3.1416i -2.9837 + 3.1416iColumns 28 through 61-37.0245 -3.0017 -2.3085 -1.8971-1.5978 -1.3575 -1.1531 -0.9723 -0.8083 -0.6567 -0.5151 -0.3819-0.2561 -0.1374 -0.02550.07920.1766 0.2663 0.3478 0.42060.4841 0.5379 0.5815 0.61450.6366 0.6474 0.6470 0.63510.6119 0.5777 0.5327 0.47740.4126 0.3388z4 =Columns 1 through 60 0.2500 0 1.2500 7.0000 10.2500 使用情况:a 1x61 488 doublet 1x6 48 doublex 2x2 64 double complexz1 1x1 8 doublez2 2x2 64 double complexz3 1x61 976 double complexz4 1x6 48 double2.已知:A=1234−4347873657,B=13−12033−27求下列表达式的值:(1)A+6*B和A−B+I(其中I为单位矩阵)(2)A*B和A.*B(3)A^3和A.^3(4)A/B及A\B(5)[A,B]和[A([1,3],:);B^2]解:A=[12,34,-4;34,7,87;3,65,7];B=[1,3,-1;2,0,3;3,-2,7];I=eye(3);(1)A+6*B;A-B+I;(2)A*B;A.*B(3)A^3;A.^3;(4)A/B;A\B(5)[A,B];[A([1,3],:);B^2];运行结果:(1)ans =18 52 -1046 7 10521 53 49ans =12 31 -332 8 840 67 1(2)ans =68 44 62309 -72 596154 -5 241ans =12 102 468 0 2619 -130 49(3)ans =37226 233824 48604247370 149188 60076678688 454142 118820ans =1728 39304 -6439304 343 65850327 274625 343(4)ans =16.4000 -13.6000 7.600035.8000 -76.2000 50.200067.0000 -134.0000 68.0000ans =-0.0313 0.3029 -0.33240.0442 -0.0323 0.10630.0317 -0.1158 0.1558(5)ans =12 34 -4 1 3 -134 7 87 2 0 33 65 7 3 -2 7ans =12 34 -43 65 74 5 111 0 1920 -5 403.设有矩阵A和BA=12367811121349145101516171819202122232425, B=301617−699423713−411(1)求它们的乘积C。

大学数学实验Matlab基础:符号计算:符号矩阵的生成+符号矩阵的运算+符号函数及相关操作

大学数学实验Matlab基础:符号计算:符号矩阵的生成+符号矩阵的运算+符号函数及相关操作
• 符号对象 • 符号函数
第 5 章 符号计算
• 符号矩阵的生成
– 用 sym 定义 – 用 syms 定义
• 符号矩阵的计算 • 符号函数及其常见的运算
– 多项式函数 – 一般函数2、符号矩阵的计算– 与数值型矩阵类似
• 四则运算和阵列运算 • 转置 • 求行列式 • 求逆 • 求特征值与特征向量 •等
式化简、求反函数、求复合函数,等。
第 5 章 符号计算
• 符号矩阵的生成
– 用 sym 定义 – 用 syms 定义
• 符号矩阵的计算 • 符号函数及其常见的运算
– 多项式函数 – 一般函数
3、符号函数及其常见的运算
– 多项式函数
• 生成 • 相关运算:四则运算、合并同类项、展开、因式分
解,等。
– 一般函数
• 定义 • 相关运算:找出符号变量、找出分子和分母、表达
大学数学实验 ( Matlab 版 )
第 5 章 符号计算
• 符号矩阵的生成
– 用 sym 定义 – 用 syms 定义
• 符号矩阵的计算 • 符号函数及其常见的运算
– 多项式函数 – 一般函数
1、符号矩阵的生成
– 用 sym
• 定义符号对象(标量) • 将数值矩阵转换为符号矩阵
– 用 syms 定义

matlab实验内容

matlab实验内容

2017年-matlab实验内容2017年文化素质课 MATLAB实验实验一、MATLAB基本操与运算基础【实验目的】(1)熟悉MATLAB基本环境,掌握MATLAB变量的使用(2)掌握MATLAB数组的创建(3)掌握MATLAB数组和矩阵的运算【实验内容及步骤】熟悉建立数组的方法:逐个元素输入法、冒号法、特殊方法(使用函数linspace建立)1、有关向量、矩阵或数组的一些运算(1)设A=15;B=20;求C=A+B与c=a+b?(2)设A=[1 2 3;4 5 6;7 8 9],B=[9 8 7;6 5 4;3 2 1];求A*B与A.*B?(3)设a=10,b=20;求i=a/b=?与j=a\b= ?(4)设a=[1 -2 3;4 5 -4;5 -6 7](5)在MATLAB命令行窗口运行A=[1,2;3,4]+i*[5,6;7,8];看结果如何?如果改成运行A=[1,2;3,4]+i[5,6;7,8],结果又如何?(6)请写出完成下列计算的指令:a=[1 2 3;3 4 2;5 2 3],求a^2=?,a.^2=?(7)有一段指令如下,请思考并说明运行结果及其原因clearX=[1 2;8 9;3 6];X( : ) %转化为列向量(8)写出下列指令的运行结果>> A = [ 1 2 3 ]; B = [ 4 5 6 ];>> C = 3.^A>> D = A.^B2、设有矩阵A和B,A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 17 18 19 20;21 2223 24 25],B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 13 11]1)求它们的乘积C2)将矩阵C的右下角3x2子矩阵赋给D3、完成下列操作1)求[100,999]之间能被61整除的数及其个数(提示:先利用冒号表达式,再利用find和length 函数。

MATLAB实验报告

MATLAB实验报告

MATLAB实验报告姓名:专业:学号:实验一MATLAB环境的熟悉与基本运算一、实验目的:1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算二、实验基本知识:1.熟悉MATLAB环境:MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器文件和搜索路径浏览器。

2.掌握MATLAB常用命令3.MATLAB变量与运算符变量命名规则如下:(1)变量名可以由英语字母、数字和下划线组成(2)变量名应以英文字母开头(3)长度不大于31个(4)区分大小写MATLAB中设置了一些特殊的变量与常量,列于下表。

MATLAB运算符,通过下面几个表来说明MATLAB的各种常用运算符表2MATLAB算术运算符表3MATLAB关系运算符表4MATLAB逻辑运算符表5MATLAB特殊运算4.MATLAB的一维、二维数组的寻访表6子数组访问与赋值常用的相关指令格式5.MATLAB的基本运算表7两种运算指令形式和实质内涵的异同表6.MATLAB的常用函数表8标准数组生成函数表9数组操作函数三、实验内容1、学习安装MATLAB软件。

2、学习使用help命令,例如在命令窗口输入helpeye,然后根据帮助说明,学习使用指令eye(其它不会用的指令,依照此方法类推)3、学习使用clc、clear,观察commandwindow、commandhistory和workspace等窗口的变化结果。

4、初步程序的编写练习,新建M-file,保存(自己设定文件名,例如exerc1、exerc2、exerc3……),学习使用MATLAB的基本运算符、数组寻访指令、标准数组生成函数和数组操作函数。

注意:每一次M-file的修改后,都要存盘。

四、实验结果练习A:(1)helprand,然后随机生成一个2×6的数组,观察commandwindow、commandhistory和workspace等窗口的变化结果。

实验一 常用基本信号的MATLAB表示和运算

实验一 常用基本信号的MATLAB表示和运算

一.实验目的1.学会用MATLAB 表示常用连续信号的方法;2.学会用MATLAB 进行信号基本运算的方法; 二.实验原理与步骤 原理:1.信号的MATLAB 表示 (1)向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。

向量f 为连续信号f(t)在向量t 所定义的时间点上的样值。

例如:对于连续信号sin()()()t f t Sa t t==,同时用绘图命令plot()函数绘制其波形。

其程序如下: t2=-10:0.1:10; %定义时间t 的取值范围:-10~10,取样间隔为0.1,%则t2是一个维数为201的行向量 f2=sin(t2)./t2; %定义信号表达式,求出对应采样点上的样值 %同时生成与向量t2维数相同的行向量f2 figure(2); %打开图形窗口2Plot(t2,f2); %以t2为横坐标,f2为纵坐标绘制f2的波形 运行结果如下:(2)符号运算表示法如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。

例如:对于连续信号sin()()()t f t Sa t t==,我们也可以用符号表达式来表示它,同时用ezplot()命令绘出其波形。

其MATLAB 程序如下: Syms t; %符号变量说明f=sin (t )/t; %定义函数表达式ezplot (f,[-10,10]); %绘制波形,并且设置坐标轴显示范围 运行结果如下:(3)常见信号的MATLAB 表示 单位阶跃信号:方法一:调用Heaviside(t)函数首先定义函数Heaviside(t)的m函数文件,该文件名应与函数名同名即Heaviside.m。

%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为yfunction y=Heaviside(t)y=(t>0);%定义函数体,即函数所执行指令%此处定义t>0时y=1,t<=0时y=0,注意与实际的阶跃信号定义的区别。

Matlab实验指导书(含答案)

Matlab实验指导书(含答案)

实验一:Matlab操作环境熟悉一、实验目的1.初步了解Matlab操作环境。

2.学习使用图形函数计算器命令funtool及其环境。

二、实验内容熟悉Matlab操作环境,认识命令窗口、内存工作区窗口、历史命令窗口;学会使用format命令调整命令窗口的数据显示格式;学会使用变量和矩阵的输入,并进行简单的计算;学会使用who和whos命令查看内存变量信息;学会使用图形函数计算器funtool,并进行下列计算:1.单函数运算操作。

求下列函数的符号导数(1) y=sin(x);(2) y=(1+x)^3*(2-x);求下列函数的符号积分(1) y=cos(x);(2) y=1/(1+x^2);(3) y=1/sqrt(1-x^2);(4) y=(x-1)/(x+1)/(x+2);求反函数(1) y=(x-1)/(2*x+3);(2) y=exp(x);(3) y=log(x+sqrt(1+x^2));代数式的化简(1) (x+1)*(x-1)*(x-2)/(x-3)/(x-4);(2) sin(x)^2+cos(x)^2;(3) x+sin(x)+2*x-3*cos(x)+4*x*sin(x);2.函数与参数的运算操作。

从y=x^2通过参数的选择去观察下列函数的图形变化(1) y1=(x+1)^2(2) y2=(x+2)^2(3) y3=2*x^2(4) y4=x^2+2(5) y5=x^4(6) y6=x^2/23.两个函数之间的操作求和(1) sin(x)+cos(x)(2) 1+x+x^2+x^3+x^4+x^5乘积(1) exp(-x)*sin(x)(2) sin(x)*x商(1) sin(x)/cos(x);(2) x/(1+x^2);(3) 1/(x-1)/(x-2);求复合函数(1) y=exp(u) u=sin(x)(2) y=sqrt(u) u=1+exp(x^2)(3) y=sin(u) u=asin(x)(4) y=sinh(u) u=-x三、设计提示1.初次接触Matlab应该注意函数表达式的文本式描述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 MATLAB基础知识及符号运算
08电子(3班 E08610308 陈建能
一、实验目的
1.熟悉Matlab软件环境;
2.熟悉Matlab软件的基本操作命令;
3.掌握Matlab符号运算方法。

二、实验内容
1.熟悉MATLAB软件环境及Matlab软件的基本操作命令;
2.产生并画出以下信号:冲激信号,阶跃信号,正弦波(sin,周期三角波(sawtooth,周期方波(square;
3在区间,画出曲线,并计算。

三、上机程序及运行结果
[程序代码(要有注释)]
clear
t1 = -10 : 0.01 : 10 ; %产生参变量在-10到10间的一组采样点
t2 = 0 : pi / 10: 2 * pi; %产生参变量在0到2*pi间的一组采样点
f1 = (t1 == 0; %产生冲激信号
f2 = (t1 >= 0 ; %产生阶跃信号
f3 = sin(t2; %产生正弦波
f4 = sawtooth(t1, 0.5; %周期三角波
f5 = square(t1, 50; %产生周期方波
subplot(2, 3, 1, plot(t1, f1, grid on %画出冲激信号波形
subplot(2, 3, 2, plot(t1, f2, grid on %画出阶跃信号波形
subplot(2, 3, 3, plot(t2, f3, grid on %画出正弦波波形subplot(2, 3, 4, plot(t1, f4, grid on %画出周期三角波波形subplot(2, 3, 5, plot(t1, f5, grid on %画出周期方波波形clear
syms x t y %产生字符变量
y = sin(t / t; % 定义符号函数
f = subs(int(y, t, 0, x, x, t; %获得积分函数
ezplot(f, [0, 2 * pi] %画出图形
Isym = vpa(int(y, t, 0, 4.5 %计算0到4.5的积分
运行结果:
Isym =
1.6541404143792439835039224868515
[图像]
四、实验总结及心得
本次实验,内容相对比较少,也比较的简单,所以很快就完成了,对于符号积分又有了进一步的了解,对于matlab的画图也有了一次温习,matlab的函数功能十分强大,直接调用就可以完成自己所想要完成的功能,如果用C语言实现的话,就复杂的多了。

对于以上的实验,只要对函数的功能和画图懂的话,就很快能完成了!。

相关文档
最新文档