检测技术与过程控制
机械加工过程中的质量控制与检测技术

机械加工过程中的质量控制与检测技术随着科技的不断进步,机械工程在制造领域发挥着重要的作用。
机械加工是制造过程中不可或缺的环节,而质量控制与检测技术则是确保机械制造的关键。
本文将探讨机械加工过程中的质量控制与检测技术,并介绍其中一些常用的方法。
一、质量控制的重要性在机械加工过程中,质量控制是确保产品符合设计要求的关键。
一旦产品质量出现问题,不仅会影响到产品的性能和可靠性,还可能导致安全隐患和经济损失。
因此,质量控制在机械工程中具有重要意义。
二、质量控制方法1. 设计阶段的质量控制:在机械加工之前,设计阶段的质量控制非常关键。
通过合理的设计和工艺规划,可以减少制造过程中的错误和缺陷,提高产品的质量和可靠性。
2. 加工参数的控制:在机械加工过程中,控制加工参数是确保产品质量的重要手段。
例如,对于数控加工,控制切削速度、进给速度和切削深度等参数,可以保证加工精度和表面质量。
3. 检测与测量:质量控制离不开检测与测量。
通过使用各种测量工具和设备,如千分尺、游标卡尺和高度规等,可以对产品的尺寸和形状进行测量,以确保其符合设计要求。
三、常用的检测技术1. 硬度检测:硬度是材料抵抗外力的能力,对于机械加工来说非常关键。
硬度检测可以通过硬度计等设备进行,以评估材料的硬度是否符合要求。
2. 表面粗糙度检测:表面粗糙度对于机械零件的功能和耐久性有着重要影响。
通过使用表面粗糙度仪等设备,可以对零件表面的光洁度进行检测,以确保其满足设计要求。
3. 尺寸测量:尺寸测量是机械加工中最常见的检测技术之一。
通过使用精密测量工具,如三坐标测量机和光学投影仪,可以对零件的尺寸进行精确测量,以确保其符合设计要求。
四、质量控制与检测技术的挑战在机械加工领域,质量控制与检测技术面临着一些挑战。
首先,随着制造工艺的不断发展,产品的复杂性和精度要求不断提高,对质量控制和检测技术提出了更高的要求。
其次,制造过程中的变异性和误差也会对质量控制造成挑战,需要采取措施来减少其影响。
过程检测与控制技术应用项目二(1)温度检测一

某一生产过程需要一个热水炉温度控制 系统,热水炉参数:内径 Ф1000mm,内高3m,最大出水量 24立方米/分,进出水最大温差 80℃,出水温度根据用户要求在 60-90 ℃范围内可调(现不必考虑 水位控制)。用电热棒直接加热,温 度控制在60-90℃,控制 精度1%。
-200~1800 测温范围宽,测量准确,性能稳定,结构简单,信号远传方便
400~2000 700~3200 900~1700
测温上限不受限制,动态特性好, 灵敏度高,广泛用于测 量处于运动状态对象的温度,低温段测量不准,环 境条件会影响测温准确度
0~3500 200~2000
测温范围大,适于测温度分布,响应快,易受外界干扰, 标定困难
(尔文)氏温标。热力学温标是寻求一种物体的物理特性仅与温度成
单值的线性关系,且能连续反映热量的温标。热力学温标规定物质
分子停止运动时的温度为绝对零度,由于没有任何一种物体的物理
性质符合上述要求,要实现它是不可能的。热力学温标根据国际计
量协议,规定在标准大气压水的冰点为273.15K,则热力学温标的
绝对零度为摄氏温标的 -273.15℃,开氏温度与摄氏温度之间的关
2-1膨胀式温度计
2-1.1 液体膨胀式温度计 液体膨胀式温度计工作原理是基于被测介质的热量或冷量通过 温度计外层玻璃的热传导,玻璃汽包内的液体吸收热或释放热, 随着热量交换过程,液体体积具有热胀冷缩物理特 性,其体积的增大或减小量与被测介质的温度变化量成比例, 其关系式如下: Vt-Vt0=Vt0(1-2)(t- t0) 式中 Vt-Vt0——工作液体温度从t0变化到t时液体体积的变 化量;
执行器——晶闸管调功器
执行器——晶闸管调功器
工艺流程的质量控制与检测技术

工艺流程的质量控制与检测技术随着科技的不断进步和工业化的发展,对于产品质量的需求也越来越高。
而工艺流程的质量控制与检测技术则成为了保证产品质量的重要手段。
本文将探讨工艺流程的质量控制与检测技术的应用和发展,并分析其在提升产品质量和效率方面的优势。
一、工艺流程的质量控制工艺流程的质量控制是指通过各种控制手段,确保每一个环节都能符合质量标准和要求。
在传统的生产流程中,人工操作和经验判断主导着质量控制的过程,但这种方式容易受主观因素影响,从而导致质量的不稳定和波动。
而随着科技的发展,自动化和智能化的生产设备逐渐应用于工艺流程的质量控制中。
自动化技术的应用能够提高生产效率和质量稳定性。
自动化设备可以准确执行操作,消除人为差错的可能性。
同时,自动化设备还可以通过传感器和控制系统实时监测和调节生产过程中的各项参数,确保每个环节都处于最佳状态。
这种方式不仅提高了产品的一致性和稳定性,还减少了资源的浪费,提高了生产效率。
例如,在制造业中,自动化机械臂可以精确的完成组装任务,避免了人工操作带来的误差和不稳定性。
智能化技术的应用则进一步提升了工艺流程的质量控制水平。
智能化设备可以通过学习和分析数据,自主调整工艺参数来达到最佳的质量控制效果。
与传统的固定设定参数相比,智能化设备可以根据实际生产情况进行实时调整,提高产品质量的一致性。
例如,在电子制造过程中,使用智能化的贴片机器人可以根据零件的特性自动调节工艺参数,实现精确的贴片,避免零件焊接不牢固或者位置偏移的情况发生。
二、工艺流程的质量检测技术工艺流程的质量检测技术是指通过各种手段和方法,对生产过程中的产品进行检测和评估。
质量检测技术可以帮助发现和解决质量问题,确保产品符合质量标准和要求。
传统的质量检测方法主要依赖于人工视觉和手工操作,但这种方式存在着主观性强、效率低、一致性差等问题。
而随着图像处理和机器学习等技术的发展,基于视觉的自动化检测技术逐渐应用于工艺流程的质量检测中。
过程控制与试验检测

过程控制与试验检测
工业制造过程控制和试验检测是工业制造业中重要的一环,贯彻这一
控制和检测能确保制造产品的可靠性、安全性、可重复性和精确性。
工业制造过程控制主要包括设计、机械、电气、控制和检测几个方面,其中设计决定产品的外观,机械决定产品的装配与加工,电气控制产品的
运行,控制确保产品性能符合标准,而检测则可以完成对每一个产品的定
性和定量检验。
首先,在设计阶段,最重要的是做出正确的设计,以确保技术性能的
满足。
通过加工和装配完成产品的机械结构,控制加工参数,使产品能够
正确、稳定的运行。
再者,用电气的方式控制机械的起动和停止,并通过
智能控制,使各机械参数保持在稳定的状态,使产品的技术性能仍然满足
设计要求。
其次,检测过程的目的是确保产品符合技术要求。
对每一件产品进行
定性和定量检验,决定其是否符合要求,并采取相应的措施进行相应的处理。
采用X-Ray、热成像仪、汽车诊断仪等检测设备,进行产品结构质量
检测,可检测不良产品,更可检测到潜在的缺陷,从而有效地提高产品的
质量。
最后,进行试验,以评估产品的可靠性和安全性。
检测与过程控制基础

03
过程控制基础
过程控制系统的组成与分类
总结词
过程控制系统由传感器、控制器和执行器等组成,根 据控制策略和系统结构的不同,可以分为开环控制系 统和闭环控制系统。
详细描述
过程控制系统通常由传感器、控制器和执行器等组成。 传感器用于检测被控变量的当前值,并将检测到的信号 传输到控制器。控制器根据设定值与实际值的偏差,按 照一定的控制规律计算出控制量,再传输给执行器执行 。根据控制策略和系统结构的不同,过程控制系统可以 分为开环控制系统和闭环控制系统。开环控制系统是指 系统中没有反馈环节的控制系统,而闭环控制系统则是 指系统中具有反馈环节的控制系统。
详细描述
压力传感器用于检测压力,如压 阻式传感器和压差传感器。控制 压力的方法包括调节阀、安全阀 和减压阀等。
流量检测与控制
要点一
总结词
流量是工业过程中重要的动态参数,对生产效率和能源消 耗有直接影响。
要点二
详细描述
流量检测通常通过差压传感器、涡轮流量计和超声波流量 计等实现。流量控制的方法包括调节阀和节流阀等。
范围内,提高生产效率和产品质量。
案例二
总结词
安全生产、稳定运行、预防事故
详细描述
在石油化工生产中,压力是一个关键的安全因素。压力 检测与控制系统可以对压力进行实时监测和自动控制, 确保压力在安全范围内,预防因超压或压力不足导致的 事故,保障生产安全和稳定运行。
案例三:流量检测与控制在水利工程中的应用
光学检测原理
总结词
基于光与物质相互作用的原理,通过测量光的吸收、反射、散射等特性来分析物 质的性质和浓度。
详细描述
光学检测技术利用了光与物质之间的相互作用,如光的吸收、反射、散射等特性 ,通过测量光的强度、波长、相位等参数,可以推算出物质的浓度、组成和光学 特性等信息。
机械加工过程中的质量控制与检测技术

机械加工过程中的质量控制与检测技术在现代制造业中,机械加工是一个至关重要的环节,其质量直接影响到最终产品的性能、可靠性和使用寿命。
为了确保机械加工产品的质量符合设计要求和客户期望,质量控制与检测技术的应用不可或缺。
机械加工过程中的质量控制是一个系统性的工作,涵盖了从原材料采购到成品交付的整个生产流程。
在原材料阶段,就需要严格筛选,确保其性能和质量符合加工要求。
例如,钢材的硬度、韧性等指标必须经过精确检测,以避免在后续加工中出现裂纹、变形等问题。
加工设备的精度和稳定性对产品质量有着决定性的影响。
定期对机床进行维护保养,校准精度,能够有效地减少加工误差。
同时,操作人员的技能水平和工作态度也不容忽视。
熟练的操作人员能够根据加工材料的特性和工艺要求,合理调整加工参数,从而提高加工质量。
在工艺规划方面,科学合理的工艺路线和工艺参数是保证质量的关键。
通过对加工过程进行详细的分析和优化,能够降低废品率,提高生产效率。
例如,在切削加工中,选择合适的刀具、切削速度和进给量,可以减少刀具磨损,提高零件的表面质量和尺寸精度。
质量控制还包括对加工环境的管理。
温度、湿度、粉尘等环境因素都可能对加工精度产生影响。
因此,保持良好的加工环境,对于提高产品质量具有重要意义。
检测技术则是质量控制的重要手段。
常见的检测方法包括尺寸测量、形位公差检测、表面粗糙度检测等。
尺寸测量是最基本的检测项目之一。
常用的测量工具如卡尺、千分尺、量规等,能够精确测量零件的长度、直径、厚度等尺寸参数。
对于高精度的尺寸测量,还可以采用三坐标测量机等先进设备,它能够实现对复杂零件的三维测量,获取更加全面和精确的尺寸信息。
形位公差检测用于评估零件的形状和位置精度。
例如,圆度、圆柱度、平行度、垂直度等。
这些公差的检测通常需要使用专门的量具和仪器,如圆度仪、垂直度检测仪等。
表面粗糙度检测对于零件的耐磨性、密封性等性能有着重要影响。
常用的检测方法有比较法、触针法和光切法等。
桩基施工过程中的检测方法与质量控制技巧总结

桩基施工过程中的检测方法与质量控制技巧总结桩基施工是建设工程中非常重要的一环,直接关系到工程质量和安全。
在桩基施工过程中,采用科学的检测方法和合理的质量控制技巧是确保工程质量的关键。
为此,本文将总结桩基施工过程中的检测方法与质量控制技巧,旨在帮助从业人员更好地进行桩基施工。
第一部分:桩基施工中的检测方法在桩基施工过程中,使用各种检测方法对桩基的质量进行评估是不可或缺的。
除了常规的质量检测,我们还可以借助一些现代化的技术手段,如无损检测技术、声波探测技术等。
这些新技术的应用可以更加直观地反映桩基的质量状况。
第二部分:无损检测技术在桩基施工中的应用无损检测技术是一种非常有效的评估桩基质量的方法。
通过采用电子和电磁波等技术,可以精确测量桩身的情况,包括桩的长度、埋深、直径等。
同时,无损检测技术还可以检测桩基的质量,并通过数据分析提供详细的评估报告。
第三部分:声波探测技术在桩基施工中的应用声波探测技术是一种通过测量声音的传播和反射情况来评估桩基质量的方法。
通过将声波引入桩基,可以获取桩身的反射特性,从而判断桩基的质量状况。
这种技术的优点是非破坏性,可以在桩基施工过程中进行实时监测。
第四部分:静载试验在桩基施工中的应用静载试验是一种常用的桩基质量评估方法。
通过施加垂直静载到桩基上,可以测量桩身的变形和承载力。
这种试验能够检测桩基的强度和稳定性,提供可靠的数据支持。
第五部分:桩身质量控制技巧在桩基施工过程中,控制桩身的质量是至关重要的。
通过使用合适的钻具和施工方法,可以确保桩身的完整性和稳定性。
此外,还需要适时进行质量检测和监控,发现问题及时处理。
第六部分:桩底质量控制技巧桩底是桩基中最重要的部分,直接承载地基的重量。
为了确保桩底的质量,应注意施工工艺,确保桩底沉入正确的位置。
同时,桩底土质的检测与分析也是十分重要的,可以选择适合的桩基类型和施工方法。
第七部分:桩基的质量控制与桩身的承载力关系桩基的质量直接影响着桩身的承载力。
过程检测与控制技术应用项目一(1)仪表基本知识精选全文

②仪表误差 仪表的准确度用仪表的最大引用误差max(即仪表的最大允许误差允) 来表示,即 max=△max/量程×100% △max为仪表在测量范围内的最大绝对误差;量程一仪表测量上限一 仪表测量下限。 仪表误差是对仪表在其测量范围内测量好坏的整体评价
解: 根据工艺要求,仪表精度应满足为 max=△max/量程×100%=±7/(1000-0)×100% =×100%=±0.7% 此精度介于0.5级和1.0级之间,若选择精度等级为1.0级的 仪表,其允许最大绝对误差为±10℃,这就超过了工艺要求 的允许误差,故应选择0.5级的精度才能满足工艺要求。
过程控制对检测仪表有以下三条基本的要求。 ①测量值y(t)要正确反映被控变量x(t)的值,误
差不超过规定的范围; ②在环境条件下能长期工作,保证测量值y(t)的
可靠性; ③测量值y(t)必须迅速反映被控变量x(t)的变化,
即动态响应比较迅速。
测量
一个完整的检测过程应包括:
①信息的获取——用传感器完成;
模拟和数字 指示和记录 动圈,自动平衡电桥,电位差计
自力式 组装式 可编程
薄膜,活塞,长行程,其他
直通单座,直通双座,套筒(笼式)球阀,蝶阀,隔 膜阀,偏心旋转,角形,三通,阀体分离
按组合形式
单元组合 单元组合 单元组合 单元组合 实验室和流
程
基地式 单元组合
执行机构和 阀可以进行 各种组合
按能 源
max
反应时间:变化到新稳态值的63.2%所用时间,
也可称为仪表的时间常数Tm。
被测变量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计任务书课题名称检测技术与过程控制学院专业建筑设施智能技术班级学生学号月日至月日指导教师(签字)目录第一章过程控制课程设计任务书 (3)第二章蒸汽压力波动是主要干扰的设计方案 (4)一.控制方案、理论依据、控制工艺流程图 (4)二.控制系统原理方框图 (4)三.调节器正反作用的确定,系统工作过程概述 (4)四.设计中用到的仪表的结构、特点说明 (5)第三章冷水流量波动是主要干扰的设计方案 (7)一.控制方案、理论依据、控制工艺流程图 (7)二.控制系统原理方框图 (7)三.调节器正反作用的确定,系统工作过程概述 (7)四.设计中用到的仪表的结构、特点说明 (8)第四章冷水流量和蒸汽压力均波动明显的设计方案 (10)一.控制方案、理论依据、控制工艺流程图 (10)二.控制系统原理方框图 (10)三.调节器正反作用的确定,系统工作过程概述 (10)四.设计中用到的仪表的结构、特点说明 (11)第五章冷水流量、蒸汽压力以及进料压力波动均为主要干扰的设计方案 (13)一.控制方案、理论依据、控制工艺流程图 (13)二.控制系统原理方框图 (14)三.调节器正反作用的确定,系统工作过程概述 (14)四.设计中用到的仪表的结构、特点说明 (14)第六章体会与感悟 (17)参考文献 (17)附录 (18)第一章过程控制课程设计任务书题目A:干燥器温度控制系统方案设计一、工艺过程描述某干燥器的流程所示。
干燥器采用夹套加热和真空抽吸并行的方式来干燥物料。
夹套通入的是经列管式加热器加热后的热水,而加热介质采用的是饱和蒸汽。
为了提高干燥速度,应有较高的干燥温度θ,但θ过高会使物料的物性发生变化,这是不允许的,因此要求对干燥器温度进行严格控制。
二、设计要求分别针对以下情况:①蒸汽压力波动是主要干扰;②冷水流量波动是主要干扰;③冷水流量和蒸汽压力均波动明显;④冷水流量、蒸汽压力以及进料压力波动均为主要干扰;1、确定控制方案,说明理论依据,画出控制工艺流程图;2、画出控制系统原理方框图;3、确定调节器正反作用,阐述系统工作过程。
4、对设计中用到的仪表的结构、特点进行说明。
第二章蒸汽压力波动是主要干扰一.控制方案、理论依据、控制工艺流程图1.控制方案蒸汽压力波动是主要干扰时, 应采用干燥温度与蒸汽流量的串级控制系统。
这时选蒸汽流量作为副变量,一旦蒸汽压力有所波动,引起蒸汽流量变化,马上由副回路及时得到克服,以减少或者消除蒸汽压力波动对主变量θ的影响,提高控制质量。
以热水温度为为副变量,干燥器的温度为主变量串级系统。
2.理论依据将蒸汽压力波动这一主要干扰包含在副回路中, 利用副回路的快速有效克服干扰作用抑制蒸汽压力波动对干燥器出口的温度的影响.3.控制工艺流程图二.控制系统原理方框图三.调节器正反作用的确定,系统工作过程概述调节阀应该选择气开型,这样一旦气源中断,马上关闭蒸汽阀门,以防止干燥器温度过高。
由于蒸汽流量(副变量)和干燥温度(主变量)升高时,都需要关小调节阀,所以控制器TC应选“-”作用。
由于副对象特性为“+”(蒸汽流量因阀的开大而增加),阀的特性也为“+”,故副控制器FC应为“-”作用。
四.设计中用到的仪表的结构、特点说明在方案一设计中用到的仪表有:1.温度检测仪表选用:因被控温度在600℃以下,热电阻的线性特性要优于热电偶,而且无需进行冷端温度补偿,使用更加方便,故选用热电阻温度计。
采用三线制是为了消除连接导线电阻引起的测量误差,因为测量热电阻的电路一般是不平衡电桥。
热电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造成测量误差。
采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差。
所以选用三线制接法。
并配用温度变送器。
(1)双金属温度计HJ-WSS-481W(详细结构及特点见附录)特点:双金属温度计是一种测量中低温度的现场检测仪表。
可以直接测量各种生产过程中的-80℃~+500℃围液体、蒸汽和气体介质温度。
生产厂家:华江自动化仪表(2)温度变送器SBWZ-2481(详细结构及特点见附录)特点:SBW系列热电偶、热电阻温度变送器是DDZ-S系列仪表中的现场安装式温度变送器单元。
它采用二线制传送方式(两根导线作为电源输入,信号输出的公用传输线)。
将热电偶、热电阻信号变换成与输入信号或与温度信号成线性的4~20mA的输出信号。
生产厂家:自动化仪表六厂2.温度控制器选用:根据前面的分析可知在此方案中,温度控制器为“-”作用根据过程特性与工艺要求,宜选用将比例与积分组合起来,既能控制及时,又能消除余差的PI控制规律。
所以选用TY-S9696温度控制器3.流量检测仪表FT选用:由于要检测的为热水的流量,所以选用含有压力变送模块的检测仪表为TLLG-K25H1W生产厂家:特雷默克仪表4.流量控制仪表FC选用:流量控制仪表采用同温度调节器的PID控制器:TY-S9696温度控制器5.蒸汽调节阀:由于执行器的控制对象为蒸汽,所以在选用执行器时要考虑其耐热性能和耐腐蚀性能。
结合前面对阀门控制作用的分析,可以选用:ZJHP-ZHK34型气动单座调节阀第三章冷水流量波动是主要干扰一.控制方案、理论依据、控制工艺流程图如果冷水流量波动是主要干扰,应采用干燥温度与冷水流量的串级控制系统。
此时选择冷水流量为副变量,及时克服冷水流量波动对干燥温度的影响。
二.控制系统原理方框图三.调节器正反作用的确定,系统工作过程概述调节阀应选择气关型,这样一旦气源关断,调节阀打开,冷水流量加大,以防止干燥器温度过高。
由于冷水流量(副变量)增加时,需关小调节阀;而干燥温度(主变量)升高时,需开大调节阀。
主副变量增加时,调节阀的动作方向不一致,所以控制器TC应选择“+”作用,由于副对象特性为“+”(冷水流量因阀的开大而增加),阀的特性为“-”,故副控制器FC应为“+”作用。
四.设计中用到的仪表的结构、特点说明在方案二设计中用到的仪表有:1.温度检测仪表选用:因被控温度在600℃以下,热电阻的线性特性要优于热电偶,而且无需进行冷端温度补偿,使用更加方便,故选用热电阻温度计。
采用三线制是为了消除连接导线电阻引起的测量误差,因为测量热电阻的电路一般是不平衡电桥。
热电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造成测量误差。
采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差。
所以选用三线制接法。
并配用温度变送器。
(1)双金属温度计HJ-WSS-481W(详细结构及特点见附录)特点:双金属温度计是一种测量中低温度的现场检测仪表。
可以直接测量各种生产过程中的-80℃~+500℃围液体、蒸汽和气体介质温度。
生产厂家:华江自动化仪表(2)温度变送器SBWZ-2481(详细结构及特点见附录)特点:SBW系列热电偶、热电阻温度变送器是DDZ-S系列仪表中的现场安装式温度变送器单元。
它采用二线制传送方式(两根导线作为电源输入,信号输出的公用传输线)。
将热电偶、热电阻信号变换成与输入信号或与温度信号成线性的4~20mA的输出信号。
生产厂家:自动化仪表六厂2.温度控制器选用:根据前面的分析可知在此方案中,温度控制器为“+”作用根据过程特性与工艺要求,宜选用将比例与积分组合起来,既能控制及时,又能消除余差的PI控制规律。
所以选用TY-S8696温度控制器3.流量检测仪表FT选用:由于要检测的为热水的流量,所以选用含有压力变送模块的检测仪表为TLLG-K25H1W生产厂家:特雷默克仪表4.流量控制仪表FC选用:流量控制仪表采用同温度调节器的PID控制器:TY-S8696温度控制器5.蒸汽调节阀:由于执行器的控制对象为蒸汽,所以在选用执行器时要考虑其耐热性能和耐腐蚀性能。
结合前面对阀门控制作用的分析,可以选用:ZJHP-ZHB34型气动单座调节阀第四章冷水流量和蒸汽压力均波动明显一.控制方案、理论依据、控制工艺流程图如果冷水流量和蒸汽压力都经常波动,由于它们都会影响加热器的热水出口温度,这时可以选择干燥温度和热水温度的串级控制系统,以干燥温度为主变量,热水温度为副变量。
在此系统中,蒸汽流量和冷水流量都可以作为操纵变量,考虑到蒸汽流量的变化对热水温度的影响较大,故选择蒸汽流量为操纵变量。
构成的流程图如图所示。
二.控制系统原理方框图三.调节器正反作用的确定,系统工作过程概述为了防止干燥温度过高,应选择气开阀门。
由于热水温度(副变量)和干燥温度(主变量)升高时,都需要关小调节阀,所以控制器C应选择“反”作用。
由于副对象特性为“+”(热水温度因蒸汽流量的增大而增大),阀的特性也为“+”,所以副控制器应为“反”作用;四.设计中用到的仪表的结构、特点说明在方案三设计中用到的仪表有:1.温度检测仪表、选用:因被控温度在600℃以下,热电阻的线性特性要优于热电偶,而且无需进行冷端温度补偿,使用更加方便,故选用热电阻温度计。
采用三线制是为了消除连接导线电阻引起的测量误差,因为测量热电阻的电路一般是不平衡电桥。
热电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造成测量误差。
采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差。
所以选用三线制接法。
并配用温度变送器。
(1)双金属温度计HJ-WSS-481W(详细结构及特点见附录)特点:双金属温度计是一种测量中低温度的现场检测仪表。
可以直接测量各种生产过程中的-80℃~+500℃围液体、蒸汽和气体介质温度。
生产厂家:华江自动化仪表(2)温度变送器SBWZ-2481(详细结构及特点见附录)特点:SBW系列热电偶、热电阻温度变送器是DDZ-S系列仪表中的现场安装式温度变送器单元。
它采用二线制传送方式(两根导线作为电源输入,信号输出的公用传输线)。
将热电偶、热电阻信号变换成与输入信号或与温度信号成线性的4~20mA的输出信号。
生产厂家:自动化仪表六厂2.温度控制器、选用:根据前面的分析可知在此方案中,主副两个温度控制器为“-”作用根据过程特性与工艺要求,宜选用将比例与积分组合起来,既能控制及时,又能消除余差的PI控制规律。
所以选用TY-S9696温度控制器3.蒸汽调节阀:由于执行器的控制对象为蒸汽,所以在选用执行器时要考虑其耐热性能和耐腐蚀性能。
结合前面对阀门控制作用的分析,可以选用:ZJHP-ZHK34型气动单座调节阀第五章冷水流量、蒸汽压力以及进料压力波动均为主要干扰一.控制方案、理论依据、控制工艺流程图1. 控制方案由于冷水流量和蒸汽压力以及进料压力都经常波动,由于它们都会影响加热器的热水出口温度,这时可以将干燥温度和热水温度的串级控制,将进料压力进行前馈控制,形成前馈—串级控制系统,其中以干燥温度为主变量,热水温度为副变量,进料压力为前馈量。