主成分分析方法在主成分分析方法中的应用

主成分分析方法在主成分分析方法中的应用
主成分分析方法在主成分分析方法中的应用

主成分分析与因子分析及SPSS实现(一):原理与方法

(2014-09-08 13:33:57)

转载▼

一、主成分分析

(1)问题提出

在问题研究中,为了不遗漏和准确起见,往往会面面俱到,取得大量的指标来进行分析。比如为了研究某种疾病的影响因素,我们可能会收集患者的人口学资料、病史、体征、化验检查等等数十项指标。如果将这些指标直接纳入多元统计分析,不仅会使模型变得复杂不稳定,而且还有可能因为变量之间的多重共线性引起较大的误差。有没有一种办法能对信息进行浓缩,减少变量的个数,同时消除多重共线性?

这时,主成分分析隆重登场。

(2)主成分分析的原理

主成分分析的本质是坐标的旋转变换,将原始的n个变量进行重新的线性组合,生成n个新的变量,他们之间互不相关,称为n个“成分”。同时按照方差最大化的原则,保证第一个成分的方差最大,然后依次递减。这n个成分是按照方差从大到小排列的,其中前m个成分可能就包含了原始变量的大部分方差(及变异信息)。那么这m个成分就成为原始变量的“主成分”,他们包含了原始变量的大部分信息。

注意得到的主成分不是原始变量筛选后的剩余变量,而是原始变量经过重新组合后的“综合变量”。

我们以最简单的二维数据来直观的解释主成分分析的原理。假设现在有两个变量X1、X2,在坐标上画出散点图如下:

可见,他们之间存在相关关系,如果我们将坐标轴整体逆时针旋转45°,变成新的坐标系Y1、Y2,如下图:

根据坐标变化的原理,我们可以算出:

Y1 = sqrt(2)/2 * X1 + sqrt(2)/2 * X2

Y2 = sqrt(2)/2 * X1 - sqrt(2)/2 * X2

其中sqrt(x)为x的平方根。

通过对X1、X2的重新进行线性组合,得到了两个新的变量Y1、Y2。

此时,Y1、Y2变得不再相关,而且Y1方向变异(方差)较大,Y2方向的变异(方差)较小,这时我们可以提取Y1作为X1、X2的主成分,参与后续的统计分析,因为它携带了原始变量的大部分信息。

至此我们解决了两个问题:降维和消除共线性。

对于二维以上的数据,就不能用上面的几何图形直观的表示了,只能通过矩阵变换求解,但是本质思想是一样的。

二、因子分析

(一)原理和方法:

因子分析是主成分分析的扩展。

在主成分分析过程中,新变量是原始变量的线性组合,即将多个原始变量经过线性(坐标)变换得到新的变量。

因子分析中,是对原始变量间的内在相关结构进行分组,相关性强的分在一组,组间相关性较弱,这样各组变量代表一个基本要素(公共因子)。通过原始变量之间的复杂关系对原始变量进行分解,得到公共因子和特殊因子。将原始变量表示成公共因子的线性组合。其中公共因子是所有原始变量中所共同具有的特征,而特殊因子则是原始变量所特有的部分。因子分析强调对新变量(因子)的实际意义的解释。

举个例子:

比如在市场调查中我们收集了食品的五项指标(x1-x5):味道、价格、风味、是否快餐、能量,经过因子分析,我们发现了:

x1 = 0.02 * z1 + 0.99 * z2 + e1

x2 = 0.94 * z1 - 0.01 * z2 + e2

x3 = 0.13* z1 + 0.98 * z2 + e3

x4 = 0.84 * z1 + 0.42 * z2 + e4

x5 = 0.97 * z1 - 0.02 * z2 + e1

(以上的数字代表实际为变量间的相关系数,值越大,相关性越大)

第一个公因子z1主要与价格、是否快餐、能量有关,代表“价格与营养”

第二个公因子z2主要与味道、风味有关,代表“口味”

e1-5是特殊因子,是公因子中无法解释的,在分析中一般略去。

同时,我们也可以将公因子z1、z2表示成原始变量的线性组合,用于后续分析。

(二)使用条件:

(1)样本量足够大。通常要求样本量是变量数目的5倍以上,且大于100例。

(2)原始变量之间具有相关性。如果变量之间彼此独立,无法使用因子分析。在SPSS中可用KMO检验和Bartlett球形检验来判断。

(3)生成的公因子要有实际的意义,必要时可通过因子旋转(坐标变化)来达到。

三、主成分分析和因子分析的联系与区别

联系:两者都是降维和信息浓缩的方法。生成的新变量均代表了原始变量的大部分信息且互相独立,都可以用于后续的回归分析、判别分析、聚类分析等等。

区别:

(1)主成分分析是按照方差最大化的方法生成的新变量,强调新变量贡献了多大比例的方差,不关心新变量是否有明确的实际意义。

(2)因子分析着重要求新变量具有实际的意义,能解释原始变量间的内在结构。

下一篇文章,将介绍主成分分析和因子分析的在SPSS中的实现。

主成分分析与因子分析及SPSS实现(二):实例讨论

(2014-09-13 06:34:09)

转载▼

标签:

分类:SPSS

spss

教育

统计

因子分析

SPSS没有提供单独的主成分分析方法,而是混在因子分析当中,下面通过一个例子来讨论主成分分析与因子分析的实现方法及相关问题。

一、问题提出

男子十项全能比赛包含100米跑、跳远、跳高、撑杆跳、铅球、铁饼、标枪、400米跑、1500米跑、110米跨栏十个项目,总分为各个项目得分之和。为了分析十项全能主要考察哪些方面的能力,以便有针对性的进行训练,研究者收集了134个顶级运动员的十项全能成绩单,将通过因子分析来达到分析目的。

二、分析过程

变量视图:

数据视图(部分):

菜单选择(分析->降维->因子分析):

打开因子分析的主界面,将十项成绩选入”变量“框中(不要包含总分),如下:

点击”描述“按钮,打开对话框,选中”系数“和”KMO和Bartlett球形度检验“:

上图相关解释:

”系数“:为变量之间的相关系数阵列,可以直观的分析相关性。

”KMO和Bartlett球形度检验“:用于定量的检验变量之间是否具有相关性。

点击”继续“,回到主界面,点击”抽取“,打开对话框。

”方法“=>”主成分“,”输出“=>”未旋转的因子解“和”碎石图“,”抽取“=>”基于特征值“,其余选择默认。

解释:

①因子抽取的方法:选取默认的主成分法即可,其余方法的计算结果可能有所差异。

②输出:”未旋转的因子解”极为主成分分析结果。碎石图有助于我们判断因子的重要性(详细介绍见后面)。

③抽取:为抽取主成分(因子)的方法,一般是基于特征值大于1,默认即可。

点击”继续“,回到主界面,点击”确定“,进入分析。

输出的主要表格如下:

(1)相关性检验

因子分析要求变量之间有相关性,所以首先要进行相关性检验。首先输出的是变量之间的相关系数矩阵:可以直观的看到,变量之间有相关性。但需要检验,接着输出的是相关性检验:

上图有两个指标:第一个是KMO值,一般大于0.7就说明不了之间有相关性了。第二个是Bartlett球形度检验,P值<0.001。综合两个指标,说明变量之间存在相关性,可以进行因子分析。否则,不能进行因子分析。

(2)提取主成分和公因子

接下来输出主成分结果:

这就是主成分分析的结果,表中第一列为10个成分;第二列为对应的”特征值“,表示所解释的方差的大小;第三列为对应的成分所包含的方差占总方差的百分比;第四列为累计的百分比。一般来说,选择”特征值“大于1的成分作为主成分,这也是SPSS默认的选择。

在本例中,成分1和2的特征值大于1,他们合计能解释71.034%的方差,还算不错。所以我们可以提取1和2作为主成分,抓住了主要矛盾,其余成分包含的信息较少,故弃去。

下面,输出碎石图,如下:

碎石图来源于地质学的概念。在岩层斜坡下方往往有很多小的碎石,其地质学意义不大。碎石图以特征值为纵轴,成分为横轴。前面陡峭的部分特征值大,包含的信息多,后面平坦的部分特征值小,包含的信息也小。

由图直观的看出,成分1和2包含了大部分信息,从3开始就进入平台了。

接下来,输出提取的成分矩阵:

上表中的数值为公因子与原始变量之间的相关系数,绝对值越大,说明关系越密切。公因子1和9个运动项目都正相关(注意跑步运动运动的计分方式,时间越短,分数越高),看来只能称为“综合运动”因子了。公因子2与铁饼、铅球正相关,与1500米跑、400米跑负相关,这究竟代表什么意思呢?看来只能成为“不知所云”因子了。

(三)因子旋转

前面提取的两个公因子一个是大而全的“综合因子”,一个不知所云,得到这样的结果,无疑是分析的失败。不过,不要灰心,我们可以通过因子的旋转来获得更好的解释。在主界面中点击“旋转”按钮,打开对话框,“方法”=>“最大方差法”,“输出”=>“旋转解”。

点击“继续”,回到主界面点击“确认”进行分析。输出结果如下:

这是选择后的成分矩阵。经过旋转,可以看出:

公因子1得分越高,所有的跑步和跨栏成绩越差,而跳远、撑杆跳等需要助跑类项目的成绩也越差,所以公因子1代表的是奔跑能力的反向指标,可称为“奔跑能力”。

公因子2与铁饼和铅球的正相关性很高,与标枪、撑杆跳等需要上肢力量的项目也正相关,所以该因子可以成为“上肢力量”。

经过旋转,可以看出公因子有了更合理的解释。

(四)结果的保存

在最后,我们还要将公因子储存下来供后续使用。点击“得分”按钮,打开对话框,选中“保存为变量”,方法采用默认的“回归”方法,同时选中“显示因子得分系数矩阵”。

SPSS会自动生成2个新变量,分别为公因子的取值,放在数据的最后。同时会输出一个因子系数表格:

由上图,我们可以写出公因子的表达式(用F1、F2代表两个公因子,Z1~Z10分别代表原始变量):

F1 =

-0.16*Z1+0.161*Z2+0.145*Z3+0.199*Z4-0.131*Z5-0.167*Z6+0.137*Z7+0.174*Z8+0.13 1*Z9-0.037*Z10

F2同理,略去。

注意,这里的变量Z1~Z10,F1、F2不再是原始变量,而是标准正态变换后的变量。

当前位置:一起大数据 > 自学中心 > 软件 > SPSS > 正文

SPSS主成分分析与因子分析之比较及实证分析

?xsmile 发布于2015-07-20

?分类:SPSS / 数据分析

?阅读(399)

?评论(1)

来自 /article/details/1924502

一、问题的提出

在科学研究或日常生活中,常常需要判断某一事物在同类事物中的好坏、优劣程度及其发展规律等问题。而影响事物的特征及其发展规律的因素(指标)是多方面的,因此,在对该事物进行研究时,为了能更全面、准确地反映出它的特征及其发展规律,就不应仅从单个指标或单方面去评价它,而应考虑到与其有关的多方面的因素,即研究中需要引入更多的与该事物有关系的变量,来对其进行综合分析和评价。多变量大样本资料无疑能给研究人员或决策者提供很多有价值的信息,但在分析处理多变量问题时,由于众变量之间往往存在一定的相关性,使得观测数据所反映的信息存在重叠现象。因此为了尽量避免信息重叠和减轻工作量,人们就往往希望能找出少数几个互不相关的综合变量来尽可能地反映原来数据所含有的绝大部分信息。而主成分分析和因子分析正是为解决此类问题而产生的多元统计分析方法。

近年来,这两种方法在社会经济问题研究中的应用越来越多,其应用范围也愈加广泛。因子分析是主成分分析的推广和发展,二者之间就势必有着许多共同之处,而SPSS软件不能直接进行主成分分析,致使一些应用者在使用SPSS进行这两种方法的分析时,常常会出现一些混淆性的错误,这难免会使人们对分析结果产生质疑。因此,有必要在运用SPSS分析时,将这两种方法加以严格区分,并针对实际问题选择正确的方法。

二、主成分分析与因子分析的联系与区别

两种方法的出发点都是变量的相关系数矩阵,在损失较少信息的前提下,把多个变量(这些变量之间要求存在较强的相关性,以保证能从原始变量中提取主成分)综合成少数几个综合变量来研究总体各方面信息的多元统计方法,且这少数几个综合变量所代表的信息不能重叠,即变量间不相关。

主要区别:

1. 主成分分析是通过变量变换把注意力集中在具有较大变差的那些主成分上,而舍弃那些变差小的主成分;因子分析是因子模型把注意力集中在少数不可观测的潜在变量(即公共因子)上,而舍弃特殊因子。

2. 主成分分析是将主成分表示为原观测变量的线性组合,

(1)

主成分的个数i=原变量的个数p,其中j=1,2,…,p,是相关矩阵的特征值所对应的特征向量矩阵中的元素,是原始变量的标准化数据,均值为0,方差为1。其实质是p维空间的坐标变换,不改变原始数据的结构。

而因子分析则是对原观测变量分解成公共因子和特殊因子两部分。因子模型如式(2),

(2)

其中i=1,2,…,p, m

是因子分析过程中的初始因子载荷矩阵中的元素,是第j个公共因子,是第i个原观测变量的特殊因子。且此处的与的均值都为0,方差都为1。

3. 主成分的各系数,是唯一确定的、正交的。不可以对系数矩阵进行任何的旋转,且系数大小并不代表原变量与主成分的相关程度;而因子模型的系数矩阵是不唯一的、可以进行旋转的,且该矩阵表明了原变量和公共因子的相关程度。

4. 主成分分析,可以通过可观测的原变量X直接求得主成分Y,并具有可逆性;因子分析中的载荷矩阵是不可逆的,只能通过可观测的原变量去估计不可观测的公共因子,即公共因子得分的估计值等于因子得分系数矩阵与原观测变量标准化后的矩阵相乘的结果。还有,主成分分析不可以像因子分析那样进行因子旋转处理。

5.综合排名。主成分分析一般依据第一主成分的得分排名,若第一主成分不能完全代替原始变量,则需要继续选择第二个主成分、第三个等等,此时综合得分=∑ (各主成分得分×各主成分所对应的方差贡献率),主成分得分是将原始变量的标准化值,代入主成分表达式中计算得到;而因子分析的综合得分=∑(各因子得分×各因子所对应的方差贡献率)÷∑各因子的方差贡献率,因子得分是将原始变量的标准化值,代入因子得分函数中计算得到。

区别中存联系,联系中显区别

由于上文提到主成分可表示为原观测变量的线性组合,其系数为原始变量相关矩阵的特征值所对应的特征向量,且这些特征向量正交,因此,从X到Y的转换关系是可逆的,便得到如下的关系:

(3)

下面对其只保留前m个主成分(贡献大),舍弃剩下贡献很小的主成分,得:

i=1,2,…p(4)

由此可见,式(4)在形式上已经与因子模型(2)忽略特殊因子后的模型即:

(2)*

相一致,且(j=1,2,…,m)之间相互独立。由于模型(2)*是因子分析中未进行因子载荷旋转时建立的模型,故如果不进行因子载荷旋转,许多应用者将容易把此时的因子分析理解成主成分分析,这显然是不正确的。

然而此时的主成分的系数阵即特征向量与因子载荷矩阵确实存在如下关系:

主成分分析中,主成分的方差等于原始数据相关矩阵的特征根,其标准差也即特征根的平方根,于

是可以将除以其标准差(单位化)后转化成合适的公因子,即令,,则式(4)变为:

(4)*

可得,(5)

式(5)便是主成分系数矩阵与初始因子载荷阵之间的联系。不能简单地将初始因子载荷矩阵认为是主成分系数矩阵(特征向量矩阵),否则会造成偏差。

三、实证分析

通过实例来研究SPSS软件中的因子分析和主成分分析及二者分析结果的比较。运用两种分析方法对2005年江苏省13个主要城市的经济发展综合水平进行分析。

本文在选取指标时遵循了指标选取的基本原则,即针对性、可操作性、层次性、全面性等原则,选取了以下反映城市经济发展综合水平的9项指标:GDP(X1)亿元、人均GDP (X2) 元、城镇居民人均可支配收入(X3)元、农村居民纯收入(X4) 元、第三产业占GDP比重(X5)%、金融机构存款余额(X6)亿元、万人中各专业技术人员数(X7)人、科技三项和文教科卫支出(X8)亿元、实际利用外资(X9) 亿美元。(一)数据来源及处理

按照上述指标体系,选取了江苏13个城市的数据,(所有数据均来源于《江苏统计年鉴(2006)》)。指标都是正指标,无需归一化,SPSS13.0将自动对原始数据进行标准差标准化处理,消除指标量纲及数量级的影响。

(二)运用SPSS进行分析

首先,通过SPSS中的Data Reduction-Factor命令进行因子分析,本文采取主成分分析法来抽取公共因子,并依据特征值大于1来确定因子数目。

相关的分析结果及分析,如下:

1.相关系数矩阵

由于因子分析是基于相关矩阵进行的,即要求各指标之间具有一定的相关性,求出相关矩阵是必要的。KMO 统计量是0.659,且Bartlett球体检验值为190.584,卡方统计值的显著性水平为0.000小于0.01,都说明各指标之间具有较高相关性,因此本文数据适用于作因子分析。

2.总方差分解

表2中,依据特征值大于1的原则,提取了2个公因子(主成分),它们的累积方差贡献率达91.4555%,这2个公因子(主成分)包含了原指标的绝大部分信息,可以代替原来9个变量对城市经济发展水平现状进行衡量。

3.主成分表达式与因子模型

初始因子载荷矩阵(见表3)反映了公因子与原始变量之间的相关程度,而主成分的系数矩阵并不反映公因子与原始变量之间的相关程度,故不能直接用表3中的数据表示。根据该系数矩阵与初始因子载荷阵之间的关系(如式(5)),可以计算出前2个特征值所对应的特征向量阵(系数矩阵),见表4。

很明显表4和表3中的数据相差很大,因此,如果将初始因子载荷阵误认为是主成分系数矩阵,分析结果将会产生较大偏差。

主成分的表达式应为:(6)

Y1=0.3622 *Z1+0.3607 *Z2+…+0.3260*Z9

Y2=-0.1298 *Z1-0.0799 *Z2+…-0.3849*Z9

=(79.4012* Y1+12.0543* Y2)/100

因子模型:

X1=0.9684*F1-0.1352*F2

X2=0.9642*F1-0.0832*F2

X9=0.8714*F1-0.4009*F2

其中Z1~Z9是X1~X9的标准化数据.

4.因子得分函数

从表3得知,各因子在各变量上的载荷已经向0和1两极分化,故无需进行因子旋转。公因子是不可观测的,估计因子得分应借助于未旋转因子得分系数矩阵,见表5。

得到以下因子得分函数:(7)

F1=0.1355*Z1+0.1349*Z2 +…+0.1219*Z9

F2=-0.1247 *Z1-0.0767*Z2 +…-0.3696*Z9

同样Z1~Z9是标准化的数据,其综合得分计算公式:

=(73.4228*F1+18.0327*F2)/91.4555(8)

(三)两种方法综合排名比较

按照主成分综合得分和因子综合得分,对江苏13个城市的经济发展综合水平进行排名,见表6。

表6中,综合得分出现负值,这只表明该城市的综合水平处于平均水平之下(由于主成分(因子)已经标准化了)。

从该表看出,主成分分析与因子分析的实证结果,不仅大部分城市的排名存在差异,且综合得分值上存在较大差异,其定量值差异较大,这对于后来的综合定量定性分析,最终所提出的政策建议等都会产生较大影响。因此不能混用。

四、结束语

使用主成分分析和因子分析进行综合评价时,可以通过不同的统计软件来完成数据分析,除SPSS软件外,其他软件都分别设有两种方法的过程命令,使用者可以根据需要采用其中一种来分析问题,一般不会混淆。

而正是因为SPSS没有直接进行主成分分析的命令,才使得那些本身尚未清楚区分这两种方法的使用者更加迷惑,不慎便会出现混淆性错误。因此,本文很详细地从理论和实证角度,分析了这两种方法的异同及如何运用SPSS软件进行分析。从实证结果看,运用主成分分析和因子分析进行综合定量分析时,不但综合排名结果存在差异,而且定量值也存在较大差异,这必然会影响后面的综合定性分析结果。因此,我们应正确理解和运用这两种方法,使其发挥出各自最大的优势,以便更好地服务于实际问题的分析。

参考文献:

[1] 郭显光. 如何用SPSS软件进行主成分分析[J]. 统计与信息论坛,1998, (2)

[2] 何晓群. 现代统计分析方法与应用[M]. 中国人民大学出版社,1998

[3] 余建英、何旭宏. 数据统计分析与SPSS应用[M]. 人民邮电出版社,2003

[4] 于秀林、任雪松. 多元统计分析[M]. 中国统计出版社,1999

[5] Anderson, T. W. An Introduction to Multivariate Statistical Methods, New York: John Wiley, 1958

应用统计学因子分析与主成分分析案例解析SPSS操作分析

大数据分析-SPSS因子与主成分分析

SPSS主成分得分与因子分析因子得分的计算差异

SPSS主成分分析/因子分析/结构方程模型中的非正定矩阵问题解决

主成分分析中的因子载荷是用旋转前的还是旋转后的?

旋转前

用spss得出的成分矩阵就是初始因子载荷矩阵吗?成分得分系数矩阵又是什么呢?

第一问是的,译法不同而已;第二问,成分得分系数矩阵是用来求成分得分的,用标准化后的原始数据矩阵乘以成分得分系数矩阵就可以得到成分得分了。

spss中成份得分系数矩阵就是特征向量矩阵

主成分分析法运用

统计学简介及在实践中的应用 --以主成分分析法分析影响房价因素为例 姓名:阳飞 学号:2111601015 学院:经济管理学院 指导教师:吴东武 时间:二〇一七年一月六日

1 简介 统计语源最早出现于中世界拉丁语的Status,意思指各种现象的状态和状况。后来由这一语根组成意大利语Stato,有表示“国家”的概念,也含有国家结构和 国情知识的意思。根据这一语根,最早作为学名使用的“统计”的是在十八世纪德国政治学教授亨瓦尔(G.Achenwall)。他在1749年所著《近代欧洲各国国家学纲要》一书的绪言中,就把国家学名定义为“Statistika”(统计)这个词。原意是 指“国家显著事项的比较和记述”或“国势学”,认为统计是关于国家应注意事项的学问。自此以后,各国就相继沿用“统计”这个词,更把这个词译成各国的文字,其中,法国译为Statistique;意大利译为Statistica;英国译为Statistics;日本最初译为“政表”、“政算”、“国势”、“形势”等,直到1880年在太政官中设立了统计院,这个时候才确定以“统计”二字正名。 在我国近代史上首次出现是在1903年(清光绪廿九年)由钮永建、林卓南等翻译了四本由横山雅南所著的《统计讲义录》一书,这个时候才把“统计”这个词从日本传到我国。1907年(清光绪卅三年),由彭祖植编写的《统计学》在日本出版,同时在国内发行。这本书是我国最早的一本“统计学”书籍。自此以后“统计”一词就成了记述国家和社会状况的数量关系的总称。 关于“统计”这个词,后来又引申到了各种各样的组合,包括:统计工作、统计资料、统计科学。 统计工作是指利用科学的方法搜集、整理、分析和提供关于社会经济现象数量资料的工作的总称,它是统计的基础,也称统计实践或统计活动。是在一定统计理论指导下,采用科学的方法,搜集、整理、分析统计资料的一系列活动过程。

SPSS进行主成分分析的步骤(图文)精编版

主成分分析的操作过程 原始数据如下(部分) 调用因子分析模块(Analyze―Dimension Reduction―Factor),将需要参与分析的各个原始变量放入变量框,如下图所示:

单击Descriptives按钮,打开Descriptives次对话框,勾选KMO and Bartlett’s test of sphericity选项(Initial solution选项为系统默认勾选的,保持默认即可),如下图所示,然后点击Continue按钮,回到主对话框: 其他的次对话框都保持不变(此时在Extract次对话框中,SPSS已经默认将提取公因子的方法设置为主成分分析法),在主对话框中点OK按钮,执行因子分析,得到的主要结果如下面几张表。 ①KMO和Bartlett球形检验结果:

KMO为0.635>0.6,说明数据适合做因子分析;Bartlett球形检验的显著性P值为 0.000<0.05,亦说明数据适合做因子分析。 ②公因子方差表,其展示了变量的共同度,Extraction下面各个共同度的值都大于0.5,说明提取的主成分对于原始变量的解释程度比较高。本表在主成分分析中用处不大,此处列出来仅供参考。 ③总方差分解表如下表。由下表可以看出,提取了特征值大于1的两个主成分,两个主成分的方差贡献率分别是55.449%和29.771%,累积方差贡献率是85.220%;两个特征值分别是3.327和1.786。 ④因子截荷矩阵如下:

根据数理统计的相关知识,主成分分析的变换矩阵亦即主成分载荷矩阵U 与因子载荷矩阵A 以及特征值λ的数学关系如下面这个公式: λi i i A U = 故可以由这二者通过计算变量来求得主成分载荷矩阵U 。 新建一个SPSS 数据文件,将因子载荷矩阵中的各个载荷值复制进去,如下图所示: 计算变量(Transform-Compute Variables )的公式分别如下二张图所示:

SPSS主成分分析操作步骤,详细的很啊^_^==

SPSS主成分分析操作步骤,详细的很啊^_^ SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。 图表 3 相关系数矩阵

图表 4 方差分解主成分提取分析表 主成分分析在SPSS中的操作应用(3) 图表 5 初始因子载荷矩阵

从图表3可知GDP与工业增加值,第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系,与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。 主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。注:特征值在某种程度上可以被看成是表示主成分影响力度大小的指标,如果特征值小于1,说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大,因此一般可以用特征值大于1作为纳入标准。通过图表4(方差分解主成分提取分析)可知,提取2个主成分,即m=2,从图表5(初始因子载荷矩阵)可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷,说明第一主成分基本反映了这些指标的信息;人均GDP和农业增加值指标在第二主成分上有较高载荷,说明第二主成分基本反映了人均GDP和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息,所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到,因为“Component Matrix”是指初始因子载荷矩阵,每一个载荷量表示主成分与对应变量的相关系数。用图表5(主成分载荷矩阵)中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数[2]。将初始因子载荷矩阵中的两列数据输入(可用复制粘贴的方法)到数据编辑窗口(为变量B1、B2),然后利用“TransformàCompute Variable”,在Compute Variable对话框中输入“A1=B1/SQR(7.22)” [注:第二主成分SQR后的括号中填1.235],即可得到特征向量A1(见图表6)。同理,可得到特征向量A2。将得到的特征向量与标准化后的数据相乘,然后就可以得出主成分表达式[注:因本例只是为了说明如何在SPSS进行主成分分析,故在此不对提取的主成分进行命名,有兴趣的读者可自行命名]: F 1=0.353ZX 1 +0.042ZX 2 -0.041ZX 3 +0.364ZX 4 +0.367ZX 5 +0.366ZX 6 +0.352ZX 7 +0.364ZX 8+0.298ZX 9 +0.355ZX 10

主成分分析法的原理应用及计算步骤..

一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 二、基本原理 主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。 设F1表示原变量的第一个线性组合所形成的主成分指标,即 11112121...p p F a X a X a X =+++,由数学知识可知,每一个主成分所提取的信息量可 用其方差来度量,其方差Var(F1)越大,表示F1包含的信息越多。常常希望第一主成分F1所含的信息量最大,因此在所有的线性组合中选取的F1应该是X1,X2,…,XP 的所有线性组合中方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来p 个指标的信息,再考虑选取第二个主成分指标F2,为有效地反映原信息,F1已有的信息就不需要再出现在F2中,即F2与F1要保持独立、不相关,用数学语言表达就是其协方差Cov(F1, F2)=0,所以F2是与F1不

主成分分析计算方法和步骤

主成分分析计算方法和步骤: 在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。而主成分分析法可以很好地解决这一问题。 主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。 主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。 结合数据进行分析 本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了0.963,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。 表5-6 相关系数矩阵 本科院校 数招生人数教育经费投入 相关性师生比0.279 0.329 0.252 重点高校数0.345 0.204 0.310 教工人数0.963 0.954 0.896 本科院校数 1.000 0.938 0.881 招生人数0.938 1.000 0.893

SPSS进行主成分分析报告地步骤(图文)

主成分分析の操作過程 原始數據如下(部分) 調用因子分析模塊(Analyze―Dimension Reduction―Factor),將需要參與分析の各個原始變量放入變量框,如下圖所示:

單擊Descriptives按鈕,打開Descriptives次對話框,勾選KMO and Bartlett’s test of sphericity選項(Initial solution選項為系統默認勾選の,保持默認即可),如下圖所示,然後點擊Continue按鈕,回到主對話框: 其他の次對話框都保持不變(此時在Extract次對話框中,SPSS已經默認將提取公因子の方法設置為主成分分析法),在主對話框中點OK按鈕,執行因子分析,得到の主要結果如下面幾張表。 ①KMO和Bartlett球形檢驗結果:

KMO為0.635>0.6,說明數據適合做因子分析;Bartlett球形檢驗の顯著性P值為0.000<0.05,亦說明數據適合做因子分析。 ②公因子方差表,其展示了變量の共同度,Extraction下面各個共同度の值都大於0.5,說明提取の主成分對於原始變量の解釋程度比較高。本表在主成分分析中用處不大,此處列出來僅供參考。 ③總方差分解表如下表。由下表可以看出,提取了特征值大於1の兩個主成分,兩個主成分の方差貢獻率分別是55.449%和29.771%,累積方差貢獻率是85.220%;兩個特征值分別是3.327和1.786。 ④因子截荷矩陣如下:

根據數理統計の相關知識,主成分分析の變換矩陣亦即主成分載荷矩陣U 與因子載荷矩陣A 以及特征值λの數學關系如下面這個公式: λ i i i A U = 故可以由這二者通過計算變量來求得主成分載荷矩陣U 。 新建一個SPSS 數據文件,將因子載荷矩陣中の各個載荷值複制進去,如下圖所示: 計算變量(Transform-Compute Variables )の公式分別如下二張圖所示:

主成分分析法的步骤和原理

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p个变量来描述研究对象,分别用X1,X2…X p来表示,这p个变量构成的p维随机向量为X=(X1,X2…X p)t。设随机向量X的均值为μ,协方差矩阵为Σ。对X进行线性变化,考虑原始变量的线性组合: Z=μX+μX+…μX Z=μX+μX+…μX ……………… Z=μX+μX+…μX 主成分是不相关的线性组合Z1,Z2……Z p,并且Z1是X,X…X的线性组合中方差最大者,Z2是与Z1不相关的线性组合中方差最大者,…,Z是与Z1,Z2……Z p-1都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x ij)m×p,其中x ij表示第i家上市公司的第j项财务指标数据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。其中,R ij(i,j=1,2,…,p)为原始变量X i与X j的相关系数。R为实对称矩阵

主成分分析法及其在SPSS中的操作

一、主成分分析基本原理 概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。 原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵, 记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则 系数l ij 的确定原则: ①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关; ②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P , 的所有线性组合中方差最大者。 新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。 从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。 ?????? ? ???????=np n n p p x x x x x x x x x X 2 1 2222111211 ?? ??? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111............

主成分分析法概念及例题

主成分分析法 [ 编辑 ] 什么是主成分分析法 主成分分析也称 主分量分析 ,旨在利用降维的思想,把多 指标 转化为少数几个综合指标。 在 统计学 中,主成分分析( principal components analysis,PCA )是一种简化数据集的技 术。它是一个线性变换。 这个变换把数据变换到一个新的坐标系统中, 使得任何数据投影的第一 大方差 在第一个坐标 (称为第一主成分 )上,第二大方差在第二个坐标 (第二主成分 )上,依次类推。 主成分分析经常用减少数据集的维数, 同时保持数据集的对 方差 贡献最大的特征。 这是通过保留 低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是, 这也不是一定的,要视具体应用而定。 [ 编辑 ] , PCA ) 又称: 主分量分析,主成分回归分析法 主成分分析( principal components analysis

主成分分析的基本思想 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [ 编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [ 编辑] 主成分分析的主要作用

主成分法及其应用

【作者简介】 苏键(1985-),男,广西钦州人,助理工程师,研究方向:食品科学。1主成分分析法 何谓主成分分析,就是将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法,又称主分量分析[1]。主成分分析的中心思想是缩减一个包括很多相互联系着的变量的数量集,在数量集中保留尽可能多的有用的变量。 主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。主成分分析是设法将原来众多具有一定相关性(比如P 个指标 ),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P 个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var (F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的, 故称F1为第一主成分。如果第一主成分不足以代表原来P 个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov (F1,F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P 个主成分[2]。 主成分分析首先是由K.皮尔森对非随机变量引入的,而后H.霍特林将此方法推广到随机向量的情形[2]。信息的大小通常用离差平方和或方差来衡量。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。 2主成分分析法在食品领域的应用 2.1主成分分析在食品风味方面的应用 目前,主成分分析应用还是比较广泛的,但是就食品风味方面,关于该分析方法的文献鲜见报道。戴素贤等[3]人对七种高香型乌龙茶中的香气成分进行了主成分分析,他们尝试用主成分分析法来研究茶业香型的变化,并进而找到影响这些香型变化的主要化合物,同时还发现了不同的茶别中香气化合物变化的趋势并进行了模拟量化,直观地表现了各种香气化合物对香气的贡献程度。李华等[4]运用多元统计分析确定葡萄酒感官特性,多元统计分析中的主成分分析等数学工具能够把大量的描述葡萄酒感官特性的描述语精简成较少的综合性更强的描述语,这些精简后的描述语不但能够反映精简前描述语的信息,还可以筛选出科学合理的描述符,描述符是描述分析的语言和工具,根据描述符可以分类不同的葡萄酒。邵威平等[5]应用主成分分析法完成了不同品牌啤酒风味差异性的评价,同一品牌啤酒风味一致性的评价,同一品牌不同生产厂之间一致性的评价以及同一生产厂啤酒一致性的评价这些工作。 啤酒是个多指标的风味食品,主成分分析法可以帮助我们更好地研究啤酒理化指标和啤酒风格之间的相关性,从而达到更好地理解啤酒风味的目的。岳田利等[6]人则通过利用主成分分析的方法建立了苹果酒香气质量的评价模型,并以此来对苹果酒样品香气组分进行客观的统计分析。S.Kallithraka 等[7]采用高效液相色谱法和气相色谱法研究了希腊国内不同产地葡萄酒的化合物成分和感官特性,并运用了PCA 法(主成分分析法)对所得参数进行多元分析,最终达到给葡萄酒评价和分类的目的。2.2主成分分析在食品品质方面的应用 食品品质的评价往往是非常复杂的过程。因为影响食品品质的因素大量存在,非人为因素如食品环境中的微生物,温度及pH 等的变化带来的影响。另一方面,由于人为的因素掺假也会造成食品品质的低劣,进而损害广大销售者和消费者的利益。如黎海红等[8]人运用主成分分析法对掺伪芝麻油的检测方法进行研究分析。根据主成分分析的实验原理,可以选择芝麻油的折光率、酸价、色泽、水分及挥发物、皂化值和碘价等理化指标作为变量,将这些变量的所测数据做矩阵处理最后分析就 轻工科技 LIGHT INDUSTRY SCIENCE AND TECHNOLOGY 2012年9月第9期(总第166期) 食品与生物 主成分分析法及其应用 苏键,陈军,何洁 (广西轻工业科学技术研究院,广西南宁530031) 【摘要】 介绍了主成分分析法的定义、原理,概述了该法在食品及一些仪器分析领域的应用,目的是为其他还未应用该分 析方法的学术领域提供一种参考和借鉴,使得主成分分析法能够在越来越多的学术领域中得以推广和应用。 【关键词】主成分分析;应用;概述【中图分类号】TS262【文献标识码】A 【文章编号】2095-3518 (2012)09-12-02

主成分分析操作步骤

主成分分析操作步骤 1)先在spss中录入原始数据 袁幌0 KMCi 删曲唇亶馳卜DG(W S^njRtJJ 11口辿J KU删 吕叫? r茗命窗?n靂二?1 a 15柞mjj 和啊r fJl I 111 1芋砂1a Q X X目 2險£g 2壬无8 3>SB壬9 4申料皺咱 B Z X a t8 2±@ &一:jfi fulfil9 2£X9 ?寓咽8 ?E9 2)菜单栏上执行【分析】一一【降维】一一【因子分析】,打开因素分析对话框,将要分析的变量都放入【变量】窗口中

3)设计分析的统计量 点击【描述】:选中“ Statistics ”中的“原始分析结果”和“相关性矩阵”中的“系数”。(选中原始分析结果,SPSS自动把原始数据标准差标准化,但不显示出来;选中系数,会显示相关系数矩阵)然后点击“继续”。 点击【抽取】:“方法”里选取“主成分”;“分析”、“输出”、“抽取”均选中各自的第一个选项即可。

点击【得分】:选中“保存为变量”,方法中选“回归”;再选中 V 尿存为穽昼腔} 「方法 -------------- ◎目甘砂 < Bartlett C Ardorson-F?ubin 点击【选项】:选择“按列表排除个案”。 点击【旋转】:选取第一个选项“无”。 (当因子分析的抽取方法选择主成分法时,且不进 “显示因子得分系数矩阵” 行因子旋转,则其结果即为主成分分析)

4)结果解读 5) A.相关系数矩阵:是6个变量两两之间的相关系数大小的方阵。通过相关系数可以看到各个变量之间的相关,进而了解各个变量之间的关系。 B.共同度:给出了这次主成分分析从原始变量中提取的信息,可以看出交通和通讯最多,而娱乐教育文化损失率最大。 C.总方差的解释:系统默认方差大于1的为主成分。如果小于1,说明这个主因素的影响力度还不如一个基本的变量。所以只取前两个,且第一主成分的方差为3.568,第二主成分的方差为1.288,前两个主成分累加占到总方差的80.939%<

主成分分析的计算步骤

主成分分析的计算步骤 样本观测数据矩阵为: ??????? ??=np n n p p x x x x x x x x x X 21 2222111211 第一步:对原始数据进行标准化处理 )var(*j j ij ij x x x x -= ),,2,1;,,2,1(p j n i == 其中 ∑==n i ij j x n x 1 1 21 )(11)var(j n i ij j x x n x --=∑= ),,2,1(p j = 第二步:计算样本相关系数矩阵 ?????? ????????=pp p p p p r r r r r r r r r R 212222111211 为方便,假定原始数据标准化后仍用X 表示,则经标准化处理后的数据的相关系数为: tj n t ti ij x x n r ∑=-=1 11 ),,2,1,(p j i = 第三步:用雅克比方法求相关系数矩阵R 的特征值(p λλλ 21,)和相应的特征向量()p i a a a a ip i i i 2,1,,,21==。 第四步:选择重要的主成分,并写出主成分表达式 主成分分析可以得到p 个主成分,但是,由于各个主成分的方差是递减的,包含的信息量也是递减的,所以实际分析时,一般不是选取p 个主成分,而是根据各个主成分累计贡献率的大小选取前k 个主成分,这里贡献率就是指某个主成分的方差占全部方差的比重,

实际也就是某个特征值占全部特征值合计的比重。即 贡献率=∑=p i i i 1λ λ 贡献率越大,说明该主成分所包含的原始变量的信息越强。主成分个数k 的选取,主要根据主成分的累积贡献率来决定,即一般要求累计贡献率达到85%以上,这样才能保证综合变量能包括原始变量的绝大多数信息。 另外,在实际应用中,选择了重要的主成分后,还要注意主成分实际含义解释。主成分分析中一个很关键的问题是如何给主成分赋予新的意义,给出合理的解释。一般而言,这个解释是根据主成分表达式的系数结合定性分析来进行的。主成分是原来变量的线性组合,在这个线性组合中个变量的系数有大有小,有正有负,有的大小相当,因而不能简单地认为这个主成分是某个原变量的属性的作用,线性组合中各变量系数的绝对值大者表明该主成分主要综合了绝对值大的变量,有几个变量系数大小相当时,应认为这一主成分是这几个变量的总和,这几个变量综合在一起应赋予怎样的实际意义,这要结合具体实际问题和专业,给出恰当的解释,进而才能达到深刻分析的目的。 第五步:计算主成分得分 根据标准化的原始数据,按照各个样品,分别代入主成分表达式,就可以得到各主成分下的各个样品的新数据,即为主成分得分。具体形式可如下。 ?????? ? ??nk n n k k F F F F F F F F F 212222111211 第六步:依据主成分得分的数据,则可以进行进一步的统计分析 其中,常见的应用有主成份回归,变量子集合的选择,综合评价等。

主成分分析法的步骤和原理

主成分分析法的步骤和原理 (总2页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p个变量来描述研究对象,分别用X 1,X 2 …X p 来表示,这p个变量构 成的p维随机向量为X=(X 1,X 2 …X p )t。设随机向量X的均值为μ,协方差矩阵 为Σ。假设 X 是以 n 个标量随机变量组成的列向量,并且μk 是其第k个元素的期望值,即,μk= E(xk),协方差矩阵然后被定义为: Σ=E{(X-E[X])(X-E[X])}=(如图 对X进行线性变化,考虑原始变量的线性组合: Z1=μ11X1+μ12X2+…μ1p X p Z2=μ21X1+μ22X2+…μ2p X p ……………… Z p=μp1X1+μp2X2+…μpp X p 主成分是不相关的线性组合Z 1,Z 2 ……Z p ,并且Z 1 是X1,X2…X p的线性组合 中方差最大者,Z 2是与Z 1 不相关的线性组合中方差最大者,…,Z p是与Z 1 , Z 2……Z p-1 都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始 数据可得矩阵X=(x ij ) m×p ,其中x ij 表示第i家上市公司的第j项财务指标数 据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分 析。其中,R ij (i,j=1,2,…,p)为原始变量X i 与X j 的相关系数。R为实对 称矩阵(即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式 为:

主成分分析法概念及例题

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

主成分分析在SPSS中的操作应用(2)

主成分分析在SPSS中的操作应用(2) SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。 图表 3 相关系数矩阵

图表 4 方差分解主成分提取分析表 主成分分析在SPSS中的操作应用(3) 图表 5 初始因子载荷矩阵

从图表3可知GDP与工业增加值,第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系,与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。 主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。注:特征值在某种程度上可以被看成是表示主成分影响力度大小的指标,如果特征值小于1,说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大,因此一般可以用特征值大于1作为纳入标准。通过图表4(方差分解主成分提取分析)可知,提取2个主成分,即m=2,从图表5(初始因子载荷矩阵)可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷,说明第一主成分基本反映了这些指标的信息;人均GDP和农业增加值指标在第二主成分上有较高载荷,说明第二主成分基本反映了人均GDP和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息,所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到,因为“Component Matrix”是指初始因子载荷矩阵,每一个载荷量表示主成分与对应变量的相关系数。 用图表5(主成分载荷矩阵)中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数[2]。将初始因子载荷矩阵中的两列数据输入(可用复制粘贴的方法)到数据编辑窗口(为变量B1、B2),然后利用“TransformàCompute Variable”,在Compute Variable对话框中输入 “A1=B1/SQR(7.22)” [注:第二主成分SQR后的括号中填1.235],即可得到特征向量A1(见图表6)。同理,可得到特征向量A2。将得到的特征向量与标准化后的数据相乘,然后就可以得出主成分表达式[注:因本例只是为了说明如何在SPSS进行主成分分析,故在此不对提取的主成分进行命名,有兴趣的读者可自行命名]: F 1=0.353ZX 1 +0.042ZX 2 -0.041ZX 3 +0.364ZX 4 +0.367ZX 5 +0.366ZX 6 +0.352ZX 7 +0.364ZX

spss进行主成分分析的步骤图文)

主成分分析の操作过程 原始数据如下(部分) 调用因子分析模块(Analyze―Dimension Reduction―Factor),将需要参与分析の各个原始变量放入变量框,如下图所示: 单击Descriptives按钮,打开Descriptives次对话框,勾选KMO and Bartlett’s test of sphericity选项(Initial solution选项为系统默认勾选の,保持默认即可),如下图所示,然後点击Continue按钮,回到主对话框: 其他の次对话框都保持不变(此时在Extract次对话框中,SPSS已经默认将提取公因子の方法设置为主成分分析法),在主对话框中点OK按钮,执行因子分析,得到の主要结果如下面几张表。 ①KMO和Bartlett球形检验结果: KMO为0.635>0.6,说明数据适合做因子分析;Bartlett球形检验の显着性P值为0.000<0.05,亦说明数据适合做因子分析。 ②公因子方差表,其展示了变量の共同度,Extraction下面各个共同度の值都大於0.5,说明提取の主成分对於原始变量の解释程度比较高。本表在主成分分析中用处不大,此处列出来仅供参考。 ③总方差分解表如下表。由下表可以看出,提取了特征值大於1の两个主成分,两个主成分の方差贡献率分别是55.449%和29.771%,累积方差贡献率是85.220%;两个特征值分别是3.327和1.786。 ④因子截荷矩阵如下: 根据数理统计の相关知识,主成分分析の变换矩阵亦即主成分载荷矩阵U与因子载荷矩阵A以及特征值λの数学关系如下面这个公式: 故可以由这二者通过计算变量来求得主成分载荷矩阵U。 新建一个SPSS数据文件,将因子载荷矩阵中の各个载荷值复制进去,如下图所示: 计算变量(Transform-Compute Variables)の公式分别如下二张图所示: 计算变量得到の两个特征向量U1和U2如下图所示(U1和U2合起来就是主成分载荷矩阵): 所以可以得到两个主成分Y1和Y2の表达式如下:

主成分分析和MATLAB应用

主成分分析 类型:一种处理高维数据的方法。 降维思想:在实际问题的研究中,往往会涉及众多有关的变量。但是,变量太多不但会增加计算的复杂性,而且也会给合理地分析问题和解释问题带来困难。一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同,而在很多情况下,变量间有一定的相关性,从而使得这些变量所提供的信息在一定程度上有所重叠。因而人们希望对这些变量加以“改造”,用为数极少的互补相关的新变量来反映原变量所提供的绝大部分信息,通过对新变量的分析达到解决问题的目的。 一、总体主成分 1.1 定义 设 X 1,X 2,…,X p 为某实际问题所涉及的 p 个随机变量。记 X=(X 1,X 2,…,Xp)T ,其协方差矩阵为 ()[(())(())],T ij p p E X E X X E X σ?∑==-- 它是一个 p 阶非负定矩阵。设 1111112212221122221122T p p T p p T p p p p pp p Y l X l X l X l X Y l X l X l X l X Y l X l X l X l X ?==+++? ==+++?? ??==+++? (1) 则有 ()(),1,2,...,, (,)(,),1,2,...,. T T i i i i T T T i j i j i j Var Y Var l X l l i p C ov Y Y C ov l X l X l l j p ==∑===∑= (2) 第 i 个主成分: 一般地,在约束条件 1T i i l l = 及 (,)0,1,2,..., 1. T i k i k C ov Y Y l l k i =∑==- 下,求 l i 使 Var(Y i )达到最大,由此 l i 所确定的 T i i Y l X = 称为 X 1,X 2,…,X p 的第 i 个主成分。 1.2 总体主成分的计算 设 ∑是12(,,...,)T p X X X X =的协方差矩阵, ∑的特征值及相应的正交单位化特征向量分别为 120p λλλ≥≥≥≥ 及 12,,...,,p e e e 则 X 的第 i 个主成分为

相关文档
最新文档