八上第十四章 小结与复习
新人教版八上课件 第十四章 小结与复习(2)

求证:
A
E
B
C
D
F
配套练习 等腰三角形的辅助线
5.如图,△ABC中,AB=AC,E是CA延 长线上一点,在AB上截取AF=AE。求 证:EF⊥BC。
E
A F
B
C
配套练习 等腰三角形的辅助线
6.如图,BD=DC,BF交AD与点E,交
AC与点F,AF=EF。ຫໍສະໝຸດ 求证:BE=AC。A
F E
B
C
D
知识构架
等腰三角形
生 活 轴对称
中
的
对
用坐标表示轴对称
称
轴对称变换
等边三角形 作对称轴
作轴对称图形
典型例题 线段垂直平分线性质 例1.如图,在△ABC中,DE是AC的垂 直平分线,△ABC和△ABD的周长分 别为18cm和12cm。求线段AE的长。
A
E
B
D
C
配套练习 线段垂直平分线应用
1.如图,在△ABC中,AB=AC=10,DE
垂直平分AB,△BDC的周长为17,求
BC。
A
E D
B
C
配套练习 线段垂直平分线应用
2.在△ABC中,AB>AC,M是BC的中
点,且MD⊥BC,∠A的平分线与MD
相交于点D, DE⊥AB于E, A
DF⊥AC于F。
求证:BE=CF。
E
B
M
C
F
D
配套练习 线段垂直平分线证法 3.如图, AB=AC,MB=MC,直线AM 是线段BC的垂直平分线吗?为什么?
A
M
C
B
典型例题 等腰三角形的性质
例2.如图,在△ABC中,AB=AC,AD =DE=BE,求∠A。
人教版数学八年级上册 第十四章 小结与复习

考点讲练
考点一 幂的运算
例1 下列计算正确的是 ( D )
A.(a2)3=a5
B.a ·a3=a3
C.(2a)2=2a2
D.a2 ·a3=a5
例2 计算:(2a)3(b3)2÷4a3b4. 解:原式 = 8a3b6÷4a3b4
= 2a3-3b6-4 = 2b2.
练一练
1. 下列计算不正确的是( D )
解:(1) 原式=(x+2y)(x-2y)(x2-4y2) =(x2-4y2)2 = x4-8x2y2+16y4.
(2) 原式=[a+(b-3)][(a-(b-3)] =a2-(b-3)2 =a2-b2+6b-9.
8.(惠山区期中)已知 x+y=6,x2+y2=22 ,求: (1) xy 的值;
(2) (x-y)2-4 的值.
解析:题 (1) 运用完全平方公式 (x+y)2=x2+2xy+y2 ,变形得到:2xy=(x+y)2-(x2+y2);
题 (2) 运用完全平方公式 (x-y)2=x2-2xy+y2, 已知 x2+y2 和 xy 的值,整体带入求解.
(1) xy 的值; 解:(1) 根据完全平方公式: (x+y)2=x2+2xy+y2,
A = (2x3 - 4x2 - x)÷2x
A = x2 - 2x -
5. (庐阳区校级期中)一个长方形把它的宽增加 2 cm, 长减少 3 cm ,这个长方形恰好变成一个与它等面积 的正方形,求这个长方形的周长.
解:设正方形边长为 x cm, 则长方形的宽为 (x - 2) cm,长为 (x + 3) cm, 由题意得:x2 = (x - 2)(x + 3), 解得 x = 6,则长方形宽为 4 cm、长为 9 cm, 长方形周长为 26 cm.
最新人教版初中八年级上册数学第十四章《整式的乘法与因式分解》精品教案(小结复习课)

4
3
3
3 a3b5 1 a2b4 8 a6b3
4
9
27
27 ab 8 a6b3 4 27
2a7b4.
本题源自《教材帮》
深化练习 1
整式的混合运算:
(1) 3 a3b5 (1 ab2 )2 ( 2 a2b)3;
4
3
3
(2) [(-2xy)3(2x2y)2-xy2(-4xy2)2]÷(-16x2y3) ;
本题源自《教材帮》
深化练习 1
整式的混合运算:
(1) 3 a3b5 (1 ab2 )2 ( 2 a2b)3;
4
3
3
(2) [(-2xy)3(2x2y)2-xy2(-4xy2)2]÷(-16x2y3) ;
(3) x(2x+1)-(x-3)(2x-1) .
解:(3) x(2x+1)-(x-3)(2x-1) = 2x2+x-(2x2-x-6x+3) = 2x2+x-(2x2-7x+3) = 2x2+x-2x2+7x-3 = 8x-3.
符号表示:aman=am+n (m,n都是正整数).
同底数幂的乘法的性质也适用于三个及三个以上的同底数幂相乘
amanap=am+n+p (m,n,p都为正整数).
知识梳理
幂的乘方的性质:幂的乘方,底数不变,指数相乘.
符号表示:(am)n=amn(m,n都是正整数).
同底数幂的乘法的性质也适用于三个及三个以上的同底数幂相乘
本题源自《教材帮》
1.老师引导学生归纳本课知识点。 2.师生共同反思学习心得。
教科书本课课后习题第一题。完成后同桌之 间相互订正
人教版八年级数学上册 第十四章 章末复习与小结

=(xm)3÷(xn )2
而xm=2,xn=3,故原式=
8 9
专题选讲—— 整式的化简与求值
类型一 幂的运算
练一练:已知ax=5,ay=-4,求: (1)ax-y的值; (2)a3y的值; (3)a2x+y的值.
解:(1)ax+y=ax÷ay=5÷(-4)=-1.25. (2)a3y=(ay)3=(-4)3=-64. (3)a2x+y=a2x·ay=(ax)2·ay=52×(-4)3=-100.
专题选讲—— 乘法公式的运用技巧
类型二 连续应用
例 计算: (a-b)(a+b)(a2+b2)(a4+b4)(a8+b8);
解:(a-b)(a+b)(a2+b2)(a4+b4)(a8+b8) =(a2-b2)(a2+b2)(a4+b4)(a8+b8) =(a4-b4)(a4+b4)(a8+b8) =(a8-b8)(a8+b8) =a16-b16.
专题选讲—— 乘法公式的运用技巧
类型一 整体应用
例 若a+b=3,a2+b2=7,则ab等于( B )
A.2 B.1 C.-2 D.-1
专题选讲—— 乘法公式的运用技巧
类型一 整体应用 练一练: (1)已知m+n=12,m-n=2,则m2-n2=___2_4___; (2)若(a+b+1)(a+b-1)=899,则a+b的值为_3_0_或__-3_0_.
=-m(m-5)+2(m-5) =(2-m)(m-5)
专题选讲—— 因式分解方法大全
类型二 运用公式法因式分解
人教版八年级数学上册第十四章小结与复习

第十四章 整式的乘法与因式分解 (时间:60分钟 满分:100分)一、选择题(本大题共有10小题,每小题3分,共30分) 1.下列各式运算正确的是( )A.532a a a =+B.532a a a =⋅C.632)(ab ab =D.5210a a a =÷ 2. 计算232(3)x x ⋅-的结果是( )A. 56xB. 62xC.62x -D. 56x - 3.计算32)21(b a -的结果正确的是( )A. 2441b a B.3681b a C. 3681b a - D.5318a b - 4. 44221625)(______)45(b a b a -=+-括号内应填( )A 、2245b a +B 、2245b a +C 、2245b a +-D 、2245b a -- 5.如图,阴影部分的面积是( )A .xy 27B .xy 29C .xy 4D .xy 2 6.()()22x a x ax a -++的计算结果是( ) A. 3232x ax a +- B. 33x a -C.3232x a x a +-D.222322x ax a a ++- 7.下面是某同学在一次测验中的计算摘录①325a b ab +=; ②33345m n mn m n -=-;③5236)2(3x x x -=-⋅; ④324(2)2a b a b a ÷-=-; ⑤()235a a =;⑥()()32a a a -÷-=-.其中正确的个数有( )A.1个B.2个C.3个D. 4个 8.下列分解因式正确的是( )A.32(1)x x x x -=-.B.2(3)(3)9a a a +-=-C. 29(3)(3)a a a -=+-.D.22()()x y x y x y +=+-.9. 如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ).A .0B .3C .-3D .110. 若3x =15, 3y =5,则3x y -= ( ).A .5B .3C .15D .10二、填空题(本大题共有7小题,每空2分,共16分) 11.计算(-3x 2y )·(213xy )=__________. 12.计算22()()33m n m n -+--=__________. 13.201()3π+=________14.当x __________时,(x -3)0=1. 15. 若22210a b b -+-+=,则a = ,b =校名 班级 姓名 学号密 封 线装 订 线 内 不 要 答 题16.已知4x 2+mx +9是完全平方式,则m =_________. 17. 已知5=+b a ,3ab =则22a b +=__________. 18. 定义2a b a b *=-,则(12)3**= . 三、解答题(本大题共有7小题,共54分) 19.(9分)计算:(1)34223()()a b ab ÷ (2)))(()(2y x y x y x -+-+.(3)xy xy y x y x 2)232(2223÷+--20.(12分)分解因式:(1) 12abc -2bc 2; (2) 2a 3-12a 2+18a ;(3) 9a(x -y)+3b(x -y); (4) (x +y )2+2(x +y )+1.21.(5分)先化简,再求值:()()()22x y x y x y x ⎡⎤-++-÷⎣⎦,其中x=3,y=122. (5分) 请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.2224()19a x y b +, , ,23.(8分)解下列方程与不等式(1) 3(7)18(315)x x x x-=--;(2)(3)(7)8(5)(1)x x x x+-+>+-.24. (7分)数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300-4)2=3002-2×300×(-4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.25.(8分) 下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式=(y+2)(y+6)+4 (第一步)= y2+8y+16 (第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A.提取公因式 B.平方差公式C.两数和的完全平方公式 D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.参考答案1. B;2.D;3. C;4 .D;5.A6.B;7.B;8.C.9.C10.B11.-x3y3;12.2249m n-;13.10914. ≠315.2, 116.12±;17. 1918.-219.(1)32a b;(2)222y xy+(3)2312x y xy--+20.(1)2bc(6a-c);(2)2a(a-3)2;(3) 3(x-y)(3a+b);(4) (x+y+1)2.21.x-y 222.解:答案不惟一,如291(31)(31)b b b -=+-23.(1) 3x = (2) 1x <- 24.错在“-2×300×(-4)”,应为“-2×300×4”,公式用错. ∴2962=(300-4)2=3002-2×300×4 +42=90000-2400+16 =87616.25.(1)C ;(2)分解不彻底;4(2)x -(3)4(1)x -。
最新人教版初中八年级数学上册第十四章《整式的乘法与因式分解》精品教案(小结复习课)

解:(1) (x-y)2-8(x2-y2)+16(x+y)2 = (x-y)2-8(x-y)(x+y)+[4(x+y)]2 = (x-y)2-2(x-y)∙4(x+y)+[4(x+y)]2 = [(x-y)-4(x+y)]2 = (-3x-5y)2 = (3x+5y)2 ;
解:(2) (x+2)(x-8)+25 =x2-8x+2x-16+25 =x2-6x+9 =x2-2∙x∙3+32 =(x-3)2 .
本题源自《教材帮》深化Fra bibliotek习 3计算:整数x,y满足方程 2xy+x+y=83,则 x+y 的值为多少? 解析:利用因式分解将等式变形为左边是两个整式的乘积,右边是一个整 数的形式,再求出x,y的值,进而求出x+y的值.
本题的难点是如何将2xy+x+y=83进行变形并因式分解.
本题源自《教材帮》
深化练习 3
本题源自《教材帮》
深化练习 1
若:4x2+mxy+9y2是完全平方式,则m的值为多少?
解:完全平方公式是形如 a2+2ab+b2,a2-2ab+b2 的式子, 将条件中的式子进行变形. ∵4x2+mxy+9y2=(2x)2+mxy+(3y)2,且原式是完全平方式, ∴±mxy=2∙2x∙3y. ∴m=±12.
因式分解: (1) a4-16a2 ;
解:(1) a4-16a2 = a2(a2-16) = a2(a+4)(a-4) ;
(2) -2a2b2+a3b+ab3 ;
最新年秋八年级上册第十四章-小结与复习1教学讲义ppt课件

一、面容表情
急性病容:面色潮红,兴奋不安,鼻翼扇 动,口唇疱疹,表情痛苦。多见于急性感染 性疾病,比如肺炎球菌肺炎,疟疾,流行性 脑脊髓膜炎等。注意:不是以上所有都出现 才叫急性病容,而是出现一项就可以形容是 急性病容。
二、意识形态
角弓反张:病人头项强直,腰背反折, 向后弯曲成角弓状。 循衣摸床:形容神志昏迷的病人用手 摸弄衣服或抚摸床缘的症状。 神昏谵语:患者在神志不清时妄言乱语。 手足躁动:指手足扰动不宁。 心中懊烦:胸膈间自觉有一种烧灼嘈 杂的感觉。
3.多项式除以单项式: 多项式除以单项式,就是用多项式的 每一项 除 以这个 单项式 ,再把所得的商 相加 .
自学指导二8分钟:(考点讲练)
1.下列计算正确的是( D )
A.(a2)3=a5
B.2a-a=2
C.(2a)2=4a
D.a·a3=a4
2. 计算:(2a)3(b3)2÷4a3b4.
解析:幂的混合4=2a3-3b6-4=2b2.
3.下列计算不正确的是( D )
A.2a3 ÷a=2a2
B. (-a3)2=a6
C. a4 ·a3=a7
D. a2 ·a4=a8
4. 计算:0.252015 ×(-4)2015-8100 ×0.5301.
解:原式=[0.25 ×(-4)]2015-(23)100 ×0.5300 ×0.5 =-1-(2 ×0.5)300 ×0.5 =-1-0.5=-1.5;
二、意识形态
嗜睡:指病人昏昏多睡, 难以自制。 精神恍惚:指神志似清非 清,恍恍惚惚。 狂躁怒骂:指病人狂言妄 语,手足躁扰,动
二、意识形态
精神萎靡:精神痿软,疲乏无力,懒于言 行。 嬉笑不休:指癫狂病人精神失常的一种表 现。 手撒尿遗:指中风脱症病人四肢撒开,小 便自遗。 口吐涎沫:口中吐出白色黏涎与泡沫。
八年级数学人教版(上册)第14章小结与复习

(am )n amn (m,n都是正整数)
底数不变 幂的乘方,底数__不__变__,指数___相__乘__.
侵权必究
3. 积的乘方
(ab) n = __a_n_b_n__(n_为正整数) 积的乘方,等于把积的每一个因式分别_乘__方___, 再把所得的幂__相__乘___ .
侵权必究
4. 整式的乘法
解:(1)原式=(3x)2-52 =9x2-25;
(2)原式=(-2a)2-b2 =4a2-b2;
(3)原式=(7m)2+2·7m·8n+(8n)2 (4)原式=(100+2)(100-2)
=49m2+112mn+64n2;
= 1002-22
=10000 – 4
侵权必究
考点5 因式分解 例8 下列等式从左到右的变形,属于因式分解的是( B ) A.a(x-y)=ax-ay B.x2-1=(x+1)(x-1) C.(x+1)(x+3)=x2+4x+3 D.x2+2x+1=x(x+2)+1
侵权必究
5. 乘法公式
平方差公式: (a+b)(a-b)=a2- b2. 完全平方公式: (a+b)2 = a2 +2ab+b2 (a-b)2 =a2 - 2ab+b2.
侵权必究
6. 因式分解
因式分解:把一个多项式化为几个整式的乘积的形式, 像这样的式子变形叫做把这个多项式因式分解,也叫做把这 个多项式分解因式.
侵权必究
4.先化简再求值:[(x-y)2+(x+y)(x-y)] ÷2x,其中 x=3,y=1.5.
解:原式=(x2-2xy+y2+x2-y2) ÷2x =(2x2-2xy) ÷2x =x-y.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上册
第十四章 小结与复习
课件说明
• 本章小结构建本章的知识结构,形成知பைடு நூலகம்体系;围 绕本节课的重点,通过典型例题,促使学生在理解 乘法公式结构的基础上灵活运用乘法公式进行计算、 因式分解和解决实际问题.
课件说明
• 学习目标: 1.熟练掌握幂的运算性质、整式的运算,进行准 确的计算. 2.提高对公式、法则的应用能力.体会整体带入 和转化的思想方法,感受数学的应用价值. • 学习重点: 复习整式乘法法则和因式分解,建立本章知识结构.
知识梳理
问题2 因式分解: 2 2 (1) 25 x -16 y ;
( 2) (a -b) (x-y)( - b-a) (x+y); 2 2 a 4 ab + 4 b ; ( 3) 2 4 + 12 ( x y )( + 9 x y ) . ( 4)
知识梳理
在上述因式分解的过程中,你能说说运用到哪几种 分解因式的方法?在因式分解的过程中需要注意哪些事 项?你能举例说明因式分解与整式乘法之间的关系吗?
体系建构
本章知识结构图:
整式乘法 整式除法
乘法公式 因式分解
典型例题
例1 计算: ( 1) (-5m+3m) (-5m-3m); 2 2 2 2 ( a 2 ) ( a + 2 ) ( a + 4 ) ; ( 2) 2 2 3 2 (3a+ b)-(3a- b) ; ( 3) 7 7 ( 4) (2 x-3 y+1) (- 2 x+3 y+1).
练习2 某种产品的原料提价,因而厂家决定对产 品进行提价,现有三种方案: 方案1:第一次提价p%,第二次提价q%;
方案2:第一次提价q%;第二次提价p%; p+q 方案3:第一、二次提价均为 %. 2 其中,p、q 是不相等的正数.三种方案哪种提价 最多?
课堂小结
(1)本节课复习了哪些主要内容? (2)你有哪些收获?你觉得还有什么需要注意的地 方? (3)结合本课复习的过程,你认为体现了哪些数学 思想方法?
知识梳理
问题1 计算下列各题并思考:下列各题中都运用 到我们学过的哪些运算法则?它们之间有怎样的关系? 2 3 (- 2 x 2 y 3) ( xy) ; ( 1) ( 2) (2a+3b) (2a-b); 2 ( x+1 ) (x-1); ( 3) 5 x 2 (2 x+3 y -1) ; ( 4) 2 7 5 3 2 5 (5)(- a b ) a b ; 3 2 2 3 3 2 2 2 (6)(7 x y -8 x y z) 8 x y .
典型例题
例4 计算: (1) 0.252010×(-4)2011×0.1252012 ×(-8)2013; (2) 5022-4982.
拓广探究
练习1 已知a、b、c 为三角形的三边长,且满足 a 2 +b 2 +c 2 +50=6a+8b+10c ,试判断三角形的形状,并说 明理由.
拓广探究
布置作业
教科书复习题14第4、5、7、8题.
典型例题
例2 因式分解: ( 1) 16 x 4 -1; 3 2 (2)a -10a + 25a; 2 m (3) - 4m-12.
典型例题
例3 化简求值. ( 1) (a- 2) (a+ 2)( -a a- 2),其中 a=-1 ; 2 2 ( x + y ) = 25 ,( x y ) =9 ,求 xy 和 x 2 +y 2 的值. (2)已知