2019-2020年高中数学 11.3《相互独立事件同时发生的概率·第一课时》教案 旧人教版必修

2019-2020年高中数学 11.3《相互独立事件同时发生的概率·第一课时》教案 旧人教版必修
2019-2020年高中数学 11.3《相互独立事件同时发生的概率·第一课时》教案 旧人教版必修

2019-2020年高中数学 11.3《相互独立事件同时发生的概率·第一课时》

教案旧人教版必修

●课时安排

3课时

●从容说课

本节研究的是相互独立事件.事件间的“互斥”与“相互独立”是两个不同的概念.互斥是指两个事件不可能同时发生,两事件相互独立是指一个事件的发生与否对另一事件发生的概率没有影响.

若设A、B是两个事件,则A·B表示A与B同时发生的事件.本章只研究当两个事件相互独立时,它们的概率的求法.

本节的主要内容为相互独立事件同时发生的概率的乘法公式以及独立重复试验的概率公式.

对这两个公式的准确理解与正确应用是本节的重点;难点是了解这两个公式的推导.

11.3.1 相互独立事件同时发生的概率(一)

●教学目标

(一)教学知识点

1.相互独立事件的意义.

2.相互独立事件同时发生的概率乘法公式.

(二)能力训练要求

1.理解相互独立事件的意义,注意弄清事件的“互斥”与“相互独立”是两个不同的概率.

2.掌握相互独立事件同时发生的概率乘法公式.

(三)德育渗透目标

1.培养学生分析问题、解决问题的能力.

2.提高学生的科学素质.

●教学重点

1.相互独立事件的概念:

若事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件.

2.事件之间的“互斥”与“相互独立”的区别:

互斥事件是指不可能同时发生的两个事件;

相互独立事件是指一事件的发生与否对另一事件发生的概率没有影响.

3.若事件A与B是相互独立事件,那么A与,与B,也是相互独立事件.

4.相互独立事件同时发生的概率乘法公式:

如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率

P(A1·A2·……·A n) =P(A1)·P(A2)·…·P(A n).

●教学难点

事件的“相互独立性”的判定.

●教学方法

引导法

引导学生逐步认识相互独立事件及其同时发生的概率.

●教学过程

Ⅰ.复习回顾

[师]请同学回忆一下有关互斥事件的主要内容.

[生]互斥事件:不可能同时发生的事件;对立事件:不可能同时发生,且必有一事件发生.

若A与B为互斥事件,则A、B中有一个发生的概率P(A+B)=P(A)+P(B);

若A与为对立事件,则P(A)+P()=1.

Ⅱ.讲授新课

现在,请同学们来看这样一个问题:

甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,若从这两个坛子里分别摸出1个球,则它们都是白球的概率是多少?

(引导学生分析)

[师]首先,我们发现,这一试验与我们前面所研究的试验有所不同的是:这里有两个坛子,从中分别取一球,可视为做一次试验,需分两步完成,且从一个坛子中取一球是白球还是黑球,对从另一个坛子里摸出一球是白球还是黑球没有任何影响.

若记:“从甲坛子里摸出1个球,得到白球”为事件A,记:“从乙坛子里摸出1个球,得到白球”为事件B,则事件A(或B)是否发生对事件B(或A)发生的概率没有影响,也就是说事件A(或B)的发生是独立的,不受事件B(或A)的发生与否的限制.

[师]那么,我们不妨将像这样的事件A(或B)是否发生对事件B(或A)发生的概率没有影响的两个事件叫做相互独立事件.

例如,在上述问题中,事件是指“从甲坛子中摸出1个球,得到黑球”,事件是指“从乙坛子中摸出1个球,得到黑球”,不难判断,事件A与,与B,与也都是相互独立的.

一般地,如果事件A与B相互独立,那么A与,与B,与也都是相互独立的.

[师]看来,若记:“从两个坛子里分别摸出1个球,都是白球”是一个事件,那么它的发生,就是事件A、B同时发生,不妨记作A·B.于是想要研究事件A·B发生的概率P(A·B),则需研究上述两个相互独立事件A、B同时发生的概率.

[师]请同学们根据我们所掌握的知识,试着分析……(也可分组讨论)

[生]从甲坛子中摸出1个球,有5种等可能的结果;从乙坛子中摸出1个球,有4种等可能的结果.于是从两个坛子里各摸出1个球,根据分步计数原理,可知共有5×4种等可能的结果,表示如下(其中每个结果的左、右分别表示从甲、乙坛子里取出的球的颜色):(白,白)(白,白)(白,黑)(白,黑)(白,白)

(白,白)(白,黑)(白,黑)(白,白)(白,白)

(白,黑)(白,黑)(黑,白)(黑,白)(黑,黑)

(黑,黑)(黑,白)(黑,白)(黑,黑)(黑,黑)

在上面的5×4种结果中,从甲坛子里摸出白球的结果有3种,从乙坛子里摸出白球的结果有2种,同时摸出白球的结果有3×2种.因此,从两坛子里分别摸出1个球,都是白球的概率P(A·B)=.

而从甲坛子里摸出1个球,得到白球的概率P(A)=,从乙坛子里摸出1个球,得到白球的概率P(B)=.

不难发现,,

即P(A·B)=P(A)·P(B).

也就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积.

进而可知:一般地,如果事件A1,A2,…,A n相互独立,那么这几个事件同时发生的概率,等于每个事件发生的概率的积,即

P(A1·A2·…·A n) =P(A1)·P(A2)·…·P(A n).

例如,在上面的问题中,“从两个坛子里分别摸出1个球,都是黑球”这一事件的发生,就是事件、同时发生,可记作·,其概率

P(·)=P()·P()=×=.

“从甲坛子里摸出1个球,得到黑球”与“从乙坛子里摸出1个球,得到白球”同时发生的概率

P(·)=P()·P(B)=×=.

“从甲坛子里摸出1个球,得到白球”与“从乙坛子里摸出1个球,得到黑球”同时发生的概率

P(A·)=P(A)·P()=×=.

“从两个坛子里分别摸出1个球,得到1个白球和1个黑球”的概率

P(A·)+P(·B)=.

“从两个坛子里分别摸出1个球,得到两个白球或两个黑球”的概率

P(·)+P(A·B)=.

“从两个坛子里分别摸出1个球,得不到两个白球”的概率

P(·)+P(A·)+P(·B) =,

或1-P(A·B)=1-.

Ⅲ.课堂练习课本P136练习1.

[生](回答)“在先摸出白球的情况下,再摸出白球”,是从装有1个白球,2个黑球的口袋中摸出1个白球,这时事件B的概率为;“在先摸出黑球的情况下,再摸出白球”,是从装有2个白球,1个黑球的口袋中摸出1个白球,这时事件B的概率为.

[师]这就是说,事件A发生与否对事件B发生的概率有影响,因此事件A与B不相互独立.

Ⅳ.课时小结

要学会对事件的“相互独立性”的判定,要会用相互独立事件同时发生的概率公式求一些事件的概率.

Ⅴ.课后作业

(一)课本P139习题11.3 1、2、3.

(二)1.预习:课本P130~P132.

2.预习提纲:

如何综合应用互斥事件的加法公式和相互独立事件的乘法公式解决一些较复杂的事件的概率计算问题?

b6相互独立事件概率求解

本文为自本人珍藏 版权所有 仅供参考 本文为本人珍藏,有较高的使用、参考、借鉴价值!! 本文为本人珍藏,有较高的使用、参考、借鉴价值!! 相互独立事件概率问题求解辨析 焦景会 055350 河北隆尧一中 事件A 、B 是相互独立事件,当且仅当事件A 和B 是否发生,相互之间没有影响。如果事件A 与B 相互独立,那么A 与B 、A 与B 、A 与B 也都是相互独立的。尤其在涉及“至多”或“至少”问题时,常先求此事件的对立事件的概率,再利用公式()1()P A P A =-求出所求事件的概率。这种解法,称为逆向思考方法。下面就相互独立事件概率问题举例分析如下。 一、 反面求解相互独立事件同时发生的概率 例1、加工某零件需3道工序,设第1、2、3道工序出现次品的概率分别为0.02,0.03,0.05,假设三道工序互不影响,求加工出来的零件是次品的概率。 解:由题中“三道工序互不影响”,可判定1、2、3道工序出现次品的事件是相互独立事件,可用相互独立事件的乘法公式。 设A=“加工出来的零件是次品”,i A =“第i 道工序出现次品”,则123A A A A =??, 由于三道工序互不影响,123()()()()P A p A P A P A ∴=??=(1-0.12)(1-0.03)(1-0.05)=0.90307。所以 ()1()10.903070.09693P A P A =-=-=。 点评:两个或多个相互独立事件同时发生的概率等于每个事件发生的概率积,结合“对立事件的概率和为1”,先求其对立事件的概率,然后再求原事件概率,采用这种解法可使问题变得简易。 二、用排列组合思想理解相互独立事件的概率 例2、甲乙两人各投篮3次,每次投中得分概率为0.6,0.7,求甲乙两人得分相同的概率。 解: 甲乙两人得分相同可以有;甲乙都中0、1、2、3次共四种情况。设甲投中0、1、2、3次概率分别为0123A A A A 、、、,乙投中0、1、2、3次概率分别为 0123B 、B 、B 、B , 则 0012233()()()()P P A B P A B P A B P A B =+++ 1 1 2 2 3 3 2 2 2 2 3 33 30.40.30.60.40.70.30.60.40.70.3C C C C =?+ ???+???3 30.60.70.321+?=。 点评:全面考虑各种可能性,然后利用公式()(1)k k n k n n P k p p C -=-。 三、通过分类或分步将复杂事件分解为简单事件

高考数学中的29个问题_理科数学问题

高考数学中的29个问题 一、主干部分 (一)三角函数 (1)三角函数的化简与求值 要求:掌握基本公式:三角函数的定义,同角三角函数的关系,诱导公式,两角和与差的三角函数,倍角公式,辅助角公式。化简思想:切割化弦,降幂思想,统一角思想,角的代换 (2)三角函数的图像与性质注意:会做基本三角函数的图像,掌握正弦,余弦,正切函数的图像及单调性,奇偶性,周期性,对称性 (3)正余弦定理的应用注意:掌握正余弦定理,边角的转换思想, (二)数列 (1)等差等比数列,掌握等差等比数列基本量的计算,性质的应用,证明,等差和的最值,等比积的最值的性质,找规律 (2)数列通项利用和与项的关系求通项利用递推公式求通项 (3)数列求和.求和原则:通项特征决定求和方法。 掌握基本的求和方法(1)公式法:(2)分组求和法(3)错位相减法: (4)裂项相消法:(5)并项求和:(6)倒序相加法: (三)统计与概率 (1)统计掌握抽样方法,频率分布直方图,茎叶图中均值,方差,中位数,众数的求法,统计案例独立性检验,线性回归方程 (2)概率与分布列注意:会求基本事件的概率(古典概型,几何概型,条件概率),互斥事件,相互独立事件,独立重复试验概率的求法 注意超几何分布,二项分布的区别,理解正态分布 (四)立体几何 (1)三视图,球的切接问题 (2)平行与垂直的判定与性质,注意直线与平面平行,面面平行的判定与性质,直线与直线垂直,线面垂直,面面垂直的判定与性质 (3)空间角的求法,会用空间向量求角(异面直线,直线与平面,二面角) (五)解析几何 (1)直线与圆 (2)圆锥曲线的概念与性质注意椭圆,双曲线,抛物线的定义,中点弦问题,抛物线中焦点弦的性质

随机变量条件概率与事件相互独立

2. 2.1条件概率 一、复习引入: 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 若抽到中奖奖券用“Y ”表示,没有抽到用“ Y ” ,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y ,Y Y Y 和 Y Y Y .用 B 表示事件“最后一名同学抽到中奖奖券” , 则 B 仅包含一个基本事件Y Y Y .由古典概型计算公式可 知,最后一名同学抽到中奖奖券的概率为1()3 P B = . 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少? 因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y 和Y Y Y .而“最后一名同学抽到中奖 奖券”包含的基本事件仍是Y Y Y .由古典概型计算公式可知.最后一名同学抽到中奖奖券的概率为 1 2 ,不妨记为P (B|A ) , 其中A 表示事件“第一名同学没有抽到中奖奖券”. 已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢? 在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件 A 一定会发生,导致可能出现的基本事件必然在事件 A 中,从而影响事件 B 发生的概率,使得 P ( B|A )≠P ( B ) . 思考:对于上面的事件A 和事件B ,P ( B|A )与它们的概率有什么关系呢? 用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y , Y Y Y ,Y Y Y } .既然已知事件A 必然发生,那么只需在A={Y Y Y , Y Y Y}的范围内考虑问题,即只有两个基本事件Y Y Y 和Y Y Y .在事件 A 发 生的情况下事件B 发生,等价于事件 A 和事件 B 同时发生,即 AB 发生.而事件 AB 中仅含一个基本事件Y Y Y ,因 此 (|)P B A = 12=() () n AB n A . 其中n ( A )和 n ( AB )分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式, ()() (),()()() n AB n A P AB P A n n = =ΩΩ 其中 n (Ω)表示Ω中包含的基本事件个数.所以, (|)P B A =()()()() ()()()() n AB n AB P AB n n A n P n Ω==ΩΩΩ. 因此,可以通过事件A 和事件AB 的概率来表示P (B| A ) . 条件概率 1.定义 设A 和B 为两个事件,P(A )>0,那么,在“A 已发生”的条件下,B 发生的条件概率(conditional probability ). (|)P B A 读作A 发生的条件下 B 发生的概率.

相互独立事件的概率

第79课 相互独立事件的概率 ●考试目标 主词填空 1.如果事件A (或B )是否发生的对事件B (或A )发生的概率没有影响,那么这样的事件叫做相互独 立事件.相互独立事件A 和B 同时发生,记作A ·B,其概率由相互独立事件概率的乘法公式: P (A ·B)=P(A)·P(B). 2.“互斥”事件A 与B ,要记住其判别的依据是A ∩B=;而“相互独立”事件A 与B ,是指它们中的任何一个发生与否对另一个事件发生的概率没有“影响”. 3.如果在1次试验中,某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次 的概率. P n (k )=k n k k n P P C --)1(. ● 题型示例 点津归纳 【例1】 甲、乙两人各进行一次射击,如果两人击中目标的概率是0.8.计算: (1)两人都击中目标的概率; (2)其中恰有1人击中目标的概率; (3)至少有1人击中目标的概率. 【解前点津】 “两人都击中目标”是事件A ·B ;“恰有1人击中目标”是A ·A B 或·B ;“至少有1人击中目标”是A ·B 或A ·A B 或·B . 【规范解答】 我们来记“甲射击一次击中目标”为事件A ,“乙射击一次击中目标”为事件B . (1)显然,“两人各射击一次,都击中目标”就是事件A ·B ,又由于事件A 与B 相互独立. ∴ P (A ·B )=P (A )·P (B )=0.8×0.8=0.64. (2)“两个各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A ·B ),另一种是甲未击中乙击中(即A ·B ),根据题意这两种情况在各射击一次时不可能同时发生,即事件A ·A B 与·B 是互斥的,所以所求概率为: P =)()()()()()(B P A P B P A P B A P B A P ?+?=?+? =0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32. (3) “两人各射击一次,至少有一人击中目标”的概率为: P =P (A ·B)+[P (A ·A P B ()+·B)]=0.64+0.32=0.96. 【解后归纳】 本题考查应用相互独立事件同时发生的概率的有关知识的正确应用. 【例2】如图,电路由电池A 、B 、C 并联组成.电池A 、B 、C 损坏的概率分别是0.3、0.2、0.2,求电路断电的概率. 【解前点津】 可规定A =“电池A 损坏”,B =“电池B 损坏”,C =“电池C 损坏”.这样,就有事

相互独立事件同时发生的概率典型例题

典型例题 例1 掷三颗骰子,试求: (1)没有一颗骰子出现1点或6点的概率; (2)恰好有一颗骰子出现1点或6点的概率. 分析:我们把三颗骰子出现1点或6点分别记为事件,由已知,是相互独立事件.问题(1)没有1颗骰子出现1点或6点相当于,问题(2)恰有一颗骰子出现1点或6点可分为三类:,三个事件为互斥事件.问题(1)可以用相互独立事件的概率公式求解,问题(2)可以用互斥事件的概率公式求解. 解:记“第1颗骰子出现1点或6点”为事件,由已知是相互独立事件,且. (1)没有1颗骰子出现1点或6点,也就是事件全不发生,即事件,所以所求概率为: . (2)恰好有1颗骰子出现1点或6点,即发生不发生不发生或 不发生发生不发生或不发生不发生发生,用符号表示为事件 ,所求概率为:

说明:再加上问题:至少有1颗骰子出现1点或6点的概率是多少我们逆向思考,其对立事件为“没有一颗骰子出现1点或6点,即问题(1)中的事件, 所求概率为,在日常生活中,经常遇到几个独立事件,要求出至少有一个发生的概率,比如例1中的至少有1个人译出密码的概率,再比如:有两门高射炮,每一门炮击中飞机的概率都是,求同时发射一发炮弹,击中飞机的概率是多少把两门炮弹击中飞机分别记为事件A与B,击中飞机即 A与B至少有1个发生,所求概率为 . 例2 某工厂的产品要同时经过两名检验员检验合格方能出厂,但在检验时也可能出现差错,将合格产品不能通过检验或将不合格产品通过检验,对于两名检验员,合格品不能通过检验的概率分别为,不合格产品通过检验的概率分别为,两名检验员的工作独立.求:(1)一件合格品不能出厂的概率,(2)一件不合格产品能出厂的概率. 分析:记“一件合格品通过两名检验员检验”分别记为事件和事件,问题(1)一件合格品不能出厂相当于一件合格品至少不能通过一个检验员检验,逆向考虑,其对立事件为合格品通过两名检验,即发生,而的概率可以用相互独立事件的概率公式求解.我们把“一件不合格品通过两名检验员检验”分别记为事件和事件,则问题(2)一件不合格品能出厂相当于一件不合格品同时通过两名检验员检验,即事件发生,其概率可用相互独立事件概率公式求解. 解:(1)记“一件合格品通过第i名检验员检验”为事件,“一件合格品不能通过检验出厂”的对立事件为“一件合格品同时通过两名检验员检验”,即事件发生.

【高考数学专题复习】专题10.2 事件的相互独立性(原卷版)

10.2 事件的相互独立 运用一对立与互斥事件 【例1】(1)(2019秋?红岗区校级期末)袋中装有3个黑球、2个白球、1个红球,从中任取两个,互斥而不对立的事件是() A.“至少有一个黑球”和“没有黑球” B.“至少有一个白球”和“至少有一个红球” C.“至少有一个白球”和“红球黑球各有一个” D.“恰有一个白球”和“恰有一个黑球” (2)(2019秋?红山区校级月考)若颜色分别为红,黑,白的三个球随机得分布给甲、乙、丙3人,每人分 得1个球,事件“甲分得红球”与事件“乙分得红球”是() A.对立事件B.不可能事件C.互斥事件D.必然事件 【举一反三】 1.(2019秋?保定月考)学校将5个不同颜色的奖牌分给5个班,每班分得1个,则事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是() A.对立事件B.不可能事件 C.互斥但不对立事件D.不是互斥事件 2.(2019秋?岳麓区校级月考)甲、乙两人对同一个靶各射击一次,设事件A=“甲击中靶”,事件B=“乙击中靶”,事件E=“靶未被击中”,事件F=“靶被击中”,事件G=“恰一人击中靶”,对下列关系式(表示A的对立事件,表示B的对立事件):①,②F=AB,③F=A+B,④G=A+B,⑤, ⑥P(F)=1﹣P(E),⑦P(F)=P(A)+P(B).其中正确的关系式的个数是()

A.3 B.4 C.5 D.6 3.(2019秋?天心区校级期中)从装有2个白球和3个黑球的口袋内任取两个球,那么下列事件中是互斥而不对立的事件是() A.“恰有两个白球”与“恰有一个黑球” B.“至少有一个白球”与“至少有一个黑球” C.“都是白球”与“至少有一个黑球” D.“至少有一个黑球”与“都是黑球” 运用二独立事件的计算 【例2】(1)(2019秋?武邑县校级月考)从一箱产品中随机抽取一件,设事件A={抽到一等品},事件B={抽到二等品},且已知P(A)=0.65,P(B)=0.2,则事件“抽到的不是一等品”的概率为()A.0.8 B.0.6 C.0.35 D.0.2 (2)(2018秋?太原期末)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,则P()=()A.0.5 B.0.1 C.0.7 D.0.8 【举一反三】 1.(2019春?红岗区校级期末)袋中有6个不同红球、4个不同白球,从袋中任取3个球,则至少有两个白球的概率是() A.B.C.D. 2.(2019春?锦州期末)已知随机事件A和B互斥,且P(A∪B)=0.5,P(B)=0.3,则P()=()A.0.5 B.0.2 C.0.7 D.0.8 3.(2019春?潍坊期末)甲队和乙队进行足球比赛,两队踢成平局的概率是,乙队获胜的概率是,则甲队不输的概率是() A.B.C.D. 4.(2019春?三明期末)已知随机事件A,B,C中,A与B互斥,B与C对立,且P(A)=0.3,P(C)= 0.6,则P(A+B)=() A.0.3 B.0.6 C.0.7 D.0.9 1.(2018秋?南平期末)一箱产品中有正品4件,次品2件,从中任取2件,以下事件:①恰有1件次品和

条件概率独立事件习题

条件概率与独立事件习题课 1.抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”则P(B|A)的值为() A . B . C . D . 2.从1~9这9个正整数中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)=()A .B .C .D . 3.10件产品中有5件次品,从中不放回的抽取2次,每次抽1件,已知第一次抽出的是次品,则第二次抽出的是正品的概率() A . B . C . D . 4.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为和P,且甲、乙两人各射击一次得分之和为2的概率为.假设甲、乙两人射击互不影响,则P值为() A . B . C . D . 5.若甲以10发8中,乙以10发6中,丙以10发7中的命中率打靶,三人各射击一次,则三人中只有一人命中的概率是.二.解答题 6.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示. (1)根据频率分布直方图,求重量超过505克的产品数量. (2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列. (3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.(删)

7.2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机动车车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表: 年龄(岁)[15, 25)[25, 35) [35, 45) [45, 55) [55, 65) [65, 75] 频数510151055 赞成人数469634 (Ⅰ)完成被调查人员的频率分布直方图; (Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列8.盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布. 9.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立. (Ⅰ)求甲在3局以内(含3局)赢得比赛的概率; (Ⅱ)记X为比赛决出胜负时的总局数,求X的分布列.

高中数学复习典型题专题训练122---独立性检验

高中数学复习典型题专题训练122 .独立性检验 1.两个变量之间的关系; 常见的有两类:一类是确定性的函数关系;另一类是变量间存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有一定随机性的.当一个变量取值一定时,另一个变量的取值带有一定随机性的两个变量之间的关系叫做相关关系. 2.散点图:将样本中的n 个数据点()(12)i i x y i n =L ,,,,描在平面直角坐标系中,就得到了散点图. 散点图形象地反映了各个数据的密切程度,根据散点图的分布趋势可以直观地判断分析两个变量的关系. 3.如果当一个变量的值变大时,另一个变量的值也在变大,则这种相关称为正相关;此时,散点图中的点在从左下角到右上角的区域. 反之,一个变量的值变大时,另一个变量的值由大变小,这种相关称为负相关.此时,散点图中的点在从左上角到右下角的区域. 散点图可以判断两个变量之间有没有相关关系. 4.统计假设:如果事件A 与B 独立,这时应该有()()()P AB P A P B =,用字母0H 表示此式,即0:()()()H P AB P A P B =,称之为统计假设. 5.2χ(读作“卡方”)统计量: 统计学中有一个非常有用的统计量,它的表达式为2 2 112212211212 ()n n n n n n n n n χ++++-=,用它的大小可以 用来决定是否拒绝原来的统计假设0H .如果2χ的值较大,就拒绝0H ,即认为A 与B 是有关的. 2χ统计量的两个临界值:3.841、6.635;当2 3.841χ>时,有95%的把握说事件A 与B 有关;当2 6.635χ>时,有99%的把握说事件A 与B 有关;当2 3.841χ≤时,认为事件A 与B 是无关的. 独立性检验的基本思想与反证法类似,由结论不成立时推出有利于结论成立的小概率事件发生,而小概率事件在一次试验中通常是不会发生的,所以认为结论在很大程度上是成立的. 1.独立性检验的步骤:统计假设:0H ;列出22?联表;计算2χ统计量;查对临界值表,作出判断. 2.几个临界值:222()0.10( 3.841)0.05( 6.635)0.01P P P χχχ≈≈≈≥2.706, ≥,≥. 22?联表的独立性检验: 如果对于某个群体有两种状态,对于每种状态又有两个情况,这样排成一张22?的表,如下: 知识内容 板块五.独立性检验

事件的独立性与条件概率专题

1.口袋内装有100个大小相同的红球、白球和黑球,其中红球有45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( ) A .0.31 B .0.32 C .0.33 D .0.36 2.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,在第1次抽到文科题的条件下,第2次抽到理科题的概率为( ) A.12 B.35 C.34 D.310 3.打靶时甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是( ) A.35 B.34 C.1225 D.1425 4.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率为 ( ) A.310 B.13 C.38 D.29 5.(优质试题·济南质检)优质试题年国庆节放假,甲去北京旅游的概率为13 ,乙,丙去北京旅游的概率分别为14,15 .假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北

京旅游的概率为( ) A.5960 B.35 C.12 D.160 6.(优质试题·合肥月考)周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.8,做对两道题的概率为0.6,则预估计做对第二道题的概率为( ) A .0.80 B .0.75 C .0.60 D .0.48 7.从应届毕业生中选拔飞行员,已知该批学生体型合格的概率为13,视力合格的概率为16 ,其他几项标准合格的概率为15 ,从中任选一名学生,则该学生三项均合格的概率为(假设三次标准互不影响)( ) A.49 B.190 C.45 D.59 8.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) A.12 B.13 C.14 D.25 二、填空题 9.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625 ,则该队员每次罚球的命中率为________. 10.袋中有三个白球,两个黑球,现每次摸出一个球,不放回地摸取两次,则在第一次摸到黑球的条件下,第二次摸到白球的概率为________. 11.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队每局获胜的概率相同,则甲队获得冠军的概率为________. 12.在一段时间内,甲去某地的概率是14,乙去此地的概率是15 ,假定两人的行动相互之间没有影响,那么在这段时间内至少有一人去此地的概率是________.

相互独立事件与概率的乘法公式

相互独立事件与概率的乘法公式 说课人:董新森 工作单位:东平县职业中专 时间:2007年5月22日

“相互独立事件与概率的乘法公式”说课稿 一、教材分析 1、教材所处的地位和作用 本节课是概率的第三个计算公式,是在学习了互斥事件和概率的加法公式后而引入的,是对概率计算公式的进一步研究,同时又为下一步学习独立重复试验概率的计算奠定了知识和方法基础。 2、教学目标 (1)能正确区分互斥事件和相互独立事件,会用乘法公式解决简单问题。 (2)在归纳总结乘法公式过程中,进一步提高由特殊推测一般的合情推理能力。 (3)通过教师指导下的学生探索归纳活动,激发学生学习的兴趣,使学生经历数学思维过程,获得成功的体验。 3、教学重点与难点 教学重点:概率的乘法公式的应用 教学难点:区分互斥事件和相互独立事件 二、教学和学法 本节课采用启发探究式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、归纳、总结的学习方法,让学生经历数学知识的应用过程。

三、教学过程设计 1、从数学问题引入探究主题 若事件A={甲同学的生日是5月份},B={乙同学的生日是5月份},则A∩B={甲和乙的生日都是5月份} 问题:(1)说出事件A和事件B是否为互斥事件,为什么? (引出相互独立事件的概念) (2)试计算P(A)、P(B)、P(A∩B)。 (3)试分析P(A)、P(B)、P(A∩B)三者之间关系。 (4)试举出几个相互独立事件的例子。 2、发现规律 从以上事例中引导学生观察、分析、归纳 P(A∩B)=P(A)×P(B) 一般地说,如果事件A1,A2,…A n相互独立,那么这几个事件

高考数学1.2独立性检验专题1

高考数学1.2独立性检验专题1 2020.03 1,若双曲线1922=-m y x 的渐近线方程为x y 35±=,则双曲线的焦点F 到渐近 线的距离为 。 2,已知数列{}n a 中,21=a ,且n a a n n +=-1(2)n ≥,求这个数列的第m 项m a 的值(2)m ≥.现给出此算法流程图的一部分请将空格部分(两个)填上适当的内容;用“For ”循环语句写出对应的算法;若输出5051=S ,则输入的m 的值是多少? 3,已知两正数a、b满足:1622=+b a ,则ab 的最大值是 A .2 B .4 C .8 D .16

4,若实数a 、b 满足函数1412131)(223+--+=x b ax x x f 在(-∞,+∞)为增函数,则a+b>1的概率是__________。 5,函数x x y ln =的单调递减区间是__________________。 6,设p :方程221122x y m m +=-+表示双曲线;q :函数 324()()63g x x mx m x =++++在R 上有极值点.求使“p 且q ”为真命题的实数m 的取值范围. 7,“ 18a =”是“命题:p ),0(+∞∈?x ,21a x x +≥为真命题”的 ___________________条件。 8,不等式0)2(>-x x 的解集是 A .(-∞,2) B .(0,2) C .(-∞,0) D .(-∞,0)∪(2,+∞) 9,抛物线的顶点在原点,准线是x=4,它的标准方程是 A .x y 162-= B .y x 162-= C .x y 82-= D .y x 82= 10,一个算法的流程图如图所示,则输出S 为________。 11,数列}{n a 满足:n n n a a a +=++12, a 1=1,a 2=2,则该数列前5项之和为 A .11 B .18 C .19 D .31 12,设曲线),0(:≥=x x y C 直线0=y 及直线t x =)0(>t 围成的封闭图形的

第54讲 条件概率与事件的独立性、正态分布-新高考数学一轮专题复习(新高考专版)

第54讲条件概率与事件的独立性、正态分布 一、考情分析 1.理解样本点和有限样本空间的含义,理解随机事件与样本点的关系; 2.了解随机事件的并、交与互斥的含义,能结合实例进行随机事件的并、交运算; 3.理解概率的性质,掌握随机事件概率的运算法则; 4.会用频率估计概率. 二、知识梳理 1.条件概率及其性质 2. (1)相互独立的定义:事件A是否发生对事件B发生的概率没有影响,即P(B|A)=P(B).这时,称两个事件A,B相互独立,并把这两个事件叫做相互独立事件. (2)概率公式 3. (1)完备事件组: 设Ω是试验E的样本空间,事件A1,A2,…,A n是样本空间的一个划分,满足: ①A1∪A2∪…∪A n=Ω. ②A1,A2,…,A n两两互不相容,则称事件A1,A2,…,A n组成样本空间Ω的一个完备事件组. (2)全概率公式

设S 为随机试验的样本空间,A 1,A 2,…,A n 是两两互斥的事件,且有P (A i )>0,i =1,2,…,n ,∪n i =1A i =S ,则对任一事件B ,有P (B )= i =1 n P (A i )P (B |A i )称满足上述条件的A 1,A 2,…,A n 为完备事件组. 4.独立重复试验与二项分布 (1)独立重复试验 ①定义:在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验. ②概率公式:在一次试验中事件A 发生的概率为p ,则n 次独立重复试验中,事件A 恰好发生k 次的概率为P n (k )=C k n p k (1-p ) n -k (k =0,1,2,…,n ). (2)二项分布:在n 次独立重复试验中,事件A 发生的次数设为X ,事件A 不发生的概率为q =1 -p ,则n 次独立重复试验中事件A 恰好发生k 次的概率是P (X =k )=C k n p k q n -k ,其中k =0,1,2,…,n .于是X 的分布列: X ~B (n ,p ). 5.正态分布 (1)正态曲线:正态变量的概率密度函数的图象叫做正态曲线,其函数表达式为f (x )= 12π·σ e - (x -μ)2 2σ2 ,x ∈R (其中μ,σ为参数,且σ>0,-∞<μ<+∞). (2)正态曲线的性质 ①曲线位于x 轴上方,与x 轴不相交,与x 轴之间的面积为1; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值 1 σ2π ; ④当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. (3)正态总体在三个特殊区间内取值的概率值 ①P (μ-σ

高中数学第一册(上)相互独立事件的概率

高三数学第一轮复习讲义(74) 2005.1.8 相互独立事件的概率 一.复习目标: 1.了解相互独立事件的意义,会求相互独立事件同时发生的概率; 2.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 二.知识要点: 1.相互独立事件的概念: . 2.,A B 是相互独立事件,则()P A B ?= . 3.1次试验中某事件发生的概率是P ,则n 次独立重复试验中恰好发生k 次的概率是 . 三.课前预习: 1.下列各对事件 (1)运动员甲射击一次,“射中9环”与“射中8环”, (2)甲、乙二运动员各射击一次, “甲射中10环”与“乙射中9环”, (3)甲、乙二运动员各射击一次, “甲、乙都射中目标”与,“甲、乙都没有射中目标”, (4)甲、乙二运动员各射击一次, “至少有一人射中目标”与,“甲射中目标但乙没有射中目标”,是互斥事件的有 (1),(3) .相互独立事件的有 (2) . 2.某射手射击一次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论: ①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是30.90.1?; ③他至少击中目标1次的概率是410.1-,其中正确结论的序号 ①③ . 3.100件产品中有5件次品,从中连续取两次,(1)取后不放回,(2)取后放回,则两次都取合格品的概率分别是 893990 、 361400 . 4.三个互相认识的人乘同一列火车,火车有10节车厢,则至少两人上了同一车厢的概率是 ( ) ()A 29200 ()B 725 ()C 7125 ()D 718 5.口袋里装有大小相同的黑、白两色的手套,黑色手套15只,白色手套10只,现从中随机地取出两只手 套,如果两只是同色手套则甲获胜,两只手套颜色不同则乙获胜,则甲、乙获胜的机会是 ( ) ()A 甲多 ()B 乙多 ()C 一样多 ()D 不确定 四.例题分析: 例1.某地区有5个工厂,由于电力紧缺,规定每个工厂在一周内必须选择某一天停电(选哪一天是等可能的),假定工厂之间的选择互不影响. (1)求5个工厂均选择星期日停电的概率;(2)求至少有两个工厂选择同一天停电的概率. 解:设5个工厂均选择星期日停电的事件为A . 则511()716807 P A ==. (2)设5个工厂选择停电的时间各不相同的事件为B . 则575360()72401 A P B ==, 至少有两个工厂选择同一天停电的事件为B ,3602041()1()124012401 P B P B =-=-=. 小结:5个工厂均选择星期日停电可看作5个相互独立事件. 例2.某厂生产的A 产品按每盒10件进行包装,每盒产品均需检验合格后方可出厂.质检办法规定:从每

相互独立事件概率求解

相互独立事件概率问题求解辨析 事件A 、B 是相互独立事件,当且仅当事件A 和B 是否发生,相互之间没有影响。如果事件A 与B 相互独立,那么A 与B 、A 与B 、A 与B 也都是相互独立的。尤其在涉及“至多”或“至少”问题时,常先求此事件的对立事件的概率,再利用公式()1()P A P A =-求出所求事件的概率。这种解法,称为逆向思考方法。下面就相互独立事件概率问题举例分析如下。 一、 反面求解相互独立事件同时发生的概率 例1、加工某零件需3道工序,设第1、2、3道工序出现次品的概率分别为0.02,0.03,0.05,假设三道工序互不影响,求加工出来的零件是次品的概率。 解:由题中“三道工序互不影响”,可判定1、2、3道工序出现次品的事件是相互独立事件,可用相互独立事件的乘法公式。 设A=“加工出来的零件是次品”,i A =“第i 道工序出现次品”,则123A A A A =??, 由于三道工序互不影响,123()()()()P A p A P A P A ∴=??=(1-0.12)(1-0.03)(1-0.05)=0.90307。所以 ()1()10.903070.09693P A P A =-=-=。 点评:两个或多个相互独立事件同时发生的概率等于每个事件发生的概率积,结合“对立事件的概率和为1”,先求其对立事件的概率,然后再求原事件概率,采用这种解法可使问题变得简易。 二、用排列组合思想理解相互独立事件的概率 例2、甲乙两人各投篮3次,每次投中得分概率为0.6,0.7,求甲乙两人得分相同的概率。 解: 甲乙两人得分相同可以有;甲乙都中0、1、2、3次共四种情况。设甲投中0、1、2、3次概率分别为0123A A A A 、、、,乙投中0、1、2、3次概率分别为 0123B 、B 、B 、B , 则 0012233()()()()P P A B P AB P A B P A B =+++ 1122 33222233330.40.30.60.40.70.30.60.40.70.3 C C C C =?+???+???330.60.70.321+?=。 点评:全面考虑各种可能性,然后利用公式()(1)k k n k n n P k p p C -= -。 三、通过分类或分步将复杂事件分解为简单事件 例3、某辆汽车载有8名学生从学校回家,途中共有甲、乙、丙三个停车点。如果某停车点无人下车,那么该车在这个点就不停车,假设每个学生在每个停车点下车的可能性都相等。求 (1)停车次数不少于2的概率;(2)恰好停2次的概率。

独立事件的概率(一)

相互独立事件同时发生的概率 【教学目的】 1.了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率; 2.掌握相互独立事件同时发生的概率乘法公式; 3.通过对概率知识的学习,了解偶然性寓于必然性之中的辨证唯物主义思想; 【教学重点】 用相互独立事件的概率乘法公式计算一些事件的概率; 【教学难点】 互斥事件与相互独立事件的区别;相互独立事件的判断; 【教学用具】 投影仪、多媒体电脑等。 【教学方法】 引导法——引导学生逐步认识相互独立事件及其同时发生的概率。 【教学过程】 [设置情境] (1)一个坛子里有6个白球,3个黑球,l 个红球,设摸到一个球是白球的事件为A ,摸到一个球是黑球的事件为B ,问A 与B 是互斥事件呢,还是对立事件? (2)甲坛子里有3个白球,2个黑球;乙坛子里有2个白球,2个黑球.设从甲坛子里摸出一个球,得到白球叫做事件A ,从乙坛子里摸出一个球,得到白球叫做事件B .问A 与B 是互斥事件呢?还是对立事件?还是其他什么关系? (3)在问题(2)中,若记事件A 与事件B 同时发生为B A ?,那么()B A P ?与()A P 及()B P 有什么关系呢?它们之间有着某种必然的规律吗? [探索研究] 1.独立事件的定义 我们把“从甲坛子里摸出1个球,得到白球”叫做事件A ,把“从乙坛子里摸出1个球,得到白球”叫做事件B .很明显,从一个坛子里摸出的是白球还是黑球,对从另一个坛子里摸出白球的概率没有影响.这就是说,事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件. 事件间的“互斥”与“相互独立”是两个不同的概念,两个事件互斥是指这两个

高中数学第一册(上)互斥事件,相互独立事件的概率 复习资料

互斥事件,相互独立事件的概率 复习资料 一.复习目标:理解互斥事件,相互独立事件的概念,能求互斥事件有一个发生的概率、 相互独立事件同时发生的概率、独立重复试验的概率. 二.知识结构: 1.事件的和: 设,A B 是两个事件,那么A B +表示这样一个事件:在同一试验下,A 或B 中至少有一个 发生就表示它发生.它可以进一步推广,12n A A A +++表示这样一个事件,在同一试验中, 12,,,n A A A 中至少有一个发生就表示它发生. 2.互斥事件与彼此互斥: 不可能同时发生的两个事件叫做互斥事件,其中必有一个发生的两个互斥事件叫对立事件. 一般地,如果事件12,,,n A A A 中任何两个都是互斥事件,那么说事件12,,,n A A A 彼此互斥. 3.互斥事件有一个发生的概率: 如果事件,A B 互斥,那么事件A B +发生的概率,等于事件,A B 分别发生的概率的和 即 ()()()P A B P A P B +=+ . 如果事件12,,,n A A A 彼此互斥,那么事件12n A A A +++发生的概率,等于这n 个事件分别发生的概率的和.即 122()()()()n n P A A A P A P A P A ++ +=+++. 对立事件,A A 的和事件A A +是必然事件.即 ()()()1P A P A P A A +=+=. 4.相互独立事件 事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立 事件. 设,A B 是两个事件,那么A B ?表示这样一个事件,它的发生表示A 与B 同时发生. 5.相互独立事件发生的概率 两个相互独立事件同时发生的概率,等于每个事件发生的概率的积. ()()()P A B P A P B ?=?. 公式进一步推广:即122()()()()n n P A A A P A P A P A ?? ?=. 即:如果事件12,,,n A A A 相互独立, 那么这n 个事件同时发生的概率,等于每个事件发生的概率的积. 说明:①事件A 与B (不一定互斥)中至少有一个发生的概率可按下式计算: ()()()()P A B P A P B P A B +=+-?. ②事件间的“互斥”与“相互独立”是两个不同的概念,两事件互斥是指两个事件不可能同时 发生,两事件相互独立是指一个事件的发生与否对另一事件发生的概率 没有影响. 6.独立重复试验. 独立重复试验,是在同样的条件下重复地,各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某种事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的. 一般地,如果在一次试验中某件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概 率为()(1)k k n k n n P k C P P -=-,()(1) k k n k n n P k C P P -=-可以看成二项式 [(1)]n P P -+的展开式中的第1k +项. 三.基础训练: 1.下列正确的说法是 ( ) ()A 互斥事件是独立事件; ()B 独立事件是互斥事件; ()C 两个非不可能事件不能同时互斥与独立; ()D 若事件A 与B 互斥,则A 与B 独立. 2.10张奖券中含有3张中奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率是( )

互斥事件,相互独立事件的概率复习讲义

互斥事件,相互独立事件的概率复习讲义 一.复习目标:理解互斥事件,相互独立事件的概念,能求互斥事件有一个发生的概率、 相互独立事件同时发生的概率、独立重复试验的概率. 二.知识结构: 1.事件的和: 设,A B 是两个事件,那么A B +表示这样一个事件:在同一试验下,A 或B 中至少有一个发生就表示它发生.它可以进一步推广,12n A A A +++表示这样一个事件,在同一试验中,12,,,n A A A 中至少有一个发生就表示它发生. 2.互斥事件与彼此互斥: 不可能同时发生的两个事件叫做互斥事件,其中必有一个发生的两个互斥事件叫对立事件. 一般地,如果事件12,,,n A A A 中任何两个都是互斥事件,那么说事件12,,,n A A A 彼此互斥. 3.互斥事件有一个发生的概率: 如果事件,A B 互斥,那么事件A B +发生的概率,等于事件,A B 分别发生的概率的和 即 ()()()P A B P A P B +=+ . 如果事件12,,,n A A A 彼此互斥,那么事件12n A A A +++发生的概率,等于这n 个事 件分别发生的概率的和.即 122()()()()n n P A A A P A P A P A +++=+++. 对立事件,A A 的和事件A A +是必然事件.即 ()()()1P A P A P A A +=+=. 4.相互独立事件 事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件. 设,A B 是两个事件,那么A B ?表示这样一个事件,它的发生表示A 与B 同时发生. 5.相互独立事件发生的概率 两个相互独立事件同时发生的概率,等于每个事件发生的概率的积. ()()()P A B P A P B ?=?. 公式进一步推广:即122()()()()n n P A A A P A P A P A ?? ?=. 即:如果事件12,, ,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件 发生的概率的积.

相关文档
最新文档