求概率的常用方法

合集下载

计算条件概率的常用方法

计算条件概率的常用方法

计算条件概率的常用方法一.基本内容1.根据件概率的定义,也就是条件概率的计算公式,先求()(()0)P A P A >和()P AB ,再由定义()(|)()P AB P B A P A =,即可求解(|)P B A .2.根据条件概率的定义,也就是条件概率的计算公式,先求()(()0)P A P A >和()P AB ,再由定义()(|)()n AB P B A n A =,即可求解(|)P B A .3.由条件概率和对立事件的定义,可得条件概率的性质:(|)1(|)P B A P B A =-,利用该性质可以解决一些证明相对复杂的条件概率问题.4.条件概率的性质二.例题分析类型一.概率公式例1.已知3(|)10P B A =,1()5P A =,则()P AB =A.12B.32C.23D.350【解析】由条件概率的公式()(|)()P AB P B A P A =得133()()(|),51050P AB P A P B A =⨯=⨯=故选D.类型二.基本事件数法例2.为响应“援疆援藏万名教师支教计划”,珠海市教育局计划从某学校数学科组的4名男教师(含一名珠海市骨干教师)和英语科组的3名女教师(含一名珠海市骨干教师)中分别选派2名男教师和2名女教师,则在有一名珠海市骨干教师被选派的条件下,两名珠海市骨干教师都被选派的概率为()A.13B.12C.25D.34【解析】记至少有一名骨干教师被选派的事件为A,两名骨干教师被选派的事件为B,则1221113232322243C C C C C C 5()C C 6P A ++==,11322243C C 1()C C 3P AB ==,于是得()2(|)()5P AB P B A P A ==,所以所求概率为25.故选:C 类型三.条件概率的性质例3.已知A ,B 分别为随机事件A,B 的对立事件,()0P A >,()0P B >,则下列说法正确的是()A.()()()P B A P B A P A +=B.若()()1P A P B +=,则A,B 对立C.若A,B 独立,则()()P A B P A =D.若A,B 互斥,则()()1P A B P B A +=【解析】对A,()()()()()1()()P AB P AB P A P B A P B A P A P A ++===,故A 错误;对B,若A,B 对立,则()()1P A P B +=,反之不成立,故B 错误;对C,根据独立事件定义,故C 正确;对D,若A,B 互斥,则()()0P A B P B A +=,故D 错误;故选:C例4.已知随机事件A ,B ,若()13P A =,()3|5P B A =,()4|7P A B =,则()P B =_________.【解析】由题意可得,()()()3|5P AB P B A P A ==,且()13P A =,则()15P AB =,又因为()4|7P A B =,则()()3|1|7P A B P A B =-=,且()()()|P AB P A B P B =,所以()()()1753157P AB P B P A B ===.故答案为:715.类型四.正难反易例5.三行三列的方阵111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭中有9个数()1,2,3,1,2,3ij a i j ==,从中任取三个数,已知取到22a 的条件下,至少有两个数位于同行或同列的概率是_____________.【解析】记事件A ={任取的三个数中有22a },事件B ={三个数至少有两个数位于同行或同列},则B ={三个数互不同行且不同列},依题意得()28C 28n A ==,()2n A B ⋂=,故()()()212814n A B P B A n A ⋂===,则()()113111414P B A P B A =-=-=.即已知取到22a 的条件下,至少有两个数位于同行或同列的概率为1314.故答案为:1314.类型五.综合问题例6.如果{}n a 不是等差数列,但若k *∃∈N ,使得212k k k a a a +++=,那么称{}n a 为“局部等差”数列.已知数列{}n x 的项数为4,其中{}1,2,3,4,5n x ∈,1n =,2,3,4,记事件A:集合{}{}1234,,,1,2,3,4,5x x x x ⊆;事件B:{}n x 为“局部等差”数列,则()P B A =()A.215B.730C.15D.110【解析】由题意知,事件A 共有4454C A 120⋅=个基本事件,对于事件B ,其中含1,2,3的“局部等差”数列的分别为1,2,3,5和5,1,2,3和4,1,2,3共3个,含3,2,1的“局部等差”数列的同理也有3个,共6个;含3,4,5的和含5,4,3的与上述相同,也有6个;含2,3,4的有5,2,3,4和2,3,4,1共2个;含4,3,2的同理也有2个;含1,3,5的有1,3,5,2和2,1,3,5和4,1,3,5和1,3,5,4共4个;含5,3,1的同理也有4个,所以事件B 共有24个基本事件,所以()2411205P B A ==.故选:C.三.习题练习1.根据历年的气象数据,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2,则在发生中度雾霾的情况下,刮四级以上大风的概率为()A.0.5B.0.625C.0.8D.0.9【解析】设发生中度雾霾为事件A ,刮四级以上大风为事件B ,由题意知:()0.25P A =,()0.4P B =,()0.2P AB =,则在发生中度雾霾的情况下,刮四级以上大风的概率为()()()0.20.80.25P AB P B A P A ===.故选:C.2.已知事件,A B ,()13P B =,()3|4P B A =,()1|2P B A =,则()P A =()A.14B.13C.23D.12【解析】由条件概率公式可知()()()3|4P AB P B A P A ==,即()()34P AB P A =①,()()()1|2P AB P B A P A ==,即()()12P AB P A =②,而()()1P A P A +=,所以()()1P A P A =-③,又已知()()()()213P AB P AB P B P B +==-=④,②③④联立可得()23P A =.故选:C 3.定义:设X,Y 是离散型随机变量,则X 在给定事件Y y =条件下的期望为()()()()11,|n n i i i i i i P X x Y y E X Y y x P X x Y y x P Y y ======⋅===⋅=∑∑,其中{}12,,,n x x x ⋅⋅⋅为X 的所有可能取值集合,(),P X x Y y ==表示事件“X x =”与事件“Y y =”都发生的概率.某日小张掷一枚质地均匀的骰子,若掷出1点向上两次时即停止.设A 表示第一次掷出1点向上时的投掷次数,B 表示第二次掷出1点向上时的投掷次数,则()4E A B ==______.【解析】由4B =可得1A =或2A =或3A =,由题意可得()()()()11,44|44n n i i i i i i P A x B E A B x P A x B x P B ======⋅===⋅=∑∑()()()()()()1,42,43,4123444P A B P A B P A B P B P B P B =======⨯+⨯+⨯===2222222233315151151516666666666232511511511C C C 666666666⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭=⨯+⨯=⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:24.为进一步加强学生的文明养成教育,推进校园文化建设,倡导真善美,用先进人物的先进事迹来感动师生,用身边的榜样去打动师生,用真情去发现美,分享美,弘扬美,某校以争做最美青年为主题,进行“最美青年”评选活动,最终评出了10位“最美青年”,其中6名女生4名男生。

求概率的简单方法

求概率的简单方法

求概率的简单方法
答案解析:
一、列表法求概率
1、列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。

2、列表法的应用场合当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

二、树状图法求概率
1、树状图法就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。

2、运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

三、利用频率估计概率
1、利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。

2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。

3、随机数在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。

把这些随机产生的数据称为随机数。

求概率的五种方法

求概率的五种方法

求概率的五种方法作者:陈浩来源:《初中生·考试》2011年第08期概率问题与日常生活的联系极为密切,它是中考命题的热点.概率问题的背景材料各种各样,需要根据题目的特点,选择方法,方可简捷求解. 中考概率题一般不难,只要你掌握以下五种方法,就可迎刃而解.一、用频率估计概率例1(2009年大连卷)某地区林业局要考查一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图1所示的统计图,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在,成活的概率估计值为.(2)该地区已经移植这种树苗5万棵. ①估计树苗成活万棵;②若该地区计划成活18万棵,则还需移植这种树苗约万棵.解:(1)由统计图表可知,这种树苗成活的频率稳定在0.9,成活的概率估计值为0.9,分别填入0.9、0.9.(2)移植这种树苗5万棵,估计成活5×0.9=4.5(万棵),如果计划成活18万棵,那么还需移植这种树苗约18÷0.9-5=15(万棵),故分别填入4.5、15.温馨小提示:用频率估计概率是中考的常见题.这类题较简单,不能失分.二、用概率公式求概率例2(2010年哈尔滨卷)一个袋子里装有8个球,其中6个红球,2个绿球,它们除颜色外均相同.从这个袋子中任意摸出一个红球的概率是().A. ■B. ■C. ■D. ■解:根据概率的公式得,从这个袋子中任意摸出一个红球的概率是■=■,选D.温馨小提示:事件比较简单,只用一步就能算出所求事件与全体事件的个数(也称一步概率),可直接用概率公式计算.一般地,如果一个实验有n个等可能的结果,而事件A包含其中k个结果,则事件A的概率是:P(A)=■.三、方程法例3(2010年芜湖卷)端午节前,小亮的爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时随机取出火腿粽子的概率为■;小亮的妈妈发现小亮喜欢吃的火腿粽子偏少,她又去买了同样的5只火腿粽子和1只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为■. 问第一次小亮的爸爸买的火腿粽子和豆沙粽子各有多少只?解:设小亮的爸爸买的火腿粽子x只,豆沙粽子y只,根据题意可得■=■,■=■.整理得y=2x,y=x+4.解得x=4,y=8.答:小亮的爸爸买的火腿粽子4只,豆沙粽子8只.温馨小提示:方程法是解概率问题的常用方法.引入未知数,容易找到等量关系,便于求解.这种方法适合于量与量的关系不明显的概率问题.四、树形图法或列表法例4(2010年烟台卷)小刚很擅长球类运动.课外活动时,足球队、篮球队都力邀他到自己的阵营. 小刚左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果三次正面朝上或三次反面朝上,则由小刚任意挑选球队;如果两次正面朝上一次正面朝下,则小刚加入足球阵营;如果两次反面朝上一次反面朝下,则小刚加入篮球阵营.(1)用画树形图的方法表示三次抛掷硬币的所有结果.(2)小刚任意挑选球队的概率有多大?(3)这个游戏规则对两个球队是否公平?为什么?解:(1)根据题意画树形图.(2)由树形图可知,共有8种等可能的结果:正正正,正正反,正反正,正反反,反正正,反正反,反反正,反反反.其中三次正面朝上或三次反面向上共2种. P(小刚任意挑选球队)=■=■;(3)这个游戏规则对两个球队公平.两次正面朝上一次正面向下有3种,正正反,正反正,反正正,两次反面向上一次反面向下有3种,正反反,反正反,反反正,∴ P(小刚去足球队)=P(小刚去篮球队)=■.温馨小提示:画树形图或列表法是求概率的常用方法,适用于用两步或三步完成的事件,用这种方法能避免重复或遗漏情况.游戏规则对两个球队是否公平,要看它们的概率是否相等.五、面积法例5(2010年甘肃卷)如图2,在一个正方形围栏中均匀散布着许多米粒,正方形内画有一个圆.一只小鸡在围栏内啄食,则“小鸡正在圆圈内”啄食的概率为.解:小鸡正在圆圈内啄食的概率=圆的面积÷正方形的面积. 答案是■.温馨小提示:用所求事件所代表的面积与全体面积之比来表示概率,这种计算概率的方法是中考重点. 解这类题的关键是计算相关图形的面积.“本文中所涉及到的图表、公式、注解等请以PDF格式阅读”。

用列举法求概率

用列举法求概率

用列举法求概率在概率论中,列举法是一种常用的求解事件概率的方法。

该方法的核心思想是通过列举事件的可能出现情况并计算这些情况的频率,来推断事件出现的概率。

下面将通过一个例子详细说明如何使用列举法来计算概率。

例子假设一家公司有5个员工,其中3个是男性,2个是女性。

现在从这5个员工中随机选择1个人,求该人是男性的概率。

首先,我们列举可能的情况,即从5个人中选择1个人,共有5种可能:1.选择第1个员工,是男性2.选择第2个员工,是男性3.选择第3个员工,是男性4.选择第4个员工,是女性5.选择第5个员工,是女性接下来,我们计算每种情况的概率。

1.选择第1个员工,是男性的概率为3/52.选择第2个员工,是男性的概率为3/53.选择第3个员工,是男性的概率为3/54.选择第4个员工,是女性的概率为2/55.选择第5个员工,是女性的概率为2/5最后,根据概率的定义,该人是男性的概率为选择男性的情况数除以所有情况数,即3/5,约为0.6。

通过以上例子,我们可以看出,列举法是一种非常简单有效的求解事件概率的方法。

对于一些简单的问题,我们可以通过列举可能的情况并计算概率来快速得出答案。

当然,在实际应用中,我们也需要注意一些问题,比如是否考虑了所有可能的情况、每种情况的概率是否正确等。

只有在全面准确考虑了所有问题,我们才能得出可靠的概率结果。

最后,需要注意的是,在更加复杂的情况下,列举法可能不能很好地处理问题,此时我们可以尝试其他方法,比如概率公式法、贝叶斯法等。

掌握各种求解概率的方法,可以让我们更加准确、高效地解决问题。

概率论及统计学地重要公式和解地题目思路

概率论及统计学地重要公式和解地题目思路

一、基本概率公式及分布 1、概率常用公式:P(A+B)=P(A)+P(B)-P(AB) ;P(A-B)=P(A)-P(AB) ; 如A 、B 独立,则P(AB)=P(A)P(B) ; P(A )=1-P(A) ; B 发生的前提下A 发生的概率==条件概率 :P(A|B)=P (AB )P (B );或记 : P(AB)=P(A|B)*P(B) ;2、随机变量分布律、分布函数、概率密度 分布律:离散型X 的取值是x k (k=1,2,3...), 事件X=x k 的概率为: P{X=x k }=P k , k=1,2,3...; --- 既 X 的分布律;X 的分布律也可以是上面的表格形式,二者都可以。

分布函数:F(x)=P(X ≤x ), -∞<x <+∞ ; 是概率的累积! P(x1<X<x2)=F(x2)-F(x1) ;离散型rv X; F(x)= P{X ≤x }=∑p k x k <x ;(把X<x 的概率累加) 连续型rvX ;F(x)=∫f (x )dx x −∞, f(x)称密度函数;既分布函数F(X)是密度函数f(x)和X 轴上的(-∞,x)围成的面积! 性质:F(∞)=1; F(−∞)=0;二、常用概率分布:①离散:二项分布:事件发生的概率为p,重复实验n 次,发生k 次的概率(如打靶、投篮等),记为B(n,p) P{X=k}=(n k)p k (1−p )n −k ,k=0,1,2,...n; E(X)=np,D(X)=np(1-p);②离散:泊松分布:X ~Π(λ) P{X=k}=λk e−λk !,k=0,1,2,...; E(X)=λ, D(X)=λ ;③连续型:均匀分布:X 在(a,b)上均匀分布,X ~U(a,b),则:密度函数:f(x)={1b −a,a <x <x0,其它分布函数F(x)=∫f (x )dx x−∞={0, x <x x −ab −a 1,x ≥b,a <x <x④连续型:指数分布,参数为θ,f(x)= {1θe −xθ,0<x0,其它F(x)={1−e −xθ0,x >0 ;⑤连续型:正态分布:X ~N(μ,σ2), most importment! 密度函数 f(x),表达式不用记!一定要记住对称轴x=µ, E(X)=µ,方差D(X)=σ2; 当µ=0,σ2=1时,N(0,1)称标准正态,图形为:分布函数F(x)为密度函数f(x)从(-∞,x)围成的面积。

求概率的方法总结

求概率的方法总结

求概率的方法总结1、穷举法例:一枚硬币连掷两次,正面都向上的概率?(正、正)(正反)(反正)(反反)答案:p=1/42、列表法例:同时掷2个骰子,点数相同的概率?和为5的概率?、投针实验公式针与平行线相交的概率计算公式(L是针的长度a是平行线间的距离)5、(设计)模拟实验法例1:袋子中有8个白球,若干个红球,从袋子中摸了200个球,其中有白球50个,问袋子中有白球多少个?解:设袋子中有白球x个,则8/(8+x)=50/200例二:池塘中有多少鱼6、生日概率求法(逻辑推理,可能性概率的积)例1: 同班50人中生日相同的2人的概率?1 —365/365*364/365 ----------- 316/365=0.97=97%例2: 6 个人中生肖相同的概率?1 —12/12*11/12*——7/12=1 —0.2228=0.7772例3:在15选5彩票摸奖中,5个数字中有2个与特等奖相同即可获得四等奖,问获得四等奖的概率?(假设特等奖数为8, 8,10,5,12)解:1/15*1/15*14/15*14/15*14/15* 10=0.036135例4: 8人选20个元素,2人或以上选取相同的概率?碰到个这样的问题.50人中有二人生日相同的概率如何求,一位数学老师这样回答的,请大大门能否解释下?解:a、50个人可能的生日组合是365X365X 365X……X 3共(50个)个;b、50个人生日都不重复的组合是365 X 364 X 363 X……X共160个)个;c、50个人生日有重复的概率是1-(b/a)。

所以50个人生日完全不相同的概率是b/a=0.03,因此50个人生日有2人生日相同的概率1-0.03= 0.97,即卩97%。

概率算法汇总

概率算法汇总

概率算法概率算法的一个基本特征是对所求解问题的同一实例用同一概率算法求解两次可能得到完全不同的效果。

这两次求解问题所需的时间甚至所得到的结果可能会有相当大的差别。

一般情况下,可将概率算法大致分为四类:数值概率算法,蒙特卡罗算法,拉斯维加斯算法和舍伍德算法。

一、数值概率算法常用于数值问题的求解。

这类算法所得到的往往是近似解。

而且近似解的精度随计算时间的增加不断提高。

在许多情况下,要计算出问题的精确解是不可能或没有必要的,因此用数值概率算法可得到相当满意的解。

1、用随机投点法计算π值设有一半径为r 的圆及其外切四边形。

向该正方形随机地投掷n 个点。

设落入圆内的点数为k 。

由于所投入的点在正方形上均匀分布,因而所投入的点落入圆内的概率为4422ππ=r r 。

所以当n 足够大n k 4≈π(n k≈4π)2、计算定积分设f(x)是[0,1]上的连续函数,且0≤f(x) ≤ 1。

需要计算的积分为⎰=1)(dx x f I , 积分I 等于图中的面积G在图所示单位正方形内均匀地作投点试验,则随机点落在曲线下面的概率为⎰⎰⎰==≤10)(01)()}({x f r dx x f dydx x f y P 假设向单位正方形内随机地投入 n 个点(xi,yi)。

如果有m 个点落入G 内,则随机点落入G 内的概率nm ≈I 3、解非线性方程组求解下面的非线性方程组⎪⎪⎩⎪⎪⎨⎧===0),,,(0),,,(0),,,(21212211n n n n x x x f x x x f x x x f 其中,x 1, x 2, …, x n 是实变量,fi 是未知量x1,x2,…,xn 的非线性实函数。

要求确定上述方程组在指定求根范围内的一组解x 1*, x 2*, …, x n * 。

在指定求根区域D 内,选定一个随机点x0作为随机搜索的出发点。

在算法的搜索过程中,假设第j 步随机搜索得到的随机搜索点为xj 。

在第j+1步,计算出下一步的随机搜索增量∆xj 。

求概率的三种方法

求概率的三种方法

求概率的三种方法概率是描述事件发生可能性的一种数学工具。

在概率论中,常常使用三种方法来计算概率,分别是经典概率、频率概率和主观概率。

一、经典概率:经典概率也称作古典概率,是一种理论概率方法。

它利用事件的样本空间来计算概率。

经典概率的计算基于等可能性原则,即指出所有可能的结果都是等概率发生的。

例如,掷一枚均匀的骰子,每个面出现的概率都是1/6、经典概率适用于那些早已知道每个可能结果的情况,且每个可能结果发生的概率都是相等的。

它适用于结果稳定、重复性强的情况。

经典概率的计算公式为:概率=有利结果数/总结果数。

二、频率概率:频率概率也称作统计概率,是一种基于实证数据的概率方法。

它是通过观察实际事件发生的次数,来估计事件发生的概率。

频率概率假设在重复试验中,事件发生的频率会稳定在一个固定的概率上。

例如,掷一枚均匀的骰子,频率概率就是通过进行多次掷骰子实验得到的结果的比例来估算每个面出现的概率。

频率概率适用于对一些事件概率的升降趋势进行推断的情况。

频率概率的计算公式为:概率=实际发生次数/总试验次数。

三、主观概率:主观概率是一种基于个人主观判断的概率方法。

它是通过个人的经验、观察和判断来估计事件发生的概率。

主观概率强调个人主观的“信任度”,即个人对事件发生的概率有一种主观的信任感。

例如,个人根据亲身经历和对事件的理解,判断一些事件发生的概率为50%。

主观概率适用于在缺乏统计数据或试验条件的情况下,根据个人判断进行概率计算的情况。

主观概率没有明确的计算公式,通常是基于主观判断进行定量或定性估计。

需要注意的是,主观概率通常具有一定的主观性和个体差异性,因此,它的可靠性和普适性相对较低。

这三种方法在不同的场景和问题中适用。

经典概率适用于已知情况和结果稳定的问题;频率概率适用于重复试验和观察大量样本的问题;主观概率适用于缺乏实证数据或个人判断是依据的问题。

实际问题中,我们常常结合多种方法来计算概率,以提高概率估计的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学概率介绍
朱峰
2006年11月
初中数学概率介绍:
第十四章
事件与可能性
第二十三章 概率的求法与应用
一、内容介绍
1.最基础的知识 (1)事件:确定事件(必然事件和不可能事件) 不确定事件——随机事件
(2)可能性——事件发生的可能性(即事件的概率)
一、内容介绍
2.最简单的事件 (1)掷一枚(或一次)均匀的硬币与正多体 (2)摸一个大小和质量相同的球
三、内容解读
3.求概率的方法 根据后三种定义,得到常用的求概率的方法。 (1)列举法 判断每个结果发生的可能性是否相等——如 果都相等,可进行第(2)步;如果不都相等,则 不能用列举法。 (2)几何法 所有可能发生的点(结果)不能一一列出— —通过计算区域的面积求面积比值。
三、内容解读
(3) 频率估计法 一个重复实验获得事件的一个频率值,就直 接用这个频率作为概率的估计值; 几个重复实验获得一组频率数据,就用频率 的平均值作为概率的估计值。

五、主要习题
1.了解概率含义及其相互关系的问题; 2.列出所有可能发生的结果的问题; 3.求事件的概率问题; 4.应用问题; 5.决策问题与游戏公平性的判断问题。
六、教学建议
1.重视阅读能力.信息加工能力的培养 2.经历实验(动手)与观察 3.其他建议见《教学参考书》
七、中考概率
概率的引进丰富了中考内容,概率的考察已 由考小题向考小题、大题相配合考察转变;由考 察概念、考记忆、考计算向考阅读、理解、考 实际应用、考说理转变。 考题类型: 1.考查对概率的意义的理解 2.考查列举法的运用 3.考查概率说理 4.考查概率实际应用(见例题)
(3)旋转一个(或一次)均匀等分的转盘
(4)类似于上述实验的生产、生活中的事件
一、内容介绍
3.最基本的方法 (1)列举上述实验所有可能发生的结果 (2)求事件发生的概率
二、研究的对象和内容
1.主要对象——不确定现象(既随机现象) 2.主要内容——事件(现象)发生的数量规律
三、研究的方法
1.实验观察法——重复实验找规律 2.事物分析法——分析事物的均匀性过程的随机性、 均等性
3.统计推断法——统计事件发生的频率推断稳定性
四、研究的思想、观点
1.随机思想——事件的发生不以人们的主观意识 为转移,事件发生的不确定性、随机性、可能性 2.不确定的观点——用不确定的观点认识和理解
世界
五、知识结构
确定事件 事件 不确定事件 不可能事件 应用 列举所有可能的结果 求事件发生的概率 生活中的可能性 游戏规则的公平性 必然事件
( A , B ) ( A , B ) ( A , B ) ( A , B ) ( B , A) ( B , A ) ( B , A ) ( B , A )
四、疑点解释
3. 无放回摸出与有放回摸出。 4.相同事件概率不等与不同事件概率相 等(等概率事件)。 5.给出条件相同与不同,随机过程相同 与不同。
四、疑点解释
1.所有可能发生的“情况”与“结果” 。 例1,同时抛掷A、B两枚硬币,落地后两枚硬 币面朝上的: 所有可能出现的情况有三种: 两正 一正一反 两反 所有可能出现的结果有四个:
( A, B ) ( A, B ) ( A, B ) ( A, B )
四、疑点解释
2.有序结果与无序结果, 例1.同时抛两枚硬币A、B,两枚硬币所有可能出 现的结果是: (A,B)(A,B)(A,B)(A,B) 例2. 从A、B两枚硬币中,随意取一枚上抛,再取 剩余一枚上抛,落地后两枚硬币面朝上的所有可能 出现的结果是:
二、教学目标
1.在具体情境中了解概率的意义,运用 列举法(包括列表.画树状图)计算简单事 件的概率. 例1.一个袋中装有2个黄球和2个红球, 任意摸出一个球后放回,在任意摸出一个 球,求两次都摸到红球的概率. 例2.转动转盘,求转盘停止转动时指针 指向阴影部分的概率.
2.通过实验,获得事件发生的概率;知道大 量重复实验时频数可作为事件发生概率的 估计值. 例.通过实验获得图钉从一定高度落下 后钉尖着地的概率.
三、内容解读
4.求概率方法的应用 根据实际问题的特点,选择合理的方法 求概率。 例.有一个抛两枚硬币的游戏,规则是: 若出现两个正面,则甲赢;若出现一正一反, 则乙赢;若出现两个反面,则甲.乙都不赢. (1)这个游戏是否公平?请说明理由; (2)如果你认为这个游戏不公平,那么请你 改变游戏规则,设计一个公平的游戏;如果 你认为这个游戏公平,那么请你改变游戏规 则,设计一个不公平的游戏;
四、疑点解释
6.必然中的偶然,偶然中的必然。 例1,在雅典奥运会女排决赛中,俄罗斯队2:0领 先的情况下,后三局比赛中国队有没有可能夺得金 牌? 有可能,可能性(概率)有多大? 7.可能与现实,可能与一定,随机事件的发生在事 (或实验)前、事(或实验)后的说法。 8.中奖率、命中率、发芽率与概率。
三、内容解读
2.事件的概率 (1) 描述定义,表示事件发生的可能性大小 的数值(数值含义); (2) 古典定义,表示事件可能发生的结果数 占所有等可能结果数的比值(比值含义); (3) 几何定义,表示事件可能发生的点所在 区域的面积占所有等可能点所在区域面积的比 值(比值含义); (4) 统计定义,表示在重复实验中事件发生 的频率的稳定性(隐定值含义)。
3.通过实例进一步丰富对概率的认识,并 能解决一些实际问题. 例.一个游戏的中奖率是1%,买100张奖 券,一定会中奖吗?
三、内容解读
1.随机事件 指不确定事件,可能发生,也可能不发生。 (1)用不确定的观点认识与理解它的发生与不 发生; (2)用可能性表述(而不是分类讨论)它发生 的数量规律 (概率); (3)可能发生,不一定发生,更不是已经发生了。
发生的
大小之分 可能性 相等之时
实验方案与游戏规则的设计
第二十三章
概率的求法与应用 教材分析
目录
一、主要内容 二、教学目标 三、内容解读 四、疑点解释 五、主要习题 六、教学建议 七、中考概率
一、主要内容
1.随机事件与事件的概率; 2.列表和画树状图列出所有可能的结 果; 3.求概率的方法; 4.求概率方法的应用。
相关文档
最新文档