直方图直方图均衡化增强
图像增强——直方图均衡化

图像增强——————直方图均衡化摘要图像增强是指按特定的需要突出一幅图像的某些信息,削弱或消除不需要信息的处理方法。
处理的结果使图像更适合于人的视觉特性或机器的识别系统。
本文主要采用直方图均衡化、中值滤波的方法对图像进行处理,通过对处理结果进行比较,从而加深对图像增强的理解及应用。
一、图像增强在获取图像的过程中,由于多种因素的影响导致图像无法达到令人满意的视觉效果。
对原始图像做一些改善,从而实现人眼观察或者机器自动分析、识别的目的的行为,就叫做图像增强。
图像增强的主要内容⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧代数运算彩色变换增强彩色平衡假彩色增强常规处理彩色图像增强伪彩色增强彩色增强同态滤波增强低通滤波高通滤波频率域图像锐化图像平滑局部运算局部统计法规定化均衡化直方图修正法灰度变换点运算空间域图像增强二、直方图均衡化1.直方图均衡化是通过累积函数对灰度值进行调整以实现对比度的增强,具体地说就是把给定图像的直方图分布改变成近似均匀分布的直方图。
2.直方图均衡化的过程如下:①计算原图像的灰度直方图;②计算原图像的灰度累积分布函数,进一步求出灰度转换表; ③根据灰度转换表,将原图像各灰度级映射为新的灰度级。
3.直方图均衡化的优点:扩张了像素值的动态范围。
直方图均衡化后,图像的概率密度函数近似服从均匀分布,灰度几乎是均匀的分布在整个范围内,图像明暗分明,对比度很大,图像比较清晰明亮,很好的改善了原始图的视觉效果。
2.1原理及计算过程先讨论连续图像的均衡化问题。
设变量r 和s 代表原图像灰度和经直方图修正后的的图像灰度。
在图像中,像素的灰度级可作归一化处理,这样r,s 的值将限定在下述范围之内:0≤r,s ≤1,r=0代表黑,r=1代表白,可以对[0,1]区间内的任一个值进行如下变换:s=T(r)变换函数T 应满足下列条件:(1)在0≤r ≤1区间内T[r]单值单调增加; (2)对于0≤r ≤1,有0≤s ≤1。
图像增强的方法有哪些

图像增强的方法有哪些
图像增强是指通过一系列的处理方法,改善图像的视觉质量,使图像更加清晰、鲜艳、易于识别和理解。
图像增强的方法有很多种,下面我们将介绍其中一些常见的方法。
首先,直方图均衡化是一种常用的图像增强方法。
直方图均衡化通过重新分配图像的像素值,使得图像的直方图变得更加均匀,从而增强图像的对比度和亮度分布,使图像更加清晰和易于识别。
其次,滤波是另一种常见的图像增强方法。
滤波通过应用不同的滤波器来去除图像中的噪声,增强图像的边缘和细节,改善图像的质量。
常见的滤波方法包括均值滤波、高斯滤波、中值滤波等。
另外,锐化也是一种常用的图像增强方法。
锐化通过增强图像的边缘和细节,使图像更加清晰和鲜艳。
常见的锐化方法包括拉普拉斯算子、Sobel算子、Prewitt算子等。
此外,对比度增强也是一种常见的图像增强方法。
对比度增强通过调整图像的对比度和亮度,使图像的细节更加突出,从而改善图像的质量。
常见的对比度增强方法包括伽马校正、对比度拉伸、
直方图匹配等。
最后,多尺度变换也是一种常用的图像增强方法。
多尺度变换通过将图像分解成不同尺度的子图像,然后对每个子图像进行增强处理,最后合成得到增强后的图像,从而改善图像的质量。
总的来说,图像增强的方法有很多种,每种方法都有其特点和适用范围。
在实际应用中,可以根据图像的特点和需求选择合适的增强方法,从而达到改善图像质量的目的。
希望以上介绍的方法对您有所帮助。
利用直方图均衡化和直方图规定化对图像进行增强

利用直方图均衡化和直方图规定化对图像进行增强利用直方图均衡化和直方图规定化对图像进行增强4.1 利用直方图均衡化对图像进行增强通过灰度变换将一幅图像转换为另一幅具有均衡直方图的图像,即在一定灰度范围内具有相同的象素点数的图像的过程。
其“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。
主要缺点:1、变换后图像的灰度级减少,某些细节消失;2、某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。
算法如下:为讨论方便,以r 和s 分别表示归一化了的原图像灰度和经直方图修正后的图像灰度。
即1,0≤≤s r在[0,1]内设有变换S=T(r)且该函数单调递增,1)(0≤≤r T ,于是有反变换)(1s T r -=有概率论知,如果已知随即变量r 的概率密度)(r p r ,而随机变量s 是r 的函数。
则s 的概率密度)(s p s 可以有)(r p r 求出。
[])()()()()(1s T ds d r p ds dr r p dr r p ds d s p r r r r s -∞-===?从上式可以看出通过变换函数)(r T 可以控制图像灰度级的概率密度函数,从而改变图像灰度层次,这就是直方图修正技术的基础。
因为归一化规定 1)(=s p s有1式有 dr r p ds r )(=两边积分得 dr r p r T s rr )()(0?==上式就是所求得的变换函数。
它表明当变换函数)(r T 是原图像直方图累积分布函数时,能达到直方图均衡化的目的。
离散形式可表示为:∑∑=====ki i k i i r k k n n r p r T s 00)()(可见均衡后的各像素的灰度值k s 可直接由原图像的直方图算出。
人脸识别技术的图像增强方法详解

人脸识别技术的图像增强方法详解人脸识别技术作为一种先进的生物识别技术,已经广泛应用于各个领域,如安全监控、人脸解锁、人脸支付等。
然而,由于环境光线、姿态、表情等因素的影响,人脸图像的质量可能会受到一定的影响,从而降低了识别的准确性。
为了解决这一问题,人们提出了各种图像增强方法,以提高人脸识别的性能。
一、直方图均衡化直方图均衡化是一种常用的图像增强方法,它通过对图像的像素值进行重新分配,使得图像的直方图更加均匀。
在人脸识别中,直方图均衡化可以增强图像的对比度,提高图像的清晰度。
具体而言,直方图均衡化可以通过以下步骤实现:1. 计算图像的直方图,得到各个灰度级的像素数量;2. 计算累积分布函数,得到每个灰度级对应的累积概率;3. 根据累积概率将原始图像的像素值映射到新的灰度级。
直方图均衡化能够有效地增强图像的对比度,使得人脸特征更加明显,从而提高了人脸识别的准确性。
二、自适应直方图均衡化尽管直方图均衡化能够增强图像的对比度,但是它忽略了图像局部的细节信息,可能会导致图像过度增强或细节丢失的问题。
为了解决这一问题,人们提出了自适应直方图均衡化方法。
自适应直方图均衡化将图像分成多个小区域,对每个小区域进行直方图均衡化,从而保留了图像的细节信息。
自适应直方图均衡化的具体步骤如下:1. 将原始图像分成多个小区域;2. 对每个小区域进行直方图均衡化;3. 将均衡化后的小区域合并成最终的增强图像。
自适应直方图均衡化能够更好地保留图像的细节信息,提高了人脸识别的准确性。
三、多尺度Retinex算法多尺度Retinex算法是一种基于图像亮度的增强方法,它通过模拟人眼对亮度的感知来增强图像的细节。
多尺度Retinex算法通过计算图像在不同尺度上的亮度分布,然后将亮度分布与原始图像进行融合,从而得到增强后的图像。
多尺度Retinex算法的具体步骤如下:1. 将原始图像分解成多个尺度的图像;2. 对每个尺度的图像进行Retinex增强,得到亮度分布图像;3. 将亮度分布图像与原始图像进行融合,得到增强后的图像。
图像增强的方法有哪些

图像增强的方法有哪些图像增强是指对图像进行处理,以改善其视觉质量或提取出更多的有用信息。
在数字图像处理领域,图像增强是一个重要的研究方向,它涉及到许多方法和技术。
本文将介绍几种常见的图像增强方法,包括灰度拉伸、直方图均衡化、滤波和锐化等。
这些方法可以应用于各种领域,如医学图像处理、遥感图像处理和计算机视觉等。
灰度拉伸是一种简单而有效的图像增强方法。
它通过拉伸图像的灰度范围,使得图像的对比度得到增强。
具体而言,灰度拉伸会将图像的最小灰度值映射到0,最大灰度值映射到255,中间的灰度值按比例进行映射。
这样可以使得图像的整体对比度得到提高,从而更容易观察和分析图像中的细节。
另一种常见的图像增强方法是直方图均衡化。
直方图均衡化通过重新分布图像的灰度级别,以使得图像的直方图更加均匀。
这样可以增强图像的对比度,使得图像中的细节更加清晰。
直方图均衡化在医学图像处理中得到了广泛的应用,可以帮助医生更准确地诊断疾病。
滤波是图像处理中常用的一种技术,它可以用来增强图像的特定特征或去除图像中的噪声。
常见的滤波方法包括均值滤波、中值滤波和高斯滤波等。
这些滤波方法可以根据图像的特点和需要进行选择,从而达到增强图像质量的目的。
除了滤波之外,锐化也是一种常见的图像增强方法。
锐化可以使图像中的边缘和细节更加清晰,从而提高图像的视觉质量。
常见的锐化方法包括拉普拉斯算子和Sobel算子等。
这些方法可以通过增强图像中的高频信息来使图像更加清晰。
综上所述,图像增强是图像处理中的一个重要环节,它可以帮助我们改善图像的质量,提取出更多的有用信息。
本文介绍了几种常见的图像增强方法,包括灰度拉伸、直方图均衡化、滤波和锐化等。
这些方法可以根据图像的特点和需求进行选择,从而达到增强图像质量的目的。
在实际应用中,我们可以根据具体的情况选择合适的图像增强方法,从而得到更加优质的图像结果。
Matlab中的图像增强方法

Matlab中的图像增强方法图像增强是数字图像处理中的一项重要技术,通过使用各种算法和方法,可以改善图像的质量、增加图像的信息量和清晰度。
在Matlab中,有许多强大而灵活的工具和函数,可以帮助我们实现图像增强的目标。
本文将介绍几种常用的Matlab图像增强方法,并探讨它们的原理和应用。
一、直方图均衡化直方图均衡化是一种常用的图像增强方法,通过调整图像的像素分布来增强图像的对比度和亮度。
在Matlab中,我们可以使用“histeq”函数来实现直方图均衡化。
该函数会根据图像的直方图信息,将像素的灰度值重新映射到一个均匀分布的直方图上。
直方图均衡化的原理是基于图像的累积分布函数(CDF)的变换。
它首先计算图像的灰度直方图,并根据直方图信息计算CDF。
然后,通过将CDF线性映射到期望的均匀分布上,将图像的像素值进行调整。
直方图均衡化的优点在于简单易实现,且效果较好。
但它也存在一些限制,比如对噪声敏感、全局亮度调整可能导致细节丢失等。
因此,在具体应用中,我们需要权衡其优缺点,并根据图像的特点选择合适的方法。
二、自适应直方图均衡化自适应直方图均衡化是对传统直方图均衡化的改进,它能够在改善对比度的同时,保持局部细节。
与全局直方图均衡化不同,自适应直方图均衡化采用局部的直方图信息来进行均衡化。
在Matlab中,我们可以使用“adapthisteq”函数来实现自适应直方图均衡化。
该函数会将图像分成小块,并在每个块上进行直方图均衡化。
通过这种方式,自适应直方图均衡化可以在增强图像对比度的同时,保留图像的细节。
自适应直方图均衡化的优点在于针对每个小块进行处理,能够更精确地调整局部对比度,避免了全局调整可能带来的细节丢失。
然而,相对于全局直方图均衡化,自适应直方图均衡化的计算量较大,因此在实时处理中可能会引起性能问题。
三、模糊与锐化图像增强不仅局限于对比度和亮度的调整,还可以改善图像的清晰度和边缘信息。
在Matlab中,我们可以使用一些滤波器来实现图像的模糊和锐化。
图像增强算法(直方图均衡化、拉普拉斯、Log、伽马变换)

图像增强算法(直⽅图均衡化、拉普拉斯、Log、伽马变换)⼀、图像增强算法原理图像增强算法常见于对图像的亮度、对⽐度、饱和度、⾊调等进⾏调节,增加其清晰度,减少噪点等。
图像增强往往经过多个算法的组合,完成上述功能,⽐如图像去燥等同于低通滤波器,增加清晰度则为⾼通滤波器,当然增强⼀副图像是为最后获取图像有⽤信息服务为主。
⼀般的算法流程可为:图像去燥、增加清晰度(对⽐度)、灰度化或者获取图像边缘特征或者对图像进⾏卷积、⼆值化等,上述四个步骤往往可以通过不同的步骤进⾏实现,后续将针对此⽅⾯内容进⾏专题实验,列举其应⽤场景和处理特点。
本⽂章是⼀篇综合性⽂章,算是⼀篇抛砖引⽟的⽂章,有均衡化、提⾼对⽐度、降低对⽐度的算法。
1.1 基于直⽅图均衡化的图像增强图像对⽐度增强的⽅法可以分为两种:直接对⽐度增强⽅法,间接对⽐度增强⽅法。
直⽅图拉伸和直⽅图均衡化是常见的间接对⽐度增强⽅法。
直⽅图拉伸是利⽤对⽐度拉伸对直⽅图进⾏调整,扩⼤前景和背景灰度的差别,这种⽅法可以通过线性和⾮线性的⽅法来实现,其中ps中就是利⽤此⽅法提⾼对⽐度;直⽅图均衡化则是利⽤累积函数对灰度值进⾏调整,实现对⽐度的增强。
直⽅图均衡化处理原理:将原始图像的灰度图从⽐较集中的某个灰度区间均匀分布在整个灰度空间中,实现对图像的⾮线性拉伸,重新分配图像像素值。
算法应⽤场景:1、算法的本质是重新分布图像的像素值,增加了许多局部的对⽐度,整体的对⽐度没有进⾏太⼤改变,所以应⽤图像为图像有⽤数据的对⽐度相近是,例如:X光图像,可以将曝光过度或曝光不⾜照⽚进⾏更好的显⽰,或者是背景及前景太亮或太暗的图像⾮常有⽤。
2、算法当然也有缺点,具体表现为:变换后的图像灰度级减少,某些细节减少;某些图像有⾼峰值,则处理后对⽐度不⾃然的过分增强。
算法实现特点:1、均衡化过程:直⽅图均衡化保证在图像像素映射过程中原来的⼤⼩关系保持不变,即较亮的区域依旧较亮,较暗的依旧较暗,只是对⽐度增加,不能明暗颠倒;保证像素映射函数的值域在0和255之间。
医学影像处理中的图像增强算法使用技巧分享

医学影像处理中的图像增强算法使用技巧分享图像增强是医学影像处理中的重要任务之一,它旨在改善图像的质量,使医生能够更准确地诊断和治疗疾病。
在医学影像处理领域,图像增强算法扮演着关键角色,它们能够增强图像的对比度、清晰度和边缘特征,从而提供更有用的信息。
在本文中,我们将分享一些医学影像处理中的图像增强算法使用技巧,帮助读者在实践中获得更好的结果。
1. 直方图均衡化(Histogram Equalization)直方图均衡化是一种简单却有效的图像增强方法,它通过重新分布图像像素的灰度级来增强图像的对比度。
在医学影像处理中,直方图均衡化可以帮助凸显影像中的重要结构和特征。
使用该算法时,需要考虑到不同图像具有不同的亮度分布特点,因此可能需要自适应的直方图均衡化算法来应对不同场景下的图像增强需求。
2. 噪声去除滤波器(Noise Removal Filters)噪声是医学影像处理中常见的问题之一,它会影响图像的质量和对比度。
为了去除噪声并增强图像,可以使用各种滤波器,如中值滤波器、高斯滤波器和均值滤波器。
中值滤波器可以有效地去除脉冲噪声,而高斯滤波器和均值滤波器则可以平滑图像并减少高频噪声。
根据图像的性质和需求,选择适当的滤波器非常关键。
3. 边缘增强(Edge Enhancement)边缘增强是一种用于增强图像边缘特征的方法,它可以使医生更容易地检测和分析图像中的病灶和结构。
在医学影像处理中,常用的边缘增强算法包括Laplacian增强、Sobel增强和Canny边缘检测。
这些算法能够突出显示图像中的边缘信息,并减少噪声的干扰。
然而,在使用边缘增强算法时,需要注意避免过度增强图像,以免造成误诊。
4. 对比度增强(Contrast Enhancement)对比度增强是一种改善图像对比度的方法,它可以使图像中的细节更加清晰可见。
在医学影像处理中,常见的对比度增强算法包括直方图拉伸、伽马校正和局部对比度增强。
直方图拉伸可以通过拉伸图像的灰度级范围来改善图像的对比度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直方图均衡化的原理
灰度直方图的计算十分简单,依据定义在离散形式下有下面的 公式成立:
nk p(k ) k 0,1, 2...L 1 其中L 1 255 (1 ) n
nk 为图像中出现灰度为k的像素数,n是图像像素总数 公式中: ,而 n n 即为频数 。
k
ni k (2)计算累积直方图各项:tk p i , k 0,1, L 1 i 0 n i 0
Gy ( z 3 2 z 6 z 9) ( z1 2 z 4 z 7) 计算出Gx和Gy的值后,用下式计算(x,y)点处的梯度值
2 2 1/2 g [Gx Gy ]
计算出给点处的梯度值后,设定一个合适的阈值T, 如果(x,y)处的g≥T则认为该点是边缘点。
Z1
Z4 Z7
数字图像直方图均衡化增强
实验三 数字图像边缘检测
边缘检测
边缘能勾划出目标物体,使观察者一目了然,边缘蕴含丰富 的内在信息(方向、阶跃性质和形状等)。从本质上说,图像边缘 是图像局部特征不连续性(灰度突变、颜色突变和纹理结构突变 等)的反映,它标志着一个区域的终结和另一个区域的开始。 边缘提取首先检测出图像局部特征的不连续性,然后再将这 些不连续的边缘像素连成完备的边界。边缘的特征是沿边缘走向 的像素变化平缓,而垂直于边缘方向的像素变化剧烈,所以,从 这个意义上说,提取边缘的算法就是检测出符合边缘特性的边缘 像素的算子。目前提取边缘常采用边缘算子法、曲面拟合法和模 板匹配法等方法。 两个具有不同灰度值的相邻区域之间总存在边缘,边缘是灰 度值不连续的结果,这种不连续性通常可以利用求导数的方法方 便地检测到,一般常用一阶导数和二阶导数来检测边缘。边缘检 测的基本思想是首先利用边缘增强算子,突出图像中的局部边缘, 然后定义像素的“边缘强度”,通过设置门限的方法提取边缘点 集。常用的边缘检测算子有Robert算子、Sobel算子、LOG算子 和Canny算子。
统计图像中各种灰度值(取值 0255)的像素个数 计算各种灰度值的像素个数占 全部图像像素的百分比
直方图统计结束
实验二 数字图像均衡化增强
直方图均衡化图像增强的原理
图像增强处理技术是数字图像处理的基本内容之一。图像增强是 指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某 些不需要的信息的处理方法。 利用直方图统计的结果,通过使图像的直方图均衡的方法称为直 方图均衡化,直方图均衡化可以达到增强图像显示效果的作用。其 基本思想是把原始图像的直方图变换成均匀分布的形式,这样就增 加了像素灰度值的动态范围,从而达到增强图像整体对比度的效果 。 通过直方图统计,可以观察出,图像中各种亮度所占的比例大都 分布不均匀,设法增加在直方图统计中所占比例高的像素和其他占 的比例少的像素之间的亮度差,可以提高图像的显示效果。简单来 说,直方图增强的方法就是压缩直方图中比例少的像素所占用的灰 度范围,多出来的灰度空间按照统计比例分配给直方图中比例高的 像素使用。这种方法主要是针对人眼对灰度差别越大的图像更容易 分辨的特点而做的增强。 具体方法是:
Z2
Z5 Z8
Z3
Z6 Z9
选择菜单View->Graph->Image, 做如下设置:
选择菜单View->Graph->Image, 做如下设置:
精品课件!
精品课件!
程序流程图:
直方图
直方图是图像的一种统计表达,由一系列高度不等的纵向条纹表示 数据分布的情况。 灰度直方图是灰度级的函数,它表示图象中具有每种灰度级的像 素的个数,反映图象中每种灰度出现的频率。它描述了图像中各种 灰度(对于像素深度为 8 位的图像共有0-255 共256 种取值)在整个 图像中占有的比例。 如下图所示,灰度直方图的横坐标是灰度级,纵坐标是该灰度级 出现的频率(该灰度级的像素个数除以整幅图片的像素个数)。灰 度直方图是图象的最基本的统计特征。
本周实验课主要内容
一、数字图像直方图统计
1. 什么是图像和像素点
2. 什么是直方图 二、数字图像直方图均衡化增强 1. 什么是直方图均衡化 2. 图像增强的原理
三、数字图像边缘检测(Sobel算子) 1. 什么是图像边缘检测 2. Sobel算子的原理及实现方法
实验一 数字图像直方图统计
图像和像素点
梯度算子
梯度算子是一阶导数算子。对于图像函数f(x,y),它的 梯度定义为一个向量: f
Gx x f ( x, y ) Gy f y
2 2 1/2 Gy ] 向量幅度值为 mag (f )y ) arctan( ) Gx
一幅图像由若干个像素点组成。每个像素点的明暗程度/亮度信息都 可以用灰度级(0~255)来表示。不同的明暗程度的若干个像素点就组 成了一幅完整的图像。如一张320*240的灰度图像,表示该图像有320 行,每行有240个像素点。
(a)原始图像
(b)图a局部放大(c)图b局部放大
c语言中,用一个数组来保存一张图像。 如unsigned int dbimage[80*80]表示“一张6400(即80*80)个像素点 的灰度图像”。而数组元素dbimage[1]表示“第二个像素点的灰度级”。 在.bmp文件中,开始1078个字节是用来设置“bmp格式”,1078个 字节之后的数据才是图像像素点的“灰度级”信息,并且先存图片的 最后一行,最后存图片的第一行。
数字图像直方图统计
选择菜单View->Graph->Image ,做如下设置: 选择菜单 View->Graph>Time/Frequency,做如下设置
数字图像直方图统计
开始 直方图统计子 程序 初始化直方图统计数组(赋 0值)
用不同参数调用 构造图像的函数 产生图像
调用直方图统计 子程序统计直方 图 循环 重复五次
直方图
在c语言中,也用一个数组来存储直方图。如:float fhistogram[256];数组中的元素fhistogram[1]表示"灰度级 n 为1的像素点的频数", 即: fhistogram[1] k
n
其中n k 表示该图片中有n k 个像素点的灰度级为k,n 表示“该图片中像素点的总个数” 。 尽管灰度直方图不能表示出某灰度值在什么位置, 更不能直接显示图像内容,但是具有统计特性的直方图 却能描述该图像的灰度分布特性,使人们从中得到诸如 总体明亮程度、对比度等与图像质量有关的灰度分布概 况,成为一些处理方法的重要依据。
由于数字图像是离散的,计算偏导数Gx和Gy时, 常用差分来代替微分,为计算方便,常用小区域模板和 图像卷积来近似计算梯度值,采用不同的模板计算Gx 和Gy可产生不同的边缘检测算子,常用的边缘检测算 子有Robert算子、Sobel算子。
Sobel边缘检测算子
Sobel边缘检测算子用下图所示模板来近似计算图像函 数f(x,y)对x和y的偏导数: Gx ( z 7 2 z 8 z 9) ( z1 2 z 2 z 3)
k
tk (3)取整扩展:
int[( L 1)tk 0.5]
(4)映射对应关系:k
tk
直方图均衡化原理
例如:如果原始图像中某个像素点的灰度级为2,经过直方 图均衡化之后该像素点的灰度级就变成166。
数字图像直方图均衡化增强
选择菜单View->Graph>Image,做如下设置: 选择菜单View->Graph>Image,做如下设置: 选择菜单View->Graph>Image,做如下设置: