概率统计中的MonteCarlo方法及其建模应用PPT课件
第六讲 蒙特卡洛方法ppt课件

蒙特卡罗方法的特点
优点 能够比较逼真地描述具有随机 性质的事物的特点及物理实验 过程。 受几何条件限制小。 收敛速度与问题的维数无关。 具有同时计算多个方案与多个 未知量的能力。 误差容易确定。 程序结构简单,易于实现。 缺点 收敛速度慢。 误差具有概率性。 在粒子输运问题中, 计算结果与系统大小 有关。
2 2 t / 2 P X E ( X ) e dt 1 N 0 N 2
f(X)是X的分布密度函数。则
0 ( x E ( X )) f ( x ) dx
2 2
平均值
当N充分大时,有如下的近似式
X N
MC方法随机理论的基础
MC方法的随机理论基础
g(u)均匀分布
N 1 x 2 t/ 2 P X E ( X ) x e dt N lim x N 2
MC方法随机理论的基础
• 大数法则
MC方法随机理论的基础
中心极限定理
该定理指出,如果随机变量序列 X1 ,X2,…, XN独立 同分布,且具有有限非零的方差σ2 ,即
MC方法概述
• 为了得到具有一定精确度的近似解,所需随机试 验的次数是很多的,通过人工方法作大量的试验 相当困难,甚至是不可能的。因此,蒙特卡罗方 法的基本思想虽然早已被人们提出,却很少被使 用。本世纪四十年代以来,由于电子计算机的出 现,使得人们可以通过电子计算机来模拟随机试 验过程,把巨大数目的随机试验交由计算机完成, 使得蒙特卡罗方法得以广泛地应用,在现代化的 科学技术中发挥应有的作用。
• 目前,已经广泛的应用于社会科学,材料, 物理,系统工程,科学管理,生物遗传等 领域。可以说,有随机工程事件的领域, 就可以应用Monte Carlo模拟。
MonteCarlo方法及其简单应用(图文)

MonteCarlo方法及其简单应用(图文)论文导读:本文介绍了Monte Carlo方法的思想,主要从在定积分计算方面介绍了随机投点法和平均值法,并将其推广到二重积分、三重积分和多重积分情形,最后以棋手分奖金问题介绍了Monte Carlo方法在古典概率问题中的应用.分析了误差,介绍了减少误差的方法. 给出这些方法的实例及其Mathematica实现程序.关键词:MonteCarlo方法,积分计算,古典概率,模拟1 引言Monte Carlo方法,源于第二次世界大战美国关于研制原子弹的“曼哈顿计划”.该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城——摩纳哥的Monte Carlo——来命名这种方法,为它蒙上了一层神秘色彩.Monte Carlo方法的基本思想很早以前就被人们所发现和利用.19世纪人们用投针试验的方法来确定圆周率.20世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能.Monte Carlo方法研究的问题大致可分为两种类型:一种是问题本身就是随机的,另一种本身属于确定性问题,但可以建立它的解与特定随机变量或随机过程的数字特征或分布函数之间的联系,因而也可用随机模拟方法解决.文[1]-[7] 介绍了Monte Carlo方法的思想,但没有给出具体的实例及实现过程。
发表论文。
本文介绍了MonteCarlo方法的思想,从计算定积分和古典概率两方面的应用进行研究,给出了实例及其Mathematica实现程序.2 Monte Carlo方法2.1 Monte Carlo方法思想概述Monte Carlo方法,有时也称随机模拟(RandomSimulation)方法或统计试验(Statistical Testing)方法.它的基本思想是:首先建立一个概率模型或随机过程,使它的参数等于问题的解;然后通过对模型或过程的观察、抽样来计算所求参数的统计特征;最后给出所求解的近似值,而解的精度可用估计值的标准误差来表示.假设所求的量是随机变量的数学期望,那么近似确定的方法是对进行重复抽样,产生相互独立的值的序列并计算其算术平均值:根据大数定理,当充分大时,以概率1成立,即可用作为的估计值.Monte Carlo方法以概率统计理论为基础,以随机抽样(随机变量的抽样)为手段,在很多方面有重要的应用.它的优点表现在三个方面:方法和程序的结构简单,易分析、易理解;收敛的概率性和收敛速度与问题的维数无关,很好的避免了维数问题;受问题条件限制的影响较小,很好的提高可行性.使用Monte Carlo方法的步骤如下:(l)构造或描述概率过程(2)实现从已知概率分布中抽样(3)建立各种估计量2.2 Monte Carlo方法的可行性从Monte Carlo方法的基本思想可以得到它通常的做法,利用数学或物理方法产生[0,1]中均匀分布的随机数,在变换得到任意分布的随机数.随机数个数很大时,可以由大数定理,求出事件的概率值.这种做法的可行性主要依据下面的事实:(1)如果随机变量的分布函数是,由于非降.对于任意的,(),可以定义:作为的反函数.我们考虑随机变量的分布,这里假定是连续函数,则对于有:(1)即服从上的均匀分布.(2)反之,如果服从上的均匀分布,则对于任意的分布函数,令,则:(2)因此是服从分布函数的随机变量.所以我们只要能够产生中均匀分布的随机变量的子样,那么通过(2)式我们就可以得到任意分布函数的随机变量的子样.再结合大数定理、就可以运用Monte Carlo方法进行随机模拟,解决一些实际的问题.3 Monte Carlo方法在定积分中的应用3.1随机投点法对于定积分.为使计算机模拟简单起见,设,有限,,令,并设是在上均匀分布的二维随机变量,其联合密度函数为.则是中曲线下方的面积(如图2).图2假设我们向中进行随机投点.若点落在下方(即)称为中的,否则称不中.则点中的概率为,若我们进行次投点,其中次中的.则可以得到的一个估计(3)该方法的具体计算步骤为:①独立地产生2个随机数,,i=1,…,n;②计算,,和;③统计的个数;④用(3)估计.例1 1777年,法国学者Buffon提出用试验方法求圆周率的值.原理如下:假设平面上有无数条距离为1的等距平行线,现向该平面随机地投掷一根长度为的针.则我们可以计算该针与任一平行线相交的概率.此处随机投针可以这样理解:针中心与最近的平行线间的距离x均匀地分布在区间上,针与平行线间的夹角(不管相交与否)均匀地分布在区间上(如图1).于是,针与线相交的充要条件是,从而针线相交概率为:图1而由大数定律可以估计出针线相交的概率,其中为掷针次数,为针线相交次数,从而圆周率.其mathematica实现语句见附录1.3.2 样本平均值法对积分,设是上的一个密度函数,改写(4)由矩法,若有个来自的观测值,则可给出的一个矩估计,这便是样本平均值法的基本原理.若,有限,可取.设是来自的随机数,则的一个估计为(5)该方法的具体计算步骤为:①独立地产生个随机数;②计算和,;③用(5)估计.后面将给出一个例子说明此方法的应用.4 Monte Carlo方法在计算多重积分中的应用方法一:(重积分)(7)其中为S维单位立方体,,在上有:.很明显.此时积分(5)可以看作为求维空间长方体V:的体积.即:(8)对于这种较为一般形式的多重积分计算问题,采用的还是随机投点.具体步骤如下:首先产生个随机数(i=1,2,…,)及,构造维随机向量,然后检验是否落后在V中,同理可以推论.检验是否成立,如果在构成的个随机向量中,有个随机向量落于V中,那么取作为积分的近似值,即,如果积分区域及被积函数不满足上述条件,那么可以通过变换便可达到所希望的条件.方法二:其中积分区域包含在维多面体中,此多面体决定于个不等式.设函数在内连续且满足条件:,是在维多面体中均匀分布的随机质点的个数,是在个随机点之中落入以维区域V为底以为顶之曲顶柱体内的随机点的个数.这里表示由不等式和决定的维多面体.则重积分的Monte Carlo近似计算公式为:=(9)例 2 在三维空间中,由三个圆柱面:,,围成一个立体,利用Monte Carlo方法求它的体积.分析:据题意,所求体积,其中{,,且,,}.记,,},考虑在空间内随机的产生个点,落在空间内有个,则.在Mathematica中模拟程序见附录2.5 在古典概率问题中的应用下面的例子说明了Monte Carlo方法在古典概率中的应用.例3 甲乙两位棋手棋艺相当,现他们在一项奖金为1000元的比赛中相遇,比赛为五局三胜制,已经进行了三局的比赛,结果为甲三胜一负,现因故要停止比赛,问应该如何分配这1000元比赛奖金才算公平?分析:平均分对甲欠公平,全归甲则对乙欠公平.合理的分法是按一定的比例分配.现在我们用计算机模拟两位棋手后面的比赛,是否就可以知道奖金分配方案.由于两位棋手的棋艺相当,可以假定他们在以下每局的比赛胜负的机会各半.Mathematica中函数产生随机数0或1,0与1出现的机会各占一半,可以用随机数1表示甲棋手胜,而随机数0表示乙胜.(也可以用中的随机实数来模拟两人的胜负,随机数大于0.5表示甲胜,否则乙胜)连续模拟1000次(或更多次数)每次模拟到甲乙两方乙有一方胜了三局为止.按所说方案分配奖金,1000次模拟结束后,计算两棋手每次的平均奖金,就是该棋手应得的奖金.模拟结果:甲:750,乙:250(程序见附录1)最终以甲分到;乙分到.即甲750元,乙250元.实际上,因为比赛只需进行两局.则可分出胜负.结果无非是以下四种情况之一:甲甲、甲乙、乙甲、乙乙.上面四种情况可看出,甲获胜的概率为,乙获胜的概率为.在Mathematica 中模拟程序见附录3.6 误差分析6.1 收敛性蒙特卡罗方法是由随机变量的简单子样的算术平均值:作为所求解的近似值.由大数定律可知,如独立同分布,且具有有限期望值(<∞),则.即随机变量的简单子样的算术平均值,当子样数N充分大时,以概率1收敛于它的期望值.6.2 误差蒙特卡罗方法的近似值与真值的误差问题,概率论的中心极限定理给出了答案.该定理指出,如果随机变量序列,,…,独立同分布,且具有有限非零的方差,即是的分布密度函数.则当N充分大时,有如下的近似式其中称为置信度,1-称为置信水平.这表明,不等式近似地以概率1-成立,且误差收敛速度的阶为.通常,Monte Carlo方法的误差ε定义为上式中与置信度α是一一对应的,根据问题的要求确定出置信水平后,查标准正态分布表,就可以确定出.关于蒙特卡罗方法的误差需说明两点:第一,蒙特卡罗方法的误差为概率误差,这与其他数值计算方法是有区别的.第二,误差中的均方差是未知的,必须使用其估计值来代替,在计算所求量的同时,可计算出.例4 求用平均值法估计圆周率,并考虑置信度为5%,精度要求为0.01的情况下所需的试验次数.解:易知,故考虑令~,令,其期望值为,因此=,其中是[0,1]区间上均匀分布的随机数.此时,,,,所以(次).6.3 减小方差的各种技巧显然,当给定置信度α后,误差ε由σ和N决定.要减小ε,或者是增大N,或者是减小方差.在固定的情况下,要把精度提高一个数量级,试验次数N 需增加两个数量级.因此,单纯增大N不是一个有效的办法.另一方面,如能减小估计的均方差σ,比如降低一半,那误差就减小一半,这相当于N增大四倍的效果.因此降低方差的各种技巧,引起了人们的普遍注意.一般来说,降低方差的技巧,往往会使观察一个子样的时间增加.在固定时间内,使观察的样本数减少.所以,一种方法的优劣,需要由方差和观察一个子样的费用(使用计算机的时间)两者来衡量.这就是蒙特卡罗方法中效率的概念.它定义为,其中c 是观察一个子样的平均费用.显然越小,方法越有效.总的来说,增大样本的值对计算机要求较高;减小方差的技巧都只具有指导思想上的意义.对于实际的计算问题,往往要求对涉及的随机变量有先验的了解,或者对发生的物理过程的性态有一定的认识.通过利用这些预知的信息采取相应的手段减小误差,提高精度.附录1.(1)n=1000;p={}Do[m=0;Do[x=Random[];y=Random[];If[x+y<=1,m++],{k,1,n}];AppendTo[p,N[4m/n]],{t,1,10}];Print[p];Sum[p[[t]],{t,1,10}]/10(2)n=10000;p={}Do[m=0;Do[x=Random[];y=Random[];If[x+y<=1,m++],{k,1,n}];AppendTo[p,N[4m/n]],{t,1,10}];Print[p];Sum[p[[t]],{t,1,10}]/10(3)n=100000;p={}Do[m=0;Do[x=Random[];y=Random[];If[x+y<=1,m++],{k,1,n}];AppendTo[p,N[4m/n]],{t,1,10}];Print[p];Sum[p[[t]],{t,1,10}]/102. n=1000;p={}Do[m=0;Do[x=Random[];y=Random[];z=Random[];If[x+y<=1&&x+z<=1&&y+z<=1,m++],{k,1,n}]; AppendTo[p,N[8m/n]],{t,1,10}];Print[p];Sum[p[[t]],{t,1,10}]/103. n=1000;p={}Do[m=0;Do[x=Random[Integer]+2;y=Random[Integer]+1;If[x>y,m++],{k,1,n}];AppendTo[p,N[m]],{t,1,20}]Print[m];{Sum[p[[t]],{t,1,20}]/20,1000-Sum[p[[t]],{t1,20}]/20}参考文献[1] 徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985:171-188.[2] 茆诗松,王静龙,濮晓龙.高等数理统计[M].北京:高等教育出版社,2006:415-454.[3] 周铁,徐树方,张平文等.计算方法[M].吉林:清华大学出版社,2006:299-353.[4] 李尚志,陈发来,张韵华等.数学实验[M].北京:高等教育出版社,2004:23-30.[5] 王岩.Monte Carlo方法应用研究[J].云南大学学报(自然科学版),2006,28(S1): 23-26.[6] 薛毅,陈立萍.统计建模与R软件[M].北京:清华大学出版社,2008:476-485.[7] 杨自强.你也需要蒙特卡罗方法———提高应用水平的若干技巧[J]. 数理统计与管理, 2007,27(2):355-376.。
《蒙特卡罗方法》PPT课件

5
1.引言
Monte Carlo方法简史 简单地介绍一下Monte Carlo方法的发展历史
1、Buffon投针实验: 1768年,法国数学家Comte de Buffon利用投针实验估计的值
完整版ppt
L
d
p
2L d
6
1.引言
7 完整版ppt
1.引言
8 完整版ppt
1.引言
9 完整版ppt
23 完整版ppt
1.引言
注意以下两点: • Monte Carlo方法与数值解法的不同: ✓ Monte Carlo方法利用随机抽样的方法来求解物理问题;
✓数值解法:从一个物理系统的数学模型出发,通过求解一 系列的微分方程来的导出系统的未知状态;
• Monte Carlo方法并非只能用来解决包含随机的过程的问题:
28 完整版ppt
2.MC基本思想
二十世纪四十年代中期,由于科学技术的发展和 电子计算机的发明,蒙特卡罗方法作为一种独立的方 法被提出来,并首先在核武器的试验与研制中得到了 应用。但其基本思想并非新颖,人们在生产实践和科 学试验中就已发现,并加以利用。
➢ 两个例子 例1. 蒲丰氏问题 例2. 射击问题(打靶游戏)
4. 编程进行计算机模拟
5. 获得统计量
j
17 完整版ppt
1.引言
MC的模拟方法-1 确定统计方案
1 确定统计模型 1) 现象 模型
随机现象Y=Y(Xi), Xi={X1, X2, X3,…}
2) 确定随机变量Xi的分布特征fi(x) 平均分布,指数分布,正态分布,Γ分布…
2 确定统计量
j
i lnim1nkn1ik(xi,...)
1.引言
蒙特卡罗方法PPT课件

第1页/共83页
蒙特卡 罗方法
直接方法
可以分解为各个独立 过程的随机性事件
统计方法 数值求解多维定积分
第2页/共83页
5.1 基本思想和一般过程
• Buffon投针实验
• 1768年,法国数学家Comte de Buffon利用投针实验估计 值
L
d
p 2L
d
第3页/共83页
• 长度为 l的针随机地落在相距为d>l 的一组水平线之间, 求针与线相交的概率?
分布的随机数的抽样,进行大量的计算随机模拟实验,从中获得随机变量 的大量试验值。各种概率模型具有不同的概率分布,因此产生已知概率分 布的随机变量,是实现Monte Carlo方法的关键步骤。最简单、最基本、 最重要的一个概率分布是(0,1)上的均匀分布 (或称矩形分布)。随机数就 是具有这种均匀分布的随机变量。对于其他复杂概率模型的概率分布可以 用数学方法在此基础上产生。因此,随机数是Monte Carlo模拟的基本工 具。
方法就叫做简单抽样法或非权重随机抽样法。
• 随机抽样法的真正优势表现在对较高维积分的近似求解,诸如在多体动力
学和统计力学中所遇到的问题。蒙待卡罗方法对较高维体系的积分误差仍
是
,而这时梯形定则给出的误差变为1/m2/D,这里D为维数。
1m
第21页/共83页
5.3.1 简单抽样 • 将其推广到多维的情况
模拟这个概率过程。对于本来不是随机性质的确定性问题,比如计算定积 分、解线性方程组及偏微分方程边值问题等,要用蒙特卡罗方法求解,就 必须事先构造一个人为的概率过程,它的某些参量正好是所要求的问题的 解。
第10页/共83页
5.1 基本思想和一般过程 • (2) 实现从已知概率分布的抽样 • 有了明确的概率过程后,为了实现过程的数字模拟,必须实现从已知概率
蒙特卡罗模拟PPT课件

问题:试验次数 n 多大时,对给定的置信度 1-α(0<α<1),估计精度达到ε.
即问:取多大的n 使
P pˆ
p
P
kn n
p
1
成立?
答案:
n
p(1 2
p) z2
其中, zα是正态分布的临界值.
证明
频率法是事件A出现的频率作为概率p的估计
pˆ kn n
n次独立试验中A出现的次数kn~B(n, p).由中 心极限定理知
相当于第i 个随机点落 在1/4圆内.
若有k 个点落在l/4圆内
随机事件“点落入1/4圆内”的 频率为 k/n 根据概率论中的大数定律, 事件发生的频率
依概率收敛于事件发生的概率p,即有
lim
n
P{
k n
p
}
1
得圆周率π的估计值为
ˆ 4k n
且当试验次数足够大时, 其精度也随之提高.
分析:实际上概率值为
01
1 x2dx 4
恰为1/4圆 的面积
频率法: 利用随机变量落进指定区域内的频 率来计算定积分.
平均值法: 利用随机变量的平均值(数学期望) 来计算定积分.
I ab f ( x)dx
平均值法的算法如下:
(1)产生RND 随机数:r1,r2,…,rn;
(2)令 ui=a+(b-a)ri,i=1,2,…,n;
要增大100倍.
P197表8.2中列出了置信度为0.95 时, 在不同
蒙特卡洛方法的应用课件

材料属性模拟
蒙特卡洛方法可以模拟材料的物理和化学属性,如热导率、电 导率、扩散系数等,为材料的选择和应用提供依据。
结构可靠性分析
蒙特卡洛方法可以用于结构可靠性分析,通过模拟结构在 不同工况下的失效概率,评估结构的可靠性和安全性。
系统可靠性分析
系统可靠性评估
蒙特卡洛方法可以用于评估系统 的可靠性,通过模拟系统在不同 条件下的运行状态,评估系统的 可靠性和故障概率。
控制系统优化
蒙特卡洛方法可以用于控制系统的优化,通过模拟控制系 统的不同参数和控制策略,优化控制系统的性能和稳定性 。
控制系统故障诊断
蒙特卡洛方法可以用于控制系统的故障诊断,通过模拟控 制系统的运行状态和故障模式,诊断控制系统的故障和问 题。
05
蒙特卡洛方法在社会科学领 域的应用
人口统计学模拟
总结词
要点一
金融风险管理
蒙特卡洛方法可以用于评估金融衍生品的风险,通过模拟 标的资产价格的波动,计算出衍生品的价值及其波动性。
要点二
物理模拟
蒙特卡洛方法可以用于模拟物理现象,如粒子运动、气体 扩散等,通过大量模拟实验得出物理量的统计结果。
感谢您的观看
THANKS
它通过构造一个概率模型或随机过程 ,将需要求解的问题转化为一个概率 问题,然后通过大量的随机抽样来近 似求解该概率问题。
蒙特卡洛方法的原理
蒙特卡洛方法的原理基于大数定律和中心极限定理,通过大量的随机抽样来逼近真实概率分布的特征 值或概率质量函数。
在每个抽样点上,根据问题的具体条件和约束,进行相应的计算和判断,最终得到问题的近似解。
化学反应模拟
总结词
蒙特卡洛方法在化学领域常用于模拟化 学反应的过程和机理。
《蒙特卡罗方法》课件

REPORTING
优点
高效性
蒙特卡罗方法在处理大规模、复杂问 题时,相对于解析方法,具有更高的 计算效率。
适用性强
该方法适用于各种类型的问题,无论 是数学、物理还是工程领域。
灵活性高
蒙特卡罗方法允许使用各种随机抽样 技术,可以根据问题的特性灵活调整 。
易于实现
蒙特卡罗方法的算法相对简单,容易 编程实现。
估计精度
统计估计的精度与样本数量和估计方法的选 择有关。
误差分析
误差来源
蒙特卡罗方法的误差主要来源于概率模型的近似和随机抽样的不 确定性。
误差控制
通过增加样本数量、改进概率模型等方法来减小误差。
误差评估
通过方差、置信区间等统计方法对误差进行评估和检验。
PART 03
蒙特卡罗方法的实现步骤
REPORTING
《蒙特卡罗方法》 PPT课件
REPORTING
• 蒙特卡罗方法简介 • 蒙特卡罗方法的原理 • 蒙特卡罗方法的实现步骤 • 蒙特卡罗方法的应用实例 • 蒙特卡罗方法的优缺点 • 蒙特卡罗方法的未来发展与展望
目录
PART 01
蒙特卡罗方法简介
REPORTING
定义与特点
定义
蒙特卡罗方法是一种基于概率统计的 数值计算方法,通过随机抽样和统计 模拟来求解数学、物理、工程等领域 的问题。
代。
PART 04
蒙特卡罗方法的应用实例
REPORTING
金融衍生品定价
总结词
蒙特卡罗方法在金融衍生品定价中应用广泛 ,通过模拟标的资产价格变化,计算衍生品 价格和风险。
详细描述
蒙特卡罗方法通过随机抽样和概率统计,模 拟标的资产(如股票、外汇或商品等)的价 格变化,从而计算出衍生品(如期权、期货 或掉期等)的预期收益或风险。这种方法能 够处理复杂的衍生品定价问题,并给出较为 精确的估计。
蒙特卡罗方法介绍及其建模应用 ppt课件

主要内容
1 蒙特卡洛方法介绍 2 蒙特卡洛方法应用实例 3 排队论模拟介绍 4 2009-B 眼科病床安排应用
蒙特卡洛方法应用实例
1 "概率"计算模拟分析 2 定积分的MC计算 3 系统可靠性模拟计算
1 "概率"计算模拟分析
频率的稳定性模拟
• 频率:
– 在一组不变的条件下,重复作n次试验,记m是n次试验中事件A 发生的次数,频率 f=m/n
• 频率的稳定性: f---->P
– 例1:掷一枚均匀硬币,记录掷硬币试验中频率P的波动情况
– function liti21(p,mm) – pro=zeros(1,mm); – randnum = binornd(1,p,1,mm) – a=0; – for i=1:mm – a=a+randnum(1,i); – pro(i)=a/i; – end – pro=pro – num=1:mm; – plot(num,pro)
function liti22(p,mm) pro=zeros(1,mm); randnum = binornd(1,p,2,mm);a=0; for i=1:mm a=a+randnum(1,i)*randnum(2,i); pro(i)=a/i; end pro=pro,num=1:mm;plot(num,pro)
liti21(0.5,1000)
liti21(0.5,10000)
liti21(0.4,100)
liti21(0.4,10000)
例1':掷一枚不均匀硬币,正面出现概率为0.3,记录前1000 次掷硬币试验中正面频率的波动情况
liti21(0.3,1000)
例2: 掷两枚不均匀硬币,每枚正面出现概率为0.4,记录前 1000次掷硬币试验中两枚都为正面频率的波动情况
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京信息工程大学
Monte-Carlo, Monaco
2020/1/11 17:32
Monte Carlo方法的应用
物理:核物理,热力学与统计物理,粒子输运问题等 数学:多重积分、解微分方程、非线性方程组求解等 工程领域:真空技术,水力学,激光技术等 经济学领域:期权定价、项目管理、投资风险决策等 其他领域:化学、医学,生物,生产管理、系统科学、公 用事业等方面,随着科学技术的发展,其应用范围将更加 广泛。
⑤ 统计分析模拟试验结果,给出问题的估计以及其精度估计。 必要时,还应改进模型以降低估计方差和减少试验费用, 提高模拟计算的效率。
南京信息工程大学
2020/1/11 17:32
蒙特卡洛模拟的理论基础
大数定律---贝努里(Bernoulli)大数定律
lim P nA p 1 nA P p (n )
n n
n
中心极限定理
n
Xk n
k 1
~N (0,1)
(n ) X n ~ N (0,1)
n
/ n
南京信息工程大学
2020/1/11 17:32
蒙特卡洛模拟的误差分析
由中心极限定理可知:
P
Xn
u
n
(u )
1
这表明,不等式
南京信息工程大学
2020/1/11 17:32
MC的起源和发展----Buffon 试验
假设平面上有无数条距离为1的等距平行线,现向该平面
随机投掷一根长度为l的针(l1),则我们可计算该针与任
一平行线相交的概率。这里,随机投针指的是:针的中心
点与最近的平行线间的距离X均匀地分布在区间[0,1/2]上, 针与平行线的夹角(不管相交与否)均匀的分布在区间
则由大数定理可以估计出针线相交的概率p,从而得到 的估计
值。
南京信息工程大学
2020/1/11 17:32
function pi_estimation=buffon(llength,n) %llength 是针的长度 %n 是随机实验次数 frq=0; xrandnum = unifrnd(0,0.5,1,n); phi= unifrnd(0,pi,1,n); for ii=1:n
3.1662 3.1072 3.1522 3.1386 3.1451 3.1418 3.1448 3.1405 3.1394
南京信息工程大学
2020/1/11 17:32
用蒙特卡洛方法进行计算机模拟的步骤
① 建立统计模型,主要特征参量方面要与实际问题或系统相 一致,问题的解对应于模型中随机变量的概率分布或其某 些数字特征
南京信息工程大学
2020/1/11 17:32
Monte Carlo的起源
Monte Carlo方法:
– 又称随机模拟方法,对研究的系统进行随机观察抽样,通过对样本 值的统计分析,求得所研究系统的某些参数
– 它是在上世纪四十年代中期为了适应当时原子能事业的发展而发 展起来,“曼哈顿计划”主持人之一、数学家:冯·诺伊曼用驰名 世界的赌城—摩纳哥最大的城市Monte Carlo—来命名这种方法
if (xrandnum(1,ii)<=(llength*sin(phi(1,ii))/2)) frq=frq+1;
end end pi_estimation=2*lle7:32
>> buffon(.6,1000) piguji = >> buffon(.6,10000) piguji = >> buffon(.6,100000) piguji = >> buffon(.6,1000000) piguji = >> buffon(.6,1000000) piguji = >> buffon(.6,1000000) piguji = >> buffon(.6,1000000) piguji = >> buffon(.6,1000000) piguji = >> buffon(.6,1000000) piguji =
[0,]上。此时,针与线相交的充要条件是
X l sin
2
f
X
(
x)
f
(w)
2
1
南京信息工程大学
2020/1/11 17:32
Buffon 试验
从而针线相交的概率为
p
ˆ
P X
l sin
2
0
l sin 2
2 dxdw
0
2l
根据上式,若我们做大量的投针试验并记录针与线相交的次数,
Monte Carlo方法的适用性强
– Monte Carlo方法对多维问题的适用性 – 在解题时受问题条件限制的影响较小
② 根据模型中各个随机变量的分布,在计算机上产生随机数, 实现一次模拟过程所需的足够数量的随机数,进而进行随 机模拟实验
③ 根据概率模型的特点和随机变量的分布特性,设计和选取 合适的抽样方法,并对每个随机变量进行抽样(包括直接 抽样、分层抽样、相关抽样、重要抽样等)
④ 按照所建立模型进行仿真试验、计算,求出问题的随机解
收敛速度与问题维数无关
– Monte Carlo方法的收敛速度为O(n -1/2),与一般数值方法相比很慢。 因此,用Monte Carlo方法不能解决精确度要求很高的问题
– Monte Carlo方法误差只与标准差和样本容量n有关,而与样本所 在空间无关,即Monte Carlo方法的收敛速度与问题维数无关,而 其他数值方法则不然。
概率统计中的MonteCarlo 方法及其建模应用
1
主要内容
1 蒙特卡洛方法介绍 2 蒙特卡洛方法应用实例 3 作业内容
南京信息工程大学
2020/1/11 17:32
蒙特卡洛方法介绍
1 蒙特卡洛起源与发展 2 随机数的产生原理
南京信息工程大学
2020/1/11 17:32
1 蒙特卡洛起源与发展
Xn
u
n
近似地以概率1成立。
上式也表明,X n 收敛到 的阶为O(n -1/2)。
通常,蒙特卡罗方法的误差ε 定义为:
u
n
南京信息工程大学
2020/1/11 17:32
蒙特卡洛方法的特点
Monte Carlo方法及其程序结构简单
– 产生随机数,通过大量简单重复抽样和简单计算计算相应的值