菱形的判定教学设计

合集下载

八年级数学下册《菱形的判定定理》教案、教学设计

八年级数学下册《菱形的判定定理》教案、教学设计
2.归纳要点:
-菱形是一种特殊的平行四边形,具有独特的性质和判定定理。
-掌握菱形的判定定理有助于解决实际问题,提高几何解题能力。
-菱形与其他几何图形之间有一定的联系,可以相互转化。
3.教师寄语:希望同学们能够将本节课所学的知识运用到实际生活中,不断探索、发现数学的奥秘。同时,要注重课后复习,巩固所学知识,为今后的学习打下坚实基础。
1.教学内容:菱形的定义、性质及判定定理。
-菱形的定义:四边相等的四边形。
-菱形的性质:对角线互相垂直平分,对角线上的点到对边的距离相等。
-菱形的判定定理:四边相等的四边形是菱形;对角线互相垂直平分的四边形是菱形;有一个角是直角的菱形是正方形。
2.教学方法:采用讲解、演示、举例等方式,引导学生理解菱形的定义、性质及判定定理。
4.教学拓展:
-鼓励学生课后自主探究菱形与其他几何图形的联系,如菱形与正方形、矩形的性质对比。
-组织学生参加数学竞赛、研究性学习等活动,提高学生的几何素养和综合素质。
-结合信息技术,如数学软件、在线课程等,为学生提供丰富的学习资源和拓展空间。
四、教学内容与过程
(一)导入新课
1.教学活动:教师出示一张美丽的风筝图片,邀请学生观察并描述风筝的形状。引导学生发现风筝的对称美,进而引出菱形的概念。
(四)课堂练习
1.教学活动:教师发放练习题,学生独立完成,教师对答案进行讲解。
2.练习内容:
-判断给定图形是否为菱形,并给出证明。
-运用菱形性质解决实际问题,如求菱形的面积、周长等。
-分析菱形与其他几何图形的关系,如矩形、正方形等。
(五)总结归纳
1.教学活动:教师引导学生回顾本节课的学习内容,总结菱形的定义、性质及判定定理。

人教版数学八年级下册18.2.2菱形的判定教学设计

人教版数学八年级下册18.2.2菱形的判定教学设计
4.例题讲解:通过典型例题,讲解菱形性质和判定方法的应用,帮助学生巩固所学知识。
(三)学生小组讨论
1.分组:将学生分成若干小组,每组4-6人,确保每个学生都能参与到讨论中来。
2.讨论主题:针对菱形的性质和判定方法,设置以下讨论主题:
-菱形在生活中的应用;
-菱形与其他四边形的区别与联系;
-如何运用菱形的性质和判定方法解决实际问题。
4.小组合作题:布置一道需要团队合作完成的几何题目,要求学生在小组内共同探讨、分析,培养学生的合作能力和团队精神。
-例如:某学校举行数学竞赛,有一道题目为:在平面直角坐标系中,已知点A(2,3),点B(-2,3),点C(-2,-3),点D(2,-3),求证:四边形ABCD是菱形。
5.反思总结题:要求学生结合本节课的学习内容,撰写一篇学习心得体会,反思自己在学习菱形知识过程中的收获和不足,为今后的学习制定目标。
3.讨论过程:各小组针对讨论主题进行交流、探讨,鼓励学生发表自己的观点,形成共识。
4.小组汇报:每个小组选派一名代表,汇报本组的讨论成果,其他小组成员进行补充。
(四)课堂练习
1.练习题设计:针对菱形的性质和判定方法,设计不同难度的练习题,让学生独立完成。
2.练习过程:学生在规定时间内完成练习题,期间教师巡回指导,解答学生的疑问。
人教版数学八年级下册18.2.2菱形的判定教学设计
一、教学目标
(一)知识与技能
1.理解并掌握菱形的定义及性质,了解菱形在实际生活中的应用。
2.学会运用菱形的判定方法判断一个四边形是否为菱形,并能运用这些判定方法解决相关问题。
3.能够运用菱形的性质解决几何作图问题,提高学生的几何作图能力。
4.能够运用菱形的知识解决一些实际问题,培养学生的数学应用意识。

人教版八年级数学下册18.2.2《菱形的判定》教学设计

人教版八年级数学下册18.2.2《菱形的判定》教学设计
5.课堂结束前,对学生进行情感态度的引导,强调数学学习要严谨、认真,培养良好的学习习惯。
五、作业布置
1.请同学们完成课本第126页的练习题,巩固菱形的判定方法及其应用。
a.注意审题,明确题目要求,避免因粗心大意导致解题错误。
b.解题过程中,要求书写规范,保持卷面整洁。
c.解题后,认真检查,确保答案正确。
3.判定方法探索:
(1)对角线互相垂直平分的四边形是菱形;
(2)四边相等的四边形是菱形;
(3)引导学生运用已知性质,证明菱形的判定方法。
4.应用练习:设计具有实际意义的菱形计算题目,巩固学生对菱形知识的掌握。
5.小组讨论:分组讨论菱形判定方法在实际问题中的应用,培养学生的团队协作和表达能力。
6.课堂总结:对本节课所学内容进行总结,强调菱形判定方法的重要性。
2.培养学生尊重事实、严谨求实的科学态度,使学生认识到数学在现实生活中的重要作用。
3.通过菱形的学习,引导学生发现几何图形的美,培养学生的审美情趣和审美意识。
教学设计具体内容:
1.导入:通过展示生活中的菱形实例,引导学生观察和发现菱形的特征,提出研究问题。
2.新课导入:讲解菱形的定义,引导学生运用已知的知识探索菱形的判定方法。
2.选取以下两道拓展延伸题目进行思考和实践:
a.在一个菱形中,对角线交于点O,连接点O与各顶点,形成四个三角形。求证:这四个三角形面积相等。
b.已知菱形的对角线互相垂直,且对角线长度分别为6cm和8cm,求菱形的面积。
c.请同学们尝试用不同的方法解决上述问题,并比较各种方法的优缺点。
3.结合本节课所学内容,观察生活中的菱形实例,思考菱形在实际应用中的优势,写一篇短文,不少于300字。
此外,学生在小组合作、讨论交流方面表现出较强的积极性,但在逻辑推理和问题解决方面,部分学生可能存在一定的困难。因此,在教学过程中,教师应关注以下几点:

菱形的判定课程设计

菱形的判定课程设计

菱形的判定课程设计一、教学目标本节课的教学目标是让学生掌握菱形的判定方法,能够运用菱形的性质解决相关问题。

知识目标包括:了解菱形的定义和性质,掌握菱形的判定方法,能够运用菱形的性质解决实际问题。

技能目标包括:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。

情感态度价值观目标包括:培养学生对数学的兴趣,增强学生的自信心,培养学生的合作精神。

二、教学内容本节课的教学内容主要包括菱形的定义、性质和判定方法。

首先,通过引入菱形的定义,使学生了解菱形的基本特征。

然后,引导学生探究菱形的性质,如对角线互相垂直平分、四条边相等等。

最后,教授菱形的判定方法,如对角线互相垂直平分且四条边相等的四边形是菱形。

三、教学方法为了激发学生的学习兴趣和主动性,本节课采用多种教学方法。

首先,通过讲授法,向学生传授菱形的定义、性质和判定方法。

然后,运用讨论法,让学生分组讨论,交流各自的思考和心得。

接着,采用案例分析法,给出实际问题,让学生运用菱形的性质进行解决。

最后,利用实验法,让学生动手操作,验证菱形的性质和判定方法。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,本节课准备了一系列教学资源。

教材方面,选用《数学》课本,作为学生学习的基础资料。

参考书方面,推荐学生阅读《菱形的性质与应用》等书籍,以拓展学生的知识视野。

多媒体资料方面,制作了菱形的性质和判定方法的PPT,以便于直观展示。

实验设备方面,准备了尺子、剪刀、纸张等,让学生动手操作,验证菱形的性质。

五、教学评估本节课的教学评估将采用多元化的评估方式,以全面、客观、公正地评价学生的学习成果。

评估方式包括平时表现、作业和考试。

平时表现主要考察学生的课堂参与度、提问回答等情况,通过观察和记录,对学生的学习态度和积极性进行评价。

作业方面,布置与菱形性质相关的练习题,要求学生在规定时间内完成,通过批改作业,了解学生对菱形性质的掌握情况。

考试方面,设计一份涵盖菱形定义、性质和判定方法的测试卷,以检验学生对本章节知识的掌握程度。

人教版八年级下册数学第2课时 菱形的判定教案

人教版八年级下册数学第2课时 菱形的判定教案

第2课时菱形的判定教学设计课题菱形的判定授课人素养目标 1.理解并掌握菱形的判定方法,体会类比数学思想方法的作用.2.引导学生从边和对角线探究菱形的判定定理,养成主动探索的学习习惯.3.运用菱形的判定方法进行证明或计算,发展学生的推理能力.教学重点菱形的判定方法的理解与应用.教学难点菱形的判定定理与性质定理的区别和联系教学活动教学步骤师生活动活动一:类比推理,导入新课设计意图通过类比学习,激发学生的好奇心和求知欲,引入本节课要研究的内容.【类比导入】前面我们学习平行四边形和矩形时,都可以用性质得出相应的判定,那么我们学习菱形的判定时是否也可以反推菱形的性质来得到它的判定呢?我们大家一起来尝试一下吧!【教学建议】引导学生进行类比、思考、分析,由平行四边形和矩形的判定推断菱形的判定,并回忆上一课时菱形的概念.活动二:动手验证,探究新知设计意图通过图形的变化,让学生感受四边形是菱形时对角线的特征,引导学生得出菱形的判定方法.探究点1对角线互相垂直的平行四边形是菱形如图,用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.(1)转动木条,这个四边形总有什么特征?它是什么四边形?答:这个四边形的对角线总是互相平分,它是平行四边形.(2)继续转动木条,观察橡皮筋围成的四边形什么时候变成菱形?答:当这个四边形的对角线互相垂直时变成菱形.猜想:对角线互相垂直的平行四边形是菱形.【教学建议】让学生动手实践得到菱形的判定方法,教师注意提醒学生:这里对角线互相垂直的前提条件是在平行四边形内,如果是一般的四边形,则应教学步骤师生活动设计意图利用逆向思维思考性质,让同学们在解决问题的过程中总结判定定理.下面我们来进行验证:已知:如图,在ABCD 中,对角线AC ,BD 相交于点O ,且BD ⊥AC.求证:ABCD 是菱形.证明:∵四边形ABCD 是平行四边形,∴AO =CO.∵BD ⊥AC ,∴AB =BC(线段垂直平分线上的点到这条线段两个端点的距离相等).∴ABCD 是菱形.归纳总结:对角线互相垂直的平行四边形是菱形.几何语言:∵四边形ABCD 是平行四边形,且AC ⊥BD ,∴ABCD 是菱形.例1(教材P 57例4)如图,ABCD 的对角线AC ,BD 交于点O ,且AB =5,AO =4,BO =3.求证:ABCD 是菱形.证明:∵AB =5,AO =4,BO =3,∴AB 2=AO 2+BO 2,∴∠AOB =90°.∴AC ⊥BD ,∴ABCD 是菱形.【对应训练】1.如图,在ABCD 中,对角线AC 与BD 交于点O ,若添加一个条件,可推出ABCD 是菱形,则该条件可以是(C )A.AB =AC B .AC =BD C.AC ⊥BD D .AB ⊥AC2.教材P58练习第2题.探究点2四条边相等的四边形是菱形老师拿四根长度一样的新粉笔,首尾顺次相接拼成一个四边形,在黑板上画出相应的图形并标上字母(如图),得到的四边形ABCD 是菱形吗?是猜想:四条边相等的四边形是菱形.下面我们来进行验证:如图,在四边形ABCD 中,AB =BC =CD =AD.求证:四边形ABCD 是菱形.证明:∵AB =CD ,BC =AD ,∴四边形ABCD 是平行四边形.又AB =BC ,∴四边形ABCD 是菱形.归纳总结:四条边相等的四边形是菱形.几何语言:∵AB =BC =CD =AD ,∴四边形ABCD 是菱形.【对应训练】1.如图,在矩形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点.求证:四边形EFGH 是菱形.证明:∵四边形ABCD 是矩形,∴∠A =∠B =∠C =∠D =90°,AD =BC ,AB =CD.满足对角线互相垂直且平分.【教学建议】提醒学生:若已知邻边相等,要证明这个四边形是菱形,可用两种方法:(1)先证明这个四边形是平行四边形,再利用邻边相等得到菱形;(2)直接证明四条边都相等.教学步骤师生活动∵E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,∴AH =DH =BF =CF ,AE =BE =CG =DG.∴△AHE ≌△BFE ≌△CFG ≌△DHG(SAS),∴HE =FE =FG =HG ,∴四边形EFGH 是菱形.2.教材P58练习第3题.活动三:综合运用,巩固提升设计意图巩固学生对菱形的判定的认识.例2如图,在ABCD 中,BF 平分∠ABC 交AD 于点F ,AE ⊥BF于点O ,交BC 于点E ,连接EF.(1)求证:四边形ABEF 是菱形;(2)若AE =6,BF =8,CE =3,求ABCD 的面积.(1)证明:∵四边形ABCD 是平行四边形,∴AO =EO ,AD ∥BC ,∴∠EBF =∠AFB.∵BF 平分∠ABC ,∴∠ABF =∠EBF ,∴∠ABF =∠AFB ,∴AB =AF.∵BO ⊥AE ,AO =EO ,∴AB =EB ,∴BE =AF.∵BE ∥AF ,∴四边形ABEF 是平行四边形.又AB =AF ,∴ABEF 是菱形.(2)解:如图,过点F 作FG ⊥BC 于点G.∵四边形ABEF 是菱形,AE =6,BF =8,OE =12AE =3,OB =12BF=4.在Rt △BOE 中,BE =OB 2+OE 2=42+32=5.∵S 菱形ABEF =12AE·BF =BE·FG ,∴12×6×8=5FG ,∴FG =245.∵BC =BE +CE =5+3=8,∴SABCD =BC·FG =8×245=1925.【教学建议】学生独立思考并完成例题,教师点评.提醒学生注意:(1)已知角方面的条件可考虑利用其得到边的相等关系,为证明菱形创造条件;(2)进行第(2)问计算时,求ABCD 的面积,可利用第(1)问的结论,先由菱形的两种面积计算方法求得关键的线段长.活动四:随堂训练,课堂总结【随堂训练】相应课时训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:菱形的判定方法有哪几种?矩形和菱形小结:【知识结构】【作业布置】1.教材P 60习题18.2第6,10题.2.相应课时训练.教学步骤师生活动板书设计18.2.2菱形第2课时菱形的判定解题方法:根据题设条件灵活选择菱形的判定方法.(1)用边来判定:①先说明四边形是平行四边形,再说明有一组邻边相等;②说明四边形的四条边都相等.(2)用对角线进行判定:①先说明四边形是平行四边形,再说明四边形的对角线互相垂直;②说明四边形的对角线互相垂直平分.注意:对角线垂直的四边形不一定是菱形,必须是对角线互相垂直的平行四边形才是菱形.例1如图,四边形ABCD 是平行四边形,DE ∥BF ,且分别交对角线AC 于点E ,F ,连接BE ,DF.(1)求证:AE =CF ;(2)若BE =DE ,求证:四边形EBFD 为菱形.证明:(1)∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAE =∠BCF.∵DE ∥BF ,∴∠DEF =∠BFE ,∴∠AED =∠CFB.在△ADE 和△CBF中,∠DAE =∠BCF ,∠AED =∠CFB ,AD =CB ,∴△ADE ≌△CBF(AAS ),∴AE =CF.(2)由(1)知△ADE ≌△CBF ,∴DE =BF.∵DE ∥BF ,∴四边形EBFD 是平行四边形.又BE =DE ,∴四边形EBFD 为菱形.例2如图,ABCD 的对角线AC ,BD 相交于点O ,过点O 作EF ⊥AC ,分别交AB ,DC 于点E ,F ,连接AF ,CE.(1)若OE =32,求EF 的长;(2)判断四边形AECF 的形状,并说明理由.解:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AO =CO ,∴∠FCO =∠EAO.在△AOE 和△COF 中,∠FCO =∠EAO ,AO =CO ,∠AOE =∠COF ,∴△AOE ≌△COF(ASA ).∴OE =OF =32,∴EF =2OE =3.(2)四边形AECF 是菱形.理由:∵△AOE ≌△COF ,∴AE =CF.∵AE ∥CF ,∴四边形AECF 是平行四边形.1.菱形的概念.2.菱形的判定定理1.3.菱形的判定定理2.教学反思新课导入时让学生动手制作菱形,感知菱形判定的条件,让学生在轻松愉快的氛围中自然、水到渠成地得到菱形的判定定理.在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.又EF ⊥AC ,∴四边形AECF 是菱形.例1如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,AB =3,AC =2,则四边形ABCD 的面积为(A )A .42B .62C .82D .5解析:如图,过点A 分别作AE ⊥CD 于点E ,AF ⊥BC 于点F ,连接BD 交AC 于点O.∵两条纸条宽度相同,∴AE =AF.∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形.∵S ABCD =BC·AF =CD·AE ,AE =AF ,∴BC =CD ,∴四边形ABCD 是菱形.∴AO =CO =12AC =12×2=1,BO =DO ,AC ⊥BD.∴BO =AB 2-AO 2=32-12=22,∴BD =4 2.∴四边形ABCD 的面积=12BD·AC =12×42×2=42.故选A .例2如图,在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB的延长线上,且DE =BF ,连接AE ,CF.(1)求证:△ADE ≌△CBF ;(2)连接AF ,CE.当BD 平分∠ABC 时,四边形AFCE 是什么特殊四边形?请说明理由.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥CB ,AD =CB.∴∠ADB =∠CBD ,∴∠ADE =∠CBF.在△ADE 和△CBF =CB ,ADE =∠CBF ,=BF ,∴△ADE ≌△CBF(SAS ).(2)解:当BD 平分∠ABC 时,四边形AFCE 是菱形.理由:∵BD 平分∠ABC ,∴∠ABD =∠CBD.∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,AD ∥BC ,∴∠ADB =∠CBD.∴∠ABD =∠ADB ,∴AB =AD ,∴ABCD 是菱形.∴AC ⊥BD ,∴AC ⊥EF.∵DE =BF ,∴OE =OF.又OA =OC ,∴四边形AFCE 是平行四边形.∵AC ⊥EF ,∴四边形AFCE 是菱形.。

《菱形判定》优秀教学设计

《菱形判定》优秀教学设计

《菱形判定》优秀教学设计作为一位不辞辛劳的人民教师,就难以避免地要准备教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。

那么你有了解过教学设计吗?下面是店铺精心整理的《菱形判定》优秀教学设计,欢迎大家分享。

《菱形判定》优秀教学设计1一、教学目的:1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.二、重点、难点1.教学重点:菱形的两个判定方法.2.教学难点:判定方法的证明方法及运用.三、例题的意图分析本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.四、课堂引入1.复习(1)菱形的定义:一组邻边相等的平行四边形;(2)菱形的性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形.五、例习题分析例1 (教材P109的例3)略例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.证明:∵ 四边形ABCD是平行四边形,∴ AE∥FC.∴ ∠1=∠2.又∠AOE=∠COF,AO=CO,∴ △AOE≌△COF.∴ EO=FO.∴ 四边形AFCE是平行四边形.又EF⊥AC,∴ AFCE是菱形(对角线互相垂直的平行四边形是菱形).※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.求证:四边形CEHF为菱形.略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.六、随堂练习1.填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;(4)两组对边分别平行,且对角线的四边形是菱形.2.画一个菱形,使它的两条对角线长分别为6cm、8cm.3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

初中数学《菱形的判定》教学设计及说明

初中数学《菱形的判定》教学设计及说明

初中数学《菱形的判定》教学设计及说明教学设计:菱形的判定一、教学目标:1.知识与技能:掌握菱形的判定方法。

2.过程与方法:培养学生观察、分析和推理的能力;培养学生合作学习和独立思考的能力。

3.情感态度价值观:培养学生对菱形的认识和兴趣,培养学生观察问题、思考问题和解决问题的能力。

二、教学重点:掌握菱形的定义和判定方法。

三、教学难点:能够独立进行菱形的判定。

四、教学准备:教师准备:教师PPT,黑板、白板及相应的书写工具。

学生准备:学生大致了解几何形状概念,了解正方形和长方形的定义。

五、教学过程:1.导入(10分钟)通过展示几张带有菱形的图片,引起学生对菱形的认识和兴趣,询问学生是否知道菱形是什么形状以及如何判断一个图形是否为菱形。

2.探究(15分钟)教师分发一些菱形、正方形和长方形的纸板,学生在小组合作中观察这些图形的特点和区别,并提出判定菱形的条件。

3.归纳(10分钟)学生在教师的引导下,将判定菱形的条件总结出来,教师在黑板上进行记录并进行必要解释。

4.例题练习(20分钟)教师给学生出若干个菱形的例子,要求学生在纸上进行判定,并将判断过程写出来。

5.反馈与讲解(15分钟)教师选几个例子请学生上台讲解自己的判断过程,引导学生归纳出正确的判定方法,并进行讲解。

6.练习(15分钟)教师分发练习册,学生独立完成其中关于菱形判定的练习题。

7.拓展与应用(15分钟)教师设计一些拓展问题,要求学生在小组合作中解决,并进行展示。

例如:如何判定一个几何图形是一个平行四边形但不是菱形?8.总结与评价(10分钟)教师对本节课的内容进行总结,并对学生进行评价,对于学生的问题进行解答。

六、板书设计:菱形的判定1.对角线相等;2.对角线互相垂直。

七、教学反思:通过本节课的教学,学生对菱形的判定方法有了更深入的理解,能够通过观察和推理进行判断。

通过合作学习和独立思考,学生的动手能力和创新精神得到了一定的培养和发展。

为了更好地激发学生的学习兴趣,可以在课堂中设置一些有趣的练习题和问题,提高课堂氛围和学生的参与度。

人教版八年级下册18.2.2菱形的判定教学设计

人教版八年级下册18.2.2菱形的判定教学设计
(五)结归纳,500字
1.教师引导学生回顾本节课所学内容,让学生自主总结菱形的性质和判定方法。
2.学生分享总结成果,教师予以补充和评价。
3.教师强调菱形在实际生活中的应用,激发学生学习几何的兴趣。
4.布置课后作业,要求学生运用所学知识解决实际问题,巩固课堂所学。
5.教师对本节课的教学效果进行自我反思,为下一节课的教学做好准备。
(三)情感态度与价值观
1.培养学生对几何图形的兴趣,激发学生学习几何的积极性,增强学生对数学学科的好奇心和探索欲。
2.培养学生严谨、细致的学习态度,养成独立思考、勇于探究的良好习惯。
3.通过菱形的学习,引导学生发现生活中的几何图形,感受几何美,提高学生的审美素养。
4.培养学生的团队合作精神,让学生在互相帮助、互相学习中共同进步,增强集体荣誉感。
二、学情分析
八年级下册的学生已经具备了一定的几何基础,掌握了平行四边形、矩形、菱形等基本概念和性质,能够进行简单的几何推理和计算。在此基础上,他们对菱形的判定方法有一定了解,但可能对判定条件的运用和深入理解上存在困难。此外,学生在空间想象力和逻辑思维能力上发展不均衡,部分学生对几何图形的认识和问题解决能力有待提高。因此,在教学过程中,应关注以下几点:
人教版八年级下册18.2.2菱形的判定教学设计
一、教学目标
(一)知识与技能
1.理解并掌握菱形的定义及基本性质,能够识别和绘制菱形。
2.掌握菱形的判定方法,包括四边相等和邻边相等的平行四边形是菱形,以及四角相等的四边形是菱形。
3.学会运用菱形的性质解决实际问题,如计算菱形的对角线长、面积等。
4.能够运用菱形的判定方法判断生活中的菱形图形,提高几何图形的识别能力。
5.总结反馈,拓展延伸:课堂小结环节,让学生自主总结本节课所学内容,教师予以反馈。在此基础上,布置具有挑战性的拓展任务,激发学生的探究欲望。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:19.2.2 菱形(二)
教学目标:
教学重点:菱形的两个判定方法.
教学难点:判定方法的证明方法及运用.
教学课时:教学课件:
生讨论归纳后,并板书):
第二步:应用举例:
例1 (教材P109的例3)略
例2(补充)已知:如图ABCD的对角
线AC的垂直平分线与边AD、BC分别交于E、
F.求证:四边形
AFCE是菱形.
证明:∵
四边形ABCD是
平行四边形,
∴AE∥
FC.
∴∠1=∠2.
又∠AOE=∠COF,AO=CO,
∴△AOE≌△COF.
∴EO=FO.
∴四边形AFCE是平行四边形.
又EF⊥AC,
∴AFCE是
菱形(对角线互相垂直的
平行四边形是菱形).
※例3(选讲)已
知:如图,△ABC中,∠
ACB=90°,BE平分∠
ABC,CD⊥AB与D,
EH⊥AB于H,CD交BE于F.
求证:四边形CEHF为菱形.
略证:易证CF∥EH,
CE=EH,在Rt△BCE
中,
∠CBE+∠CEB=90°,
在Rt△BDF中,
∠DBF+∠DFB=90°,
因为∠CBE=∠DBF,
∠CFE=∠DFB,所以
∠CEB=∠CFE,所以
CE=CF.
所以,CF=CE=EH,
CF∥EH,所以四边
形CEHF为菱形.
学生先
独立思
考,再
谈自己
的解题
思路。

第三步:随堂练习1.填空:
(1)对角线互相平分的四边形是;
(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;
(4)两组对边分别平行,且对角线的四边形是菱形.
2.画一个菱形,
使它的两条对
角线长分别为
6cm、8cm.
3.如图,O是
矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED
是菱形。

第四步:课后练习1.下列条件中,能判定四
边形是菱形的是
().
(A)两条对角线相等
(B)两条对角线互相垂

(C)两条对角线相等
且互相垂直(D)两条对角线互相垂直平

2.已知:如图,M是等腰三角形ABC底边BC 上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG ⊥AC.求证:四边形MEND是菱形.
第五
步:课堂小结:菱形可根据哪些进行判定?填写下表、填图:
应具备两个条件
菱形的
判定
菱形的
定义
判定定
理1
判定定
理2
板书设计:
应具备两个条件
菱形的判定
菱形的定义
判定定理1
判定定理2
辅备设计:教学反思:。

相关文档
最新文档